
Identification of Novel Classes for Improving Few-Shot Object Detection

Zeyu Shangguan
University of Southern California

zshanggu@alumni.usc.edu

Mohammad Rostami
University of Southern California

rostamim@usc.edu

Abstract

Conventional training of deep neural networks requires
a large number of the annotated image which is a labori-
ous and time-consuming task, particularly for rare objects.
Few-shot object detection (FSOD) methods offer a remedy
by realizing robust object detection using only a few train-
ing samples per class [16, 37, 36, 8, 48, 15]. A challenge
for FSOD is that instances from unlabeled novel classes
that do not belong to the fixed set of training classes ap-
pear in the background. These objects behave similarly to
label noise, leading to FSOD performance degradation. We
develop a semi-supervised algorithm to detect and then uti-
lize these unlabeled novel objects as positive samples dur-
ing training to improve FSOD performance. Specifically,
we propose a hierarchical ternary classification region pro-
posal network (HTRPN) to localize the potential unlabeled
novel objects and assign them new objectness labels. Our
improved hierarchical sampling strategy for the region pro-
posal network (RPN) also boosts the perception ability of
the object detection model for large objects. Our experi-
mental results indicate that our method is effective and out-
performs the existing state-of-the-art (SOTA) FSOD meth-
ods https://github.com/zshanggu/HTRPN

1. Introduction
The adoption of deep neural network architectures in ob-

ject detection has led to a significant method in determining

the location and the category of objects of interest in an im-

age. In the presence of abundant training data, object de-

tection models based on the region-based convolution neu-

ral networks (R-CNN) architecture reach high accuracy on

most object detection tasks. However, preparing large-scale

annotated training data can be a challenging task in some

applications [35]. In the presence of insufficient training

data, these models easily overfit and fail to generalize well.

In contrast, humans are able a novel object class very fast

based on a few samples [21, 38]. As a result, it is extremely

desirable to develop models that can learn object classes us-

ing only a few samples, known as few-shot object detection

Figure 1: FSOD methods pre-train a model on abundant base

classes and then fine-tune it on both base and novel classes.

(FSOD).

Current FSOD methods are based on pre-training a suit-

able model on a set of base classes with abundant training

data and then fine-tuning the model on both the base classes

and the novel classes for which only a few samples are ac-

cessible (see Figure 1). The primary approach in FSOD is

to benefit from ideas in transfer learning or meta-learning

to learn novel classes through the knowledge obtained dur-

ing the pre-training stage while maintaining good perfor-

mance in base classes. Despite recent advances in FSOD,

current SOTA methods are still far from getting favorable

results on novel classes similar to the base classes. Poten-

tial reasons for this performance gap include the confusion

between visually similar categories, incorrect annotations

(label noise), the existence of unseen novel objects during

training, etc. Recent FSOD methods have focused on ad-

dressing these challenges for improved FSOD performance.

We study the phenomenon that unlabeled novel object

classes that do not belong to either of the base or the la-

beled novel classes can appear in the training data. For ex-

ample, we see in Figure. 1 that among base-class training

samples, there are a number of objects that remain unla-

beled, such as the cow in the image. These unlabeled ob-

jects can potentially belong to unseen novel classes. Our ex-

periments demonstrate that this phenomenon exists in PAS-

CAL VOC [4] and COCO [25] datasets.This phenomenon

leads to the objectness inconsistency for the model when

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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recognizing the novel objects: for the novel class, objects

are treated as background if their annotations are missing,

but they are treated as foreground where they are labeled.

Such nonconformity of foreground and background con-

fuses the model when training the objectness and make the

model hard to converge and degrades detection accuracy.

To tackle the above challenge, we develop a semi-

supervised learning method to utilize the potential novel ob-

jects that appear during training to improve the ability of the

model to recognize novel classes. We first demonstrate the

possibility of detecting these unlabeled objects. Our exper-

iment indicates that some unlabeled class objects are likely

to be recognized if they are similar to the training base and

novel classes. We collect the unlabeled novel objects from

the background proposals by determining whether they are

predicted as known classes, and then we give these propos-

als an extra objectness label in the region proposal network

(RPN) so that the model could learn them. We also ana-

lyze the defect of the standard RPN in detecting objects of

different sizes during training and propose a more balanced

RPN sampling method so that objects are treated equally

in all scales. We provide extensive experimental results to

demonstrate the effectiveness of our method on the PAS-

CAL VOC and COCO datasets. Our contributions include:

• We modify the anchor sampling strategy so that the

anchors are evenly chosen from different layers of the

feature pyramid layer in the R-CNN architecture.

• We design a ternary objectness classification in the

RPN layer which enables the model to recognize po-

tential novel class objects to improve consistency.

• We use contrastive learning in the RPN layer to distin-

guish between the positive and the negative anchors.

2. Related works
We assume that there are three classes: base classes,

seen novel classes, and unseen novel classes. The base and

the seen novel classes form the training dataset. For base

classes, we have sufficient data but for seen novel classes,

we have a few samples per class. Most works in FSOD only

consider these classes. The unseen novel classes are not in-

cluded in the training data but emerge as novel classes in

the background.

Few-shot object detection Typical object detection net-

works are usually either two-stage or one-stage. For two-

stage object detection networks, such as R-CNN [10], R-

FCN [3], Fast-RCNN [9], and Faster-RCNN [33], the

model first applies fixed anchors in the region proposal net-

work (RPN) to determine if a proposal box contains an ob-

ject. The selected proposals then are sent to the region of

interest (RoI) pooling layer to get an instance-level classi-

fication and bounding boxes. One-stage object detection

networks such as SSD [26], YOLO series [31, 32], and

Overfeat [39], estimate the category and the location of an

object directly from the backbone network without RPN.

Two-stage object detection networks have higher detecting

accuracy than one-stage schemes but lower inference speed

[20]. Few-shot object detection (FSOD), is a case of object

detection that only a few samples are available for training.

Two-stage FSOD For FSOD, the model is usually first

pre-trained on the base classes for which we have data-

sufficient. The model is then, fine-tuned on the seen novel

classes [44], each with a few samples. As for the fine-

tuning stage, meta-learning and transfer learning are two

major end-to-end approaches. Methods based on meta-

learning [5, 11, 12, 51] build an inquiry set and a support set

that contains k categories with n samples in each, namely k-

way n-shot setting. By creating the k-way n-shot episodes

for training, meta-learning help to learn a metric to deter-

mine which support set category an inquiry image belongs

to [5, 11, 12, 51]. In contrast, methods based on transfer

learning start from the pre-training weights and fine-tune

the model on the novel seen classes [21, 44, 40].

Unseen novel objects In an object detection problem,

the set of the base and the seen novel classes are assumed to

be a closed set. However, there may be potential novel un-

seen objects in the training data that do not belong to the ini-

tial set of classes, particularly when it comes to infrequent

classes [30]. These objects naturally are classified as one of

seen classes and hence, there has been an interest to mitigate

the adverse effects of these objects. Semi-supervised object

detection network is a potential solution for this problem

which utilizes the challenging samples [34, 28, 50]. Kaul

et al. [18] build a class-specific self-supervised label veri-

fication model to identify candidates of unlabeled (unseen)

objects and give them pseudo-annotations. The model is

then retrained with these pseudo-annotated samples to im-

prove the object-detecting accuracy. However, this method

requires two rounds of training and requires extra effort to

adapt to other categories. Li et al. [24] propose a dis-

tractor utilization loss by giving the distractor proposals a

pseudo-label during fine-tuning. This method is used only

in the fine-tuning stage and hence, the objectness inconsis-

tency from the pre-training stage is not addressed. Inspired

by these shortcomings, we propose utilizing the unlabeled

potential objects that belong to the unseen classes to reduce

the negative effect of novel objects.

Contrastive learning can be used to enlarge the inter-

class distances and narrow down the intra-class distances

for classification tasks to enhance data representations. It

has been applied to many classification tasks in topics such

as visual recognition [29, 42, 14], semantic segmentation

[43], super-resolution [45], and natural language process-

ing [7, 2]. Self-supervised contrastive learning in few-shot

object detection is introduced by FSCE [40] to better dis-
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Figure 2: The left images in each row indicate the predicted

boxes with the class names and confidence, and the right

images are the feature maps of the RPN layer.

tinguish similar categories at the instance level during fine-

tuning. We benefit from a similar strategy in our work.

3. Problem Description
We formulate the problem of FSOD following a standard

setting in the literature [16, 44]. We use the Faster R-CNN

network as the object detection model and follow the same

evaluation paradigm defined by [44]. Accordingly, the base

classes are those classes for which we have sufficient im-

ages and instances for each base class (CB), while novel

classes are those for which, we only have a few training

samples in the dataset (CN ), where CB ∩ CN = ∅. An

n-shot learning scenario means that we have access to n in-

stances per seen novel categories. During the pre-training

stage, the model is trained only on base class CB , and also

is only evaluated on the test set of CB . We then proceed

to learn the seen novel classes in the second stage. To

overcome catastrophic forgetting about the learned knowl-

edge about the base classes, the pre-trained model is then

fine-tuned on both the seen novel classes and base classes

CN ∪ CB and then is tested on both sets of classes.

Architectures based on R-CNN have been used consis-

tently for object detection. In our work, we improve the

R-CNN architecture to identify novel unseen classes as in-

stances that do not belong to the seen classes. For an input

image, R-CNN derives five scaled feature maps (p2 ∼ p6)

using its feature pyramid network (FPN), and then size-

fixed anchors in the region proposal network (RPN) are ap-

plied on these feature maps to predict the objectness (i.e.,

obj{objpre, objgt, ioua
gt}, where objpre is the predicted ob-

jectness score in the range of 0 and 1. Here, the ground

truth value objgt = 0 indicates a non-object and objgt = 1
represents a true object, and ioua

gt represents the intersec-

(a)

(b)

Figure 3: Novel unseen classes versus novel seen classes:

(a) a schematic diagram of how coarse anchors work. For

an n × m feature map, 3 fixed anchors will be applied on

each pixel of it. Therefore, each feature map would have

3m×n coarse anchors. (b) The mechanism of our proposed

HSamp can equally choose anchors for each layer.

tion over the union of an anchor with its ground truth box)

and the coarse bounding box (i.e., bboxc) of each anchor

to get proposal boxes (i.e., Prop{obj, bboxc, iou
p
gt}, ioup

gt

represents the intersection over the union of a proposal box

with its ground truth box). Anchors with ioua
gt > 0.7 are

called active anchors (Aa) and their corresponding propos-

als are called positive proposals (Propp); while anchors

with ioua
gt < 0.3 are called negative anchors (An) and

the corresponding proposals are called negative proposals

(Propn). Next, Propp and Propn are sent to the region of

interest pooling layer (RoI pooling) to predict their instance

level classification (i.e., clsi, where i is the classification in-

dex) and the refined bounding box (i.e., bboxr). The objects

(Obj{clsi, bboxr}) are then finally detected.

The challenge that we want to address stems from the

fact that an instance from the unlabeled and unseen novel

object (CN
pn) can appear in the training dataset in the back-

ground (see Figure 2). The reason is that there are many po-

tential classes that we have not included in either the base

classes or the unseen novel classes. When detected, these

objects would be treated as Propn and with its ground truth

objectness objgt
pn = 0. On the contrary, they would be

treated as Propp with ground truth objectness objgt
pn = 1

if it is labeled as such by the model. These instances can

significantly confuse the model when adapting the model

for learning the novel unseen classes. We argue that if the

unlabeled potential novel object can be distinguished from

the Propn, then its objectness could be modified as a fore-

ground object. Consequently, the inconsistency of the ob-

jectness would be eliminated. In other words, we propose
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Figure 4: The original image and anchors of p2/p3/p4/p5/p6 layers: (a)-(f) in the original FRCN, we hardly have chance to

pick up negative anchors that contain large novel unseen class objects. (g)-(l) when HSamp is used, the anchors are more

balanced for each layer and the large objects are more likely to be contained.

to reduce an effect similar to noisy labels as these objects

would be objects with wrong labels, leading to confusion in

the model and performance degradation.

4. Proposed solution
We outline our solution in this section. We first demon-

strate that it is possible to encounter instances of novel un-

seen classes during the training stage. We then investigate

the relationship between the number of anchors and the size

of objects in each feature layer and provide a more effec-

tive sampling method for object detection. Finally, we de-

scribe our proposed pipeline to pick up objects from unseen

classes with high confidence and then explain how we can

modify their objectness loss to reduce their adverse effect.

4.1. Finding the Potential Proposals

According to the original Faster R-CNN network [33],

the unlabeled area in an image would be wrongly treated

as background objects in the RPN layer during training.

Therefore, the potential unlabeled objects from unseen

novel classes are suppressed and hard to be identified as

true objects. However, to correct the objectness of these po-

tential objects, the first step is how to find them. We have

observed the fact that the network often has clear attention

to the potential objects in the RPN layer. As an example,

we have used Grad-CAM visualization of the feature map

of the RPN layer on some representative training images,

as shown in Figure. 2. We observe that although unlabelled

novel objects appear in the base training images, the RPN

layer could still have strong attention to them, and conse-

quently predict some of them as a known class. In Fig-

ure. 2a and 2b, the feature map of p3 layer clearly shows the

attention of the “chair” (base class) and “sofa” (novel class),

but the sofa is predicted to be an instance of the base class

“car”. Similarly, in Figure. 2c and 2d, the potential novel

objects (“bus”) can also be seen in the feature map of p4
layer, and the “bus” is predicted as an instance of the base

class “train”. This observation serves as an inspiration to

identify potential proposals: some novel objects have high

possibilities to be predicted as known base class.

Potential novel unseen class objects that appear in the

base class training images usually have lower ioua
gt [24]

and therefore must be contained by negative anchors (An).

Theoretically, there are always exists anchors that can in-

clude the potential novel objects in an image. According to

the architecture of the RPN layer, anchor boxes are used

to determine whether an area contains objects, and each

pixel of the feature map will have 3 fixed anchors that are

in different sizes and aspect ratios, as shown in Figure. 3a.

Consequently, the overall number of anchors decreases for

higher feature maps. In the original RPN layer, different

sizes of anchors are applied according to the size of the p2
to p6 feature maps. Large anchors are more suitable for de-

tecting large objects in high feature layers due to having a

larger receptive field, and vice versa. Based on this inch-by-

inch sliding window liked search, there should exist a suffi-

cient number of candidates An such that they contain poten-

tial unseen novel objects. However, to improve the training

speed, not all of the anchors are used for determining pro-

posal boxes. For an image, only 256 Aa and An anchors

among all feature maps are randomly chosen to participate

in the RoI pooling. Nonetheless, this random selection pro-

cess dramatically reduces the chance to get desired negative

anchors for large objects in higher feature maps in terms of

probability, since the anchors of large size in p4 to p6 layers

intrinsically have fewer cardinal numbers.

To identify instances of novel unseen classes, we ran-

domly select Ans in a hierarchically balanced way, namely

hierarchically sampling (HSamp). That is, if we need to

pick up m negative anchors (m<256), we equally assign
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(a) End-to-end architecture.

(b) Detailed description of our proposed TernaryHiercRPN.

Figure 5: Our proposed TernaryHiercRPN architecture.

them to each feature layer so that each layer will have

around m/5 anchors. This way, the anchors in each feature

layer would share the same possibility for being selected,

as shown in Figure. 3b. Therefore, the anchors that belong

to the p4 to p6 layers are safely preserved. For example, in

Figure. 3b, there are [[120,000], [30,000], [7,500], [1,875],

[507]] anchors for p4 to p6 layers in a training batch, and

218 negative anchors are needed. With the original RPN,

these 218 An anchors are randomly selected which means

the number of An for p6 feature map is only 3. In con-

trast, when HSamp is used, the number of An is equal for

each feature map. We have also visualized the effect of our

method in Figure 4. There is hardly any An that contains

the motorbike (novel unseen object) when using the orig-

inal RPN, as shown in Figure. 4a to 4f. However, when

HSamp is used, the chance to have an An that contains the

motorbike is higher, as shown in Figure. 4g to 4l. We con-

clude that it is crucial to implement a balanced strategy in

sampling negative anchors among all feature layers in order

to find potential objects that belong to unseen novel classes.

The approach will help us to isolate unseen novel class in-

stances as instances that are not similar to the seen classes.

4.2. Hierarchical ternary classification region pro-
posal network (HTRPN)

As mentioned in Section 4.1, faster R-CNN has the abil-

ity to recognize a number of potential novel objects that be-

long to unseen classes, despite the fact that they are unla-

belled during training on base class images. We hypothe-

size that this ability is because of the feature similarity be-

tween the features of some novel unseen classes and the

base classes. As a result, the model would predict a novel

unseen class object as a base class based on its resemblance.

In other words, the novel objects contained by the negative

anchors could probably have a relatively high classification

score towards a base class that resembles them the most.

We mark the negative anchors that contain potential novel

unseen class objects as potential anchors (Ap), while others
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Figure 6: The 4 blue boxes are the ground truth boxes and the

5 red boxes are the proposals. The proposal � contains an unla-

beled novel object chair. The top 2 proposals that are ranked by

tobjpre
1 ⊕ tobjpre

2 could successfully include proposal �.

are marked as true negative anchors (At
n). Our goal is to

distinguish between these two subsets.

Figure 5 visualizes our proposed architecture for im-

proving FSOD. To better distinguish the set of Ap from

the set of At
n during training, instead of performing bi-

nary classification to determine objectness in the original

RPN, we propose a ternary objectness classification (i.e.,

tobj{tobjprei, tobjgt, ioua
gt}, where tobjpre

i are the pre-

dicted ternary objectness scores between 0 and 1 for each

class i; ground-truth value tobjgt = 0 indicates non-object,

tobjgt = 1 represents a true object, tobjgt = 2 repre-

sents potential objects from unseen novel classes) so that

potential objects that belong to unseen novel classes can be

classified as a separate class, as visualized in Figure. 5b.

For a training image, after the hierarchical sampling of

the coarse negative anchors, we keep these negative an-

chors for any batch of anchors and perform instance-level

sub-classification on them. Here, we set an instance-level

classification threshold (Threcls). If we observe that the

classification score is larger than the threshold (P (cls) >
Threcls) for a base class, then we set the anchor as an

objectness-positive anchor, and mark its objectness loss

with the ground truth of the label 2. For example the mo-

torbike in Figure. 5b, the blue box is the ground truth box,

active anchors are in green boxes, while negative anchors

are in red boxes. Features of the negative anchors are sent

to the RoI pooling layer to see if they could be predicted as

a visually similar seen category (e.g. the negative anchor

� is predicted as base class “bicycle”, then it is assigned

with tobjgt = 2; but for anchor � is kept as tobjgt = 0
since it does not pass the Threcls. We argue that our novel

architecture will have a higher FSOD performance.

In addition, we need customized solutions for the pre-

training and fine-tuning when using our proposed HTRPN.

Considering computational resource limitations, only the

top 1000 proposals are used for RoI pooling in traditional

RPN. Proposals are ranked by their objectness score of

tobjpre
1 during the pre-training stage since the model only

learns to identify the base classes in this stage. However,

in the fine-tuning stage, the tobjpre
1 and tobjpre

2 are both

considered for ranking the proposals, because the object-

ness of some labeled objects might be predicted as tobjpre
2

due to knowledge transfer from the pre-training stage. This

step is crucial to realize the objectness consistency because

the combination of tobjpre
1 and tobjpre

2 could represent

the highly confident proposal and especially improve the

possibility of determining positive anchors while inferenc-

ing. As shown in Figure 6, if the top two proposals out of

the five proposals are ranked only using tobjpre
1, then the

proposal � would be ignored. However, when the top two

proposals are ranked by tobjpre
1 ⊕ tobjpre

2, the proposal

� could be correctly included. Such a scheme significantly

increases the possibility to dig up the true object as much

as possible. As a result, the anchors that contain potential

novel unseen class objects are well distinguished from the

coarse negative anchors. The ternary RPN will let the model

maintain its sensitivity to identify new objects from classes

that have never been seen before. In practice, not all poten-

tial objects that exist in training datasets are going to be sin-

gled out during training and only a subset of them could be

found. However, these identified novel unseen class objects

still can alleviate the confusion of the model during few-

shot learning due to their dissimilarity to the seen classes.

4.3. Contrastive learning on objectness

To further increase the inter-class distances between Aa,

At
n, and Ap subsets in HTRPN, we also include an object-

ness contrastive learning head (ConsObj) in our architec-

ture. Inspired by the existing literature [40, 19], the cropped

features of proposals are sent into an encoder with their

ground truth objectness logits to perform contrastive learn-

ing. The features of proposals are encoded as a default

128-dimension feature vector, and then the cosine similarity

scores are measured between every two proposals. In this

way, the HTRPN would give a higher objectness score.

4.4. Training Loss

The global total loss is composed of the classification

loss (LCls), the bounding box regression loss (LBbox), our

ternary objectness loss (LTobj), and the RoI feature con-

trastive loss LContra, as described in Equation. 1. The

LContra is computed using the contrastive head as de-

scribed in FSCE [40]. We set α = 0.5 to be the fixed

weight for balancing the contrastive learning loss.

L = LCls + LBbox + LTobj + αLContra (1)
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Our proposed ternary objectness loss LTobj in Equa-

tion. 2 is a sum of the cross entropy objectness loss (LObj)

and ternary RPN feature contrastive learning loss (LTcon).

Similar to α in Equation. 1, λ is a balancing factor that is

set to be equal 0.5 in our experiments.

LTobj = LObj + λLTcon (2)

The ternary RPN contrastive learning loss LTcon, is de-

fined as an arithmetic mean of the weighted supervised con-

trastive learning loss Lzi as the following:

LTcon =
1

NProp

NProp∑

i=1

w(ioup
gt) ·Lzi , (3)

where NProp represents the number of RPN proposals.

Weights w(ioup
gt) are assigned by the function g(∗):

w(ioup
gt) = I{ioup

gt ≥ φ} · g(ioup
gt), (4)

where g(∗) = 1 is a good hard-clip [40] and I{∗} is a

cut-off function that is 1 when ioup
gt ≥ φ , otherwise is 0.

Lzi in the RPN proposal contrastive learning loss is
given as:

Lzi =
−1

Nobjigt
−1

NProp∑

j=1,j �=i

I{objigt = objjgt}·log
ez̃i·z̃j/τ

NProp∑
k=1

Ik �=i · ez̃i·z̃k/τ
,

(5)

where zi denotes the contrastive feature, objigt denotes the

ground truth ternary objectness label for the i-th proposal,

z̃i denotes normalized features while measuring the cosine

distances, and Nobjigt
denotes the number of proposals with

the same objectness label as objigt.

5. Experimental Results
We empirically demonstrate that our proposed archi-

tecture and training procedure improve the FSOD perfor-

mance.

5.1. Expeiremntal Setup

We use the Faster R-CNN as our object detection model

and use ResNet-101 as the backbone along with the fea-

ture pyramid network (FPN). The evaluation scheme strictly

follows the same paradigm as described in TFA [44]. The

mAP50 evaluation results are separately calculated on the

base classes (bAP50) and the novel seen class (nAP50).

We report our results on the PASCAL VOC and COCO

datasets. The contrastive learning head in the fine-tuning

stage is computed similarly to FSCE [40]. We used four

GPUs for training. The optimizer is fixed as SGD and the

weight decay is 1e-4 with momentum as 0.9. We set our

batch size equal to 16 for all experiments. The Threcls is

fixed as 0.75. These hyperparameters are not fine-tuned. In

the pre-training stage, the top 1000 proposals used for RoI

pooling, are ranked by the second objectness logit (is an ob-

ject). While in the fine-tuning stage, the top 1000 proposals

are ranked by the maximum of the second and the third ob-

jectness logits (potential object). There are many existing

FSOD methods. We compare our performance against a

subset of recently developed SOTA FSOD methods.

5.2. Results on PASCAL VOC

For the PASCAL VOC 2007 and 2012 dataset, 15 cate-

gories are chosen as the base classes for pre-training, and

the remaining 5 categories served as the novel classes. We

follow the 3 different categories splits defined in TFA [44].

To achieve a fairer comparison, TFA [44] defined three

kinds of combinations of base classes and novel classes,

namely split1, split2, and split3. In each split, we evaluate

the average precision for novel classes (nAP) on 1,2,3,5,10

shots separately. The training iterations are 8000 for each

training epoch. We set the initial learning rate to 0.02. Our

results on the three categories splits are reported in Table. 1.

We observe that our proposed method improves the perfor-

mance in most cases. Especially, our method is more effec-

tive when the n-shot is smaller.

5.3. Results on COCO

For the COCO dataset, 60 categories are selected as base

classes, and the remaining 20 categories are served as novel

classes. The training iterations are set to 20000 during the

training stage with an initial learning rate of 0.01. AP for

novel classes is evaluated upon n = 10 and n = 30 shots

separately. Our experiment results for COCO are shown in

Table. 2. We again observe that our method outperforms the

previous works in all cases and in some cases the margin of

improvement is significant. These experiments demonstrate

that our method is effective.

5.4. Ablation Study

Firstly, we discuss the effectiveness of our proposed

modules separately, including the Hierarchical sampling of

the RPN, the ternary objectness classification, and the con-

trastive head of the objectness. We implemented the abla-

tion study experiment on PASCAL VOC 5-shot scenario.

Each proposed module is added to the original network in

an accumulated manner. The results are presented in Ta-

ble. 3. We observe that all our proposed modules are nec-

essary for optimal performance. By adding the HSamp, we

can see that a balanced sampling in RPN is necessary, as

it provides comprehensive improvement of bAP and nAP
during the pre-training and the fine-tuning stages. We can

also observe the results of adding the ternary objectness

module indicate that our method will further improve the

nAP and do no significant harm to the bAP . While the
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Method

Shot
Backbone

Split1 Split2 Split3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

LSTD AAAI 18 [1]
VGG-16

8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3

YOLOv2-ft ICCV19 [46] 6.6 10.7 12.5 24.8 38.6 12.5 4.2 11.6 16.1 33.9 13.0 15.9 15.0 32.2 38.4

RepMet CVPR 19 [17] InceptionV3 26.1 32.9 34.4 38.6 41.3 17.2 22.1 23.4 28.3 35.8 27.5 31.1 31.5 34.4 37.2

FRCN-ft ICCV19 [46]

FRCN-R101

13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1

FRCN+FPN-ft ICML 20 [44] 8.2 20.3 29.0 40.1 45.5 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1

TFA w/ fc ICML 20 [44] 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2

TFA w/ cos ICML 20 [44] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

MPSR ECCV 20 [49] 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7

Retentive R-CNN CVPR 21 [6] 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1

FSCE CVPR 21 [40] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5

TIP CVPR 21 [22] 27.7 36.5 43.3 50.2 59.6 22.7 30.1 33.8 40.9 46.9 21.7 30.6 38.1 44.5 50.9

DC-Net CVPR 21 [13] 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7

FSOD-UP ICCV 21 [47] 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.5

CME CVPR 21 [23] 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5

KFSOD CVPR 22 [52] 44.6 - 54.4 60.9 65.8 37.8 - 43.1 48.1 50.4 34.8 - 44.1 52.7 53.9

Ours FRCN-R101 47.0 44.8 53.4 62.9 65.2 29.8 32.6 46.3 47.7 53.0 40.1 45.9 49.6 57.0 59.7

Table 1: The novel classes of nAP50fpr the PASCAL VOC dataset are evaluated on three different category splits with 1 to

10-shot scenarios. The highest score of each few-shot setting is in red color, and the second highest score is in blue color.

Method

Shot Novel AP Novel AP75

10 30 10 30

TFA w/ cos ICML20 [44] 10.0 13.7 9.3 13.4

FSCE CVPR21 [40] 11.9 16.4 10.5 16.2

SRR-FSD CVPR21 [53] 11.3 14.7 9.8 13.5

SVD NeurIPS21 [48] 12.0 16.0 10.4 15.3

FORD+BL IMAVIS22 [41] 11.2 14.8 10.2 13.9

N-PME ICASSP22 [27] 10.6 14.1 9.4 13.6

Our 12.1 17.2 11.2 17.1

Table 2: Evaluation on COCO dataset for novel classes for

AP and AP75 settings. The highest score of each few-shot

setting is in red, and the second highest score is in blue.

Modules
bAP

(pre-trained)

bAP

(fine-tuned)

nAP

(fine-tuned)

FSCE Baseline* 80.5 68.9 57.2

+ HSamp 80.7 68.9 57.6

+ Ternary Objectness 78.5 67.8 61.9

+ Contrastive Objectness 78.9 68.6 62.9

Table 3: Ablation studies on different modules. The effect

of incrementally adding each module to the Baseline net-

work is demonstrated respectively. Sign * represents our

reproductive results. We listed the base class mAP50 (bAP)

during the pre-training and fine-tuning stage, as well as the

novel class mAP50 (nAP) during the fine-tuning stage.

contrastive objectness part demonstrated that it is a simple

yet effective way to help build a stronger RPN that could

further improve the bAP and nAP .

Additionally, we study the influence of different hyper-

parameter Threcls settings. We use five Threcls values

Threcls 0.05 0.25 0.5 0.75 0.95

nAP 60.5 61.2 62.1 62.9 61.4

Table 4: Ablation studies on different hyperparameter set-

tings. The effect of adjusting the Threcls is demonstrated.

The highest nAP has been bolded.

from 0.05 to 0.95 for training and record the nAP accord-

ingly, as shown in Table. 4. We observe that for lower

Threcls, more candidate potential novel proposals can be

distinguished. However, we have lower confidence and con-

sequently lower quality. However, when a higher thresh-

old Threcls is used, the number of candidates for poten-

tial novel proposals is smaller, which is insufficient to opti-

mize objectness in our framework. As the result indicates,

Threcls = 0.75 is a reasonable value for filtering the can-

didate proposals relatively well.

6. Conclusions

We improved the quality FSOD using R-CNN-based ar-

chitecture via studying the phenomenon of objectness in-

consistency due to the potential unlabeled novel objects that

belong to unseen classes. By a balance anchor sampling

strategy, we enhance the possibility of identifying anchors

that may contain objects from unseen classes. In addition,

we proposed HTRPN which leads to the recognition ability

of potential novel objects and further enhances the object-

ness consistency. Our method mitigates model confusion

about the novel classes and achieves SOTA performance on

standard datasets. Future works include extensions to iden-

tify novel unseen classes in a zero-shot learning setting.
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