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Abstract

To plan a safe and efficient route, an autonomous vehi-
cle should anticipate the future trajectories of other agents
around it. Trajectory prediction is an extremely challenging
task recently gaining much attention in the autonomous ve-
hicle research community. Trajectory prediction forecasts
the future state of all the dynamic agents in the scene, given
their current and past states. A good prediction model can
prevent collisions on the road, hence the ultimate goal for
autonomous vehicles: Collision rate: collisions per Mil-

lion miles. This paper aims to provide an overview of the
field trajectory-prediction. We categorize the relevant al-
gorithms into different classes so that researchers can fol-
low through the trends in the trajectory-prediction research
field. Moreover, we also touch upon the background knowl-
edge required to formulate a trajectory-prediction problem.

1. Introduction
Modern approaches to self-driving divide the problem

into four steps: detection, object-tracking, trajectory-

prediction, and path-planning; used in sequence as shown

in Fig.1. In this paper we will go through the trajectory

prediction problem, which is responsible for forecasting the

trajectories and intentions of all the dynamic agents on the

scene. This module finds its usage in any dynamic robotic

platform, the self-driving industry is one of the biggest

ones. To fully solve the trajectory-prediction problem,

social intelligence is very important, since we need to

bound possibilities, to limit our infinite search space, given

our social intelligence. For example, An unattended child

at an intersection with a pedestrian’s red signal would have

more probability of coming on the road compared to a

full-grown adult in the same situation.

Why is prediction important? Localization and classifi-

cation (a.k.a perception) of the objects on the road is one

thing, but we also need to understand the dynamics of

the agents and their surroundings to predict their future

behavior and prevent any crashes. Given the criticality of

the problem, the self-driving industry has a dedicated mod-

ule for this on top of the perception and motion-planning

module, nowadays.

Figure 1. High-level architecture of an Autonomous vehicle stack.

In this survey, we focus on the green color-coded block. Tradition-

ally, prediction module takes the input of tracks from the tracker
module; and outputs tracks with future trajectories to the motion-
planning module.

Here are some key components and approaches used in

trajectory prediction for autonomous cars:

• Sensor Inputs: Autonomous cars use a variety of sen-

sors, such as LiDAR, cameras, radar, and GPS, to

gather data about the surrounding environment. This

sensor data forms the input for trajectory prediction al-

gorithms.

• Data Fusion: The data from different sensors is com-

bined using sensor fusion techniques to create a com-

prehensive and accurate representation of the environ-

ment.

• Motion Models: Trajectory prediction often employs

motion models to estimate the future paths of objects

based on their current state and historical behavior.

Different types of models, such as kinematic, dynamic,

and probabilistic models, can be used to account for

different levels of vehicle or pedestrian movement

complexity.
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• Behavior Prediction: Understanding the intentions and

behaviors of other road users is crucial. Behavioral

models can be developed to predict how pedestrians

and vehicles are likely to move based on past observa-

tions and common driving or walking patterns.

• Environmental Context: Consideration of environmen-

tal factors, such as road layout, traffic rules, traffic

signs, and weather conditions, is essential for accurate

trajectory prediction.

• Uncertainty Estimation: Trajectory predictions should

account for uncertainties in the sensor measurements

and the model’s predictions. Probabilistic approaches

like Monte Carlo methods or Kalman filters can help

quantify and manage these uncertainties.

• Interactive Prediction: Trajectory prediction should

consider interactions between different road users. For

example, a pedestrian’s trajectory could be influenced

by the behavior of nearby vehicles.

• Real-time Processing: Autonomous cars need to per-

form trajectory prediction in real-time to make timely

decisions. Therefore, algorithms should be computa-

tionally efficient.

• Validation and Testing: Trajectory prediction algo-

rithms need rigorous testing and validation under vari-

ous real-world scenarios to ensure their reliability and

safety.

• Human Behavior: Predicting the behavior of human

drivers and pedestrians introduces challenges due to

their inherent variability and occasional irrational ac-

tions. Models need to account for this uncertainty.

There are several published survey papers on behav-

ior analysis. For example, [22] looked at the problem

based on the perspective-view approaches, but this coor-

dinate space is rarely used in the autonomous vehicles in-

dustry. All the modeling is done in the Bird’s Eye View

(BEV) space instead. Historically camera-based features

were computed in perspective view, but modern techniques

[20, 19, 7] have enabled perception features to be gener-

ated in the BEV itself. Hence, it makes more intuitive sense

to operate trajectory-prediction module in the BEV space,

as is required by its customers viz., motion-planning mod-

ule shown in Fig. 1. [13] is a little outdated in terms of

State-of-the-art (SoTA) methods; with the major focus on

HMMs, SVMs, Bayesian-based methods et al. A lot of top-

performing prediction methods are based on deep-learning-

based approaches, which also reflects the current perception

models [15, 18, 25]. However, to the best of the author’s

knowledge, this is the first work that covers modern DL-

based forecasting approaches targeted for AV space using

all the sensory data that are available on board to model ac-

curate prediction models for dynamic agents on the road.

The contributions of this work are summarized as fol-

lows:

• Paper goes through the basics of the trajectory-

prediction problem statement along with all the termi-

nologies around it in section 2.

• Paper goes through top-trending techniques in

trajectory-prediction, primarily focusing on SoTA

(State of The Art) methods viz., Transformers and

Goal-based models in section 3.

• Paper provokes researchers with possible future direc-

tions and highlights current research gaps in section 4.

2. Basics and Challenges of Trajectory Predic-
tion

In this section, we go through the challenges in the

trajectory-prediction problem statement and some basic

background information required to dive deeper into top-

trending techniques for modern trajectory-prediction meth-

ods.

2.1. Challenges

Prediction in the self-driving domain is a complex prob-

lem due to the following characteristics:

• Interdependence: There are inter-dependencies in the

behavior of the agents i.e. future behavior of one agent

may affect the future behavior of other agents in the

vicinity. Hence, we need to take into account the entire

surrounding scene of the road including traffic rules for

making the agent’s trajectory prediction. This makes

prediction modeling a joint optimization problem for

all the agents.

• Real-time Requirement: We need to design a bulky

deep-learning module that does joint optimization of

the agent’s trajectories. However, autonomous vehi-

cles need to operate in real-time (∼10hz) giving the

prediction module a very tight run-time budget.

• Accumulating Errors: Prediction module comes af-

ter the perception and tracking module in the self-

driving software stack. This means that there would be

some errors already accumulated by the other modules.

Hence prediction module’s performance is dependent

on how well previous models perform.

• Dynamic Nature: Both the ego-vehicle and agents

are moving in the scene. Future trajectories of the

agents depend on the motion of the ego vehicle as

well. Hence, ego-vehicle motion compensation needs
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to be modeled while dealing with temporal data from

the sensors. Modeling everything in BEV makes this

problem somewhat simpler.

• Multi-modal Behavior: Multi-modal behavior of

agents, that is given a past history of an agent, there

could be multiple possible future trajectories. For ex-

ample, a pedestrian who just stepped onto the cross-

walk with a pedestrian red-signal may continue walk-

ing or may turn around. A comprehensive predictor

needs to evaluate all the possible trajectories for each

event with their likelihood score.

2.2. Prediction task Problem Statement

The prediction task can be divided into two sections as

per [22]:

• Intention: This is a classification task where we pre-

design a set of intention classes for an agent. For ex-

ample, for a vehicle, it could be: stopped; parked; or
moving. We generally treat it as a supervised learn-

ing problem, where we need to annotate the possible

classification intents of the agent.

• Trajectory: This division needs to predict a set of pos-

sible future locations for an agent in the next Tpred fu-

ture frames, referred to as way points. This constitutes

their interaction with other agents as well as with the

road as shown in Fig. 2.

Figure 2. [26] shows how to model trajectory predictions for dy-

namic agents on the road by making them interaction-aware and

road-aware. Veh.2’s trajectory is dependent on veh.3’s trajectory

and vice versa.

Trajectories and intentions need to be interaction-aware.

For instance, it’s a fair assumption that on-coming cars

might break a little if you aggressively try to enter a high-

way on a traffic-packed highway road. Generally, trajectory

prediction can be modeled in image-view (a.k.a perspective-

view) or BEV; but nowadays it is preferred to be done in

the BEV space itself. Reason being, in BEV space we

can assign a dedicated distance range in the form of a grid

for our Region of Interest (RoI). However, Image-view can

have theoretically infinite RoI because of the vanishing lines

in the perspective-view. It is easier to model occlusions

in BEV space as motion is more linearly modeled. Ego-

motion compensation can be easily done with pose-change

(translation and rotation of ego-vehicle) in BEV. Moreover,

this space preserves the motion and scale of the agents i.e.

a vehicle will occupy the same number of BEV pixels irre-

spective of how far it is from the ego-vehicle; which is not

the case with image-view.

To predict what will happen in the future, we need to

have a good idea of the past. This can be commonly done by

using the output of the tracker, or it can also be done using

historically aggregated BEV features. Goal-based predic-

tion [1] has recently been trending in the literature. This ap-

proach argues that in order to predict the future of an agent,

we need to have an idea of the individual agent’s goal.

2.3. Datasets

For trajectory-prediction any large-scale perception

dataset can be used which includes sequential data viz.,

nuScenes [3]; Waymo Open Dataset [21]; Lyft [6]; Argo-

Verse [4]. However, these datasets don’t include annota-

tions for intent. LOKI [5] is a commonly used intention

prediction dataset. Trajectory-prediction task can make use

of auto-annotations as well if we have sequential unlabeled

data; as long we have a good offline perception and tracker

model to detect agents and generate temporal link between

them.

2.4. Input-data formats

Input for prediction can be defined in multiple forms.

The simplest way is to send in the sparse tracks from the

tracker. A more complex prediction model can feed in BEV

representation of the scene; which could be either defined

by an occupancy grid or a deep-learning-based latent space.

2.5. Evaluation Metrics and Losses

Intent Prediction is a classification task hence Binary

cross entropy/ Focal loss [11] can be used. For evaluation

metrics: precision, recall, F1-score, mean average preci-
sion can be used.

Precision = TP/(TP + FP ) (1)

Recall = TP/(TP + FN) (2)

Key: TP: True Positive; FP: False Positive; FN: False Neg-
ative.
Trajectory Prediction: This is a regression problem where

we try to regress future way-points of the agent as close as

possible to the ground-truth value. For loss computation,

some versions of the L1/L2 norm can be used. For evalua-

tion metrics, there are multiple ways:

• Final Displacement Error (FDE): It measures the dis-

tance between the predicted final location and the true
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final location.

FDE = |ŷtfinal − ytfinal| (3)

• Mean Absolute Error (MAE): It measures the average

magnitude of the prediction error based on the root

mean square value (RMSE) value.

• Minimum of K Metric: This is used when K trajecto-

ries are predicted per agent by the model. The metric

is calculated based on one of the K trajectories which

minimizes the metric error value.

3. SoTA Prediction Methods
Previous surveys have classified behavior prediction

models based on physics-based, maneuver-based, and

interactions-aware models. Physics-based models [16]

constitute dynamic equations that model hand-designed

motions for different categories of agents. This approach

fails to model the hidden state of the entire scene and tends

to focus only on a particular agent at a time. However,

this trend used to be SOTA in the pre-deep-learning era.

Maneuver-based models are the niche models based on the

intended motion type of the agents. Interactions-aware
models are generally ML-based systems [27] that can pair-

wise reason every single agent in the scene and produce

interaction-aware predictions for all the dynamic agents.

There is a high correlation between the trajectories of dif-

ferent agents present nearby in a scene. This approach has

shown that it can generalize better by modeling complex

attentions module on the agent’s trajectories that are heuris-

tically hard to model by a human-designed approach. For

the rest of the paper, we will focus on this category of work.

Inspired from [13] we would like to classify trajectory-

prediction models based on the input representations:

• Tracklets: A Perception module predicts the current

state of all the dynamic agents. This state includes at-

tributes like 3d-center, dimensions, velocity, accelera-

tion, etc. Tracker’s role is to consume this data and

associate it temporally so that each track can contain

the state history of all the agents. Each track now rep-

resents the past movement of that agent. This is the

simplest form of prediction model as it contains only

sparse tracks as input. A good tracker is able to track

an agent even if that agent is occluded in the current

frame because of its inherent logic. Traditional track-

ers are non-ML-based networks, so it can be hard to

make the models end-to-end with this approach. A lot

of work has been done for interaction-aware model-

ing with this approach. [2] considers tracks of multi-

ple agents in the close range of the agents with a fixed

number of surrounding vehicles for which we are try-

ing to predict the trajectory. They also claim that in-

creasing the receptive field of the tracks helps in im-

proving the behavior prediction performance. [9] has

looked upon this problem in distance terms for short-

listing all the agents by specifying a distance range

around the target agent. [23] adds attention modeling

for different agent classes and their weights.

• BEV Representation: This branch of networks gener-

ates a BEV representation of the current perception

output, history of perception outputs, and road state

with the information from the HD-map all in a single-

stacked BEV representation which is consumed by the

prediction model. [8] uses camera and RADAR to

model BEV representation as an occupancy grid. Dy-

namic Occupancy Grid Map (DOGMa) [14] is created

from the data fusion of various sensors and provides a

BEV image of the environment. The channels of this

grid contain the probability of the occupancy and ve-

locity vector for each cell in the grid. As a drawback,

this category still suffers from the problem of accumu-

lation of errors, form perception, and tracker module.

• Raw-sensor Data: This is an end-to-end approach

where the model takes in raw-sensor data informa-

tion and directly predicts trajectory prediction for

each agent in the scene. This approach may or may

not have auxiliary outputs and their losses to super-

vise the complex training as in [10, 12]. [24] ex-

tends the previous approach by adding collaborative

perception-prediction for multiple AVs on the road

with a vehicle-to-vehicle (V2V) communications plat-

form. The drawback of this category is that it is com-

putationally expensive due to dense information for in-

put. Also, since it combines three problems together,

i.e., perception, tracking, and prediction, the model be-

comes very hard to develop and even harder to con-

verge.

Goal-based Prediction Along with the scene context,

the behavioral intention prediction is commonly influenced

by different intended goals and should be inferred with in-

terpretability. For the goal-conditioned future prediction,

the goal is modeled as the future state (defined as destina-

tion coordinates) [1] or moving types that an agent desires

[17]. To break down this problem into two categories: The

first one is epistemic: to answer the question Where are the
agents going? The second is aleatoric to answer the ques-

tion how is this agent going to reach its goal?

4. Further Extensions and Conclusion
With perception tasks being solved by more than 90%

on their respective metrics and planning tasks being con-

sidered to be easily solved as long as accurate predictions

are provided; solving trajectory-prediction remains one
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of the key challenges to unleash autonomous vehicles at

the large scale. Accurate trajectory modeling is the key to

preventing possible future collisions; it also needs to run

in real-time so that collision avoidance action can be taken

within physical limits and reasonable-comfort-level of the

users. In this work, we make a thorough review of existing

methods of trajectory prediction for self-driving. We

divide different approaches into various classes to easily

follow through the trends. Moreover, we went through the

trajectory-prediction basics so readers can easily follow

through the paper. We hope we can highlight key concerns

and trends with this survey paper, which can provoke

further research in the field.
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