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Abstract

Sensor fusion is an essential topic in many percep-
tion systems, such as autonomous driving and robotics.
According to the dataset leaderboards, the transformers-
based detection head and CNN-based feature encoder to
extract features from raw sensor data has emerged as one of
the top performing sensor-fusion 3D-detection-framework.
In this work, we provide an in-depth literature survey of
transformer-based 3D-object detection tasks in the recent
past, primarily focusing on sensor fusion. We also briefly
review the Vision Transformers (ViT) basics so readers
can easily follow through with the paper. Moreover, we
also briefly go through a few non-transformer-based, less-
dominant methods for sensor fusion for autonomous driv-
ing. In conclusion, we summarize the role that transformers
play in the domain of sensor fusion and also provoke future
research in the field.

1. Introduction
Camera and radar fusion is a crucial technology in the

field of autonomous driving. It involves combining the in-

formation from cameras and radar sensors to enhance the

perception and decision-making capabilities of autonomous

vehicles. Each sensor type has its own strengths and weak-

nesses, and by fusing their data together, autonomous vehi-

cles can obtain a more comprehensive and accurate under-

standing of their surroundings.

Here’s how camera and radar fusion works and why it’s im-

portant:

• Sensor Complementarity: Cameras are excellent at

capturing high-resolution images and identifying vi-

sual details such as lane markings, traffic signs, and

objects’ shapes. However, they can struggle in adverse

weather conditions like heavy rain, fog, or low light.

On the other hand, radar sensors are effective in detect-

ing the speed and distance of objects, making them re-

liable in challenging weather and lighting conditions.

Figure 1. An overview architecture diagram of modern sensor-

fusion model. Transformers-based head (Green-block); CNN-

based Feature extractors (Blue-block) for predicting 3D Bird’s Eye

View (BEV) bounding box (Yellow-block) with intermediate BEV

features per-sensor (Purple-block) as defined in Section 3. This

sensor-fusion setup takes input from multi-view cameras, LiDARs

and RADARs.

By fusing the data from both sensors, the system can

compensate for the limitations of each sensor type.

• Redundancy and Reliability: Having redundant sen-

sors improves the reliability and safety of the au-

tonomous system. If one sensor type fails or provides

inaccurate information, the other sensor can validate

or correct the data. This redundancy reduces the risk

of misinterpretation and enhances the overall safety of

the vehicle.

• Object Detection and Tracking: Combining camera

and radar data enables more accurate detection and

tracking of objects in the environment. For instance, a

camera might detect a pedestrian, while radar can de-

termine the pedestrian’s speed and distance. By com-

bining this information, the vehicle can better predict

the pedestrian’s behavior and make safer decisions.

• Filling Sensor Blind Spots: Cameras have blind spots,

especially around the vehicle’s perimeter. Radar sen-

sors can help fill these blind spots by detecting objects

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

3312



that might be outside the camera’s field of view, such

as vehicles in adjacent lanes or objects approaching

from behind.

To achieve effective camera and radar fusion, sophisticated

sensor fusion algorithms are employed. These algorithms

process and integrate the data from cameras and radar sen-

sors to generate a unified representation of the environment.

Machine learning techniques, such as deep learning and

Bayesian filtering, are often used to fuse the data and make

sense of the combined information.

What makes the sensor-fusion problem so hard?
Sensor data of different modalities usually have large dis-

crepancies in the data distribution and the difference in co-

ordinate space for each sensor. For example, natively, Li-

DAR is in Cartesian coordinate space; RADAR is in polar

coordinate space, and images are in perspective space. Spa-

tial misalignment introduced by different coordinate frames

makes it hard to merge these modalities. Another issue

with multi-modal input is that there would be asynchronous

timelines when the camera and LiDAR feed are available to

the ML network.

While Deep-CNNs can be used to capture global context

within a single modality, it is non-trivial to extend them to

multiple modalities and accurately model interactions be-

tween pairs of features. To overcome this limitation, at-

tention mechanisms of transformers are used to integrate

global contextual reasoning about the 2D scene directly into

the feature extraction layers of modalities. Recent advances

in sequential modeling and audio-visual fusion [8] demon-

strates that Transformers-based architecture is very compe-

tent in modeling the information interaction for sequential

or cross-modal data.

The main contributions of this work can be summarized

as follows:

• An overview for Vision Transformers(ViT) back-

ground to get readers up-to-speed with the theoretical

background prerequisite for going through the latest

trending sensor fusion methods in Section 3

• Conduct an in-depth survey about the recent State-

of-the-art(SoTA) methods for object detection tasks

with sensor fusion, focusing on Transformers-based

approaches in Section 4

• Go through quantitative analysis of discussed SoTA

methods and provoke future research work in the space

in Section 5 and 6.

2. Related Work
Fusion Levels: Recently, multi-sensor fusion arouses

increased interest in the 3D-detection community. The

existing approach can be classified into detection-level,

proposal-level, and point-level fusion methods, based on

how early or late in the process we fuse different modalities

viz., Cameras, RADARs, LiDARs, et al.

Detection-level a.k.a. late-fusion has emerged as the

simplest form of fusion since each modality can process

their own BEV detections individually which can be

later post-processed to aggregate and remove duplicate-

detections using Hungarian cost-matching algorithm and

Kalman-filtering. However, this approach cannot leverage

the fact that each sensor can also contribute to different

attributes within a single bounding-box prediction. CLOCS

[15] leverages modalities in the form they can naturally

perform detection tasks, i.e., LiDAR for 3D object de-

tection and cameras for 2D detection tasks. It operates

on both the output candidates before Non-maximum

suppression. It uses geometric consistencies between two

sets of predictions to eliminate False-positives (FP), as

it is highly unlikely that the same FP would be detected

simultaneously with different modalities.

Point-level a.k.a. early-fusion is augmenting LiDAR

point-cloud with the camera features [21, 12]. This method

finds hard associations between LiDAR points and images

using transformation matrices. However, camera-to-LiDAR

projections are semantically lossy as the point’s sparsity

limits fusion quality. This approach suffers when there is

even a slight error in the calibration parameters of the two

sensors.

Proposal-level a.k.a. deep-fusion, is the most researched-

upon method in the literature. Advances in transformers

[3, 22, 11] have unlocked the possibilities of how inter-

mediate features can interact despite being cross-domain

from different sensors. Representative work like MV3D

[4] proposes initial bounding boxes from LiDAR fea-

tures and iteratively refines them using camera features.

BEVFusion [14] generates camera-based BEV features

as highlighted in [17, 16, 20, 19]. Camera and LiDAR

modality are concatenated in the BEV space, and a BEV

decoder [26] is used to predict 3D boxes as a final output.

In TransFuser [7], single-view image and LiDAR’s BEV

representation are fused by transformers in the encoder

at various intermediate feature maps. This results in an

encoder’s 512-dimensional feature vector output consti-

tuting a compact local and global context representation.

In addition, this paper feeds the output to a GRU (Gated

Recurrent Unit) and predicts differentiable ego-vehicle

way-points using L1 regression loss. 4D-Net [18], in

addition to being multi-modal, adds a temporal dimension

to the problem as the 4th dimension. They first extract

in-time features of cameras and LiDAR[9] individually.

To add the different contexts of image representation,
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they collect image features in three levels: high-resolution

image, low-resolution image, and video. Then they fuse

cross-modal information using a transformation matrix to

fetch 2D context given a 3D-pillar center, defined by the

center-point of the BEV grid cell (xo, yo, zo).

3. Transformers Based Fusion Network Back-
ground

This approach can be divided into 3-steps: 1. Apply

CNN-based backbones to extract spatial features from all

the modalities individually. 2. Small set of learned embed-

dings (object queries/ proposals) are iteratively refined in

the transformers module to generate a set of predictions of

3D boxes. 3. Set-based loss is calculated over the predic-

tions and groud-truth. This architecture is presented in Fig.

1

3.1. Backbone: Feature Extractor

Cameras: Multi-camera images are fed into the back-

bone network (e.g., ResNet-101) and FPN [13] and obtain

features {{F ij
images ∈ R

C∗h∗w}Nview
i=1 }Mj=1, where M is the

number of feature levels from FPN; Nview is the number of

cameras in surround-view; h ∗ w is the image-view feature

dimensions.

LiDAR: Generally, a voxelNet[28] with 0.1m voxel size or

PointPillar[9] with 0.2m pillar size is used to encode points.

After 3D backbone and FPN [13], a multi-scale BEV fea-

ture maps {F j
lidar ∈ R

C∗Hj∗Wj}Mj=1 is obtained.

RADARS: Let’s consider N Radar points {rj}Nj=1 ∈
R

Cradar , where Cradar is the number of features of the

radar points, such as location, intensity and speed. A shared

MLP Φradar is used to obtain per-point features F i
rad =

Φrad(rj) ∈ R
C .

3.2. Query Initialization

In seminal work [3], sparse queries are learned as a net-

work parameter and represent the entire training data. This

query type takes longer, i.e., more sequential decoder lay-

ers (typically qty. 6) to iteratively converge to the actual

3d-objects in the scene. However, recently input-dependent

queries[25] are considered as a better initialization strat-

egy. This strategy can bring a 6-layered transformer decoder

down to even a single-layered decoder layer. Transfusion

[1] uses center-heatmap as queries, and BEVFormer [11]

introduced dense queries as an equally-spaced BEV grid.

3.3. Transformers Decoder

Repeated blocks of Transformer decoders are used se-

quentially to refine object proposals in a ViT model, where

each block consists of self-attention and cross-attention lay-

ers. Self-attention between object queries does pairwise rea-

soning between different object candidates. Cross-attention

between the object queries and the feature-map aggregates

relevant context into the object queries based on the learned

attention mechanism. Cross-attention is the slowest step in

the chain because of the huge feature size, but techniques

[29] had been proposed to reduce the attention window. Af-

ter these sequential decoders, d-dimensional refined queries

are independently decoded with an FFN layer following

[26]. FFN predicts the center-offset from the query posi-

tion δx, δy, bounding box height as z, dimensions l, w, h as

log(l), log(w), log(h), yaw angle α as sin (α) and cos (α)
and velocity as vx, vy; lastly per-class probability p̂ ∈
[0, 1]K is predicted for K semantic classes.

3.4. Loss Computations

Bipartite matching between set-based predictions and

ground truths through the Hungarian algorithm is used,

where matching cost is defined by:

Cmatch = λ1Lcls + λ2Lreg + λ2LIoU (1)

where, Lcls is a binary cross-entropy loss; Lreg is an L1

loss; LIoU is a box IoU loss. λ1, λ2, λ3 are network hyper-

parameters.

4. Transformers-based Sensor Fusion
TransFusion [1] tackles modality misalignment issue

with the soft association of features. The first decoder layer

constitutes sparse-queries generation from LiDAR BEV

features. The second decoder layer enriches LiDAR queries

with the image features with soft associations by leveraging

locality inductive bias with cross-attention only around the

bounding box decoded from the query. They also have an

image-guided query initialization layer.

FUTR3D [5] is closely related to [22]. It is robust to

any number of sensor modalities. MAFS (Modality Ag-

nostic Feature sampler) takes in the 3D queries and ag-

gregates features from multi-view cameras, high-res lidars,

low-res lidars, and radars. Specifically, it first decodes the

query to get a 3D coordinate, which is then used as an an-

chor to gather features from all the modalities iteratively.

BEV features are used for LiDAR and cameras; however,

for RADARS, the top-k nearest radar points are picked in

MAFS. For each query i, all these features F are concate-

nated as below where Φ is an MLP layer:

F i
fused = Φfused(F

i
lidar ⊕ F i

camera ⊕ F i
radar) (2)

CMT: Cross-Modal Transformers [23] encodes 3D coor-

dinates into the multi-modal tokens by the coordinates en-
coding. The queries from the position-guided query gener-
ator interact with the multi-modal tokens in the transformer

decoder and then predict the object parameters. Point-based
query denoising is further introduced to accelerate the train-

ing convergence by introducing local prior.
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Table 1. Performance comparison on the nuScenes test set. The metrics key is defined in Section 5.

Methods NDS(%) ↑ mAP(%) ↑ mATE(cm) ↓ mASE(%) ↓ mAOE(rad) ↓ mAVE(cm/s) ↓ mAAE(%) ↓
CMT [23] 73.0 70.4 29.9 24.1 32.3 24.0 11.2

BEVFusion [14] 72.9 70.2 26.1 23.9 32.9 26.0 13.4

TransFusion [1] 71.7 68.9 25.9 24.3 35.9 28.8 12.7

UVTR [10] 71.1 67.1 30.6 24.5 35.1 22.5 12.4

UVTR: Unifying Voxel-based Representation with
Transformer [10] unifies multi-modality representations

in the voxel space for accurate and robust single or cross-

modality 3D detection. Modality-specific space is first de-

signed to represent different inputs in the voxel space with-

out height compression to alleviate semantic ambiguity and

enable spatial connections. This is a more complex and

information-packed representation than the other BEV ap-

proaches. For image-voxel space, perspective view fea-

tures are transformed into the predefined space with view-

transform, following [17]. CNN-based voxel encoder is

introduced for multi-view feature interactions. For point-
voxel space, 3D points can be naturally transformed into

voxels. Sparse convolutions are used over these voxel fea-

tures to aggregate spatial information. With accurate posi-

tions in the point cloud, the semantic ambiguity in z direc-

tion is much reduced compared to the images.

LIFT: LiDAR Image Fustin Transformer [27] is capa-

ble to align the 4D spatiotemporal cross-sensor informa-

tion. In contrast to [18], it exploits integrated utilization of

sequential multi-modal data. For sequential data process-

ing, they use the prior vehicle pose to remove the effects

of ego-motion between temporal data. They encode the li-

dar frames and camera images as sparsely located BEV grid

features and propose a sensor-time 4D attention module to

capture mutual correlation.

DeepInteraction: [24], follows a slightly different ap-

proach than its other counterparts. It claims that the pre-

vious approaches are structurally restricted due to their in-

trinsic limitations of potentially dropping off a large frac-

tion of modality-specific representational strengths due to

largely imperfect information fusion into a unified repre-

sentation as in [21, 14]. Instead of deriving a fused single-

BEV representation, they learn and maintain two modality-

specific representations throughout to enable inter-modality

interaction so that both information exchange and modality-

specific strengths can be achieved spontaneously. They re-

fer to it as a multi-input-multi-output (MIMO) structure,

taking as input two modality-specific scene representations

independently extracted by LiDAR and image backbones

and producing two refined representations as output. This

paper includes DETR3D-like [22] queries which are se-

quentially updated from LiDAR and vision features with se-

quential cross-attention layers in the transformer-based de-

coder layer.

Auto-align [6] they model a mapping relationship between

image and point-cloud with a learnable alignment map in-

stead of establishing a deterministic correspondence for

sensor projection matrix as done in the other approaches.

This map enables the model to automate the alignment of

non-homogeneous features in a dynamic data-driven man-

ner. They leverage cross-attention modules to adaptively

aggregate pixel-level image features for each voxel.

5. Quantitative Analysis
Here we compare previously discussed methods on

nuScenes [2], a large-scale multi-modal dataset, which

is composed of data from 6 cameras, 1 LiDAR, and 5

RADARs in Table 1. This dataset has 1000 scenes total and

is divided into 700/150/150 scenes as train/validation/test

sets, respectively. Cameras: Each scene has 20s video

frame with 12 FPS. 3D bounding boxes are annotated at

0.5s. Each sample includes six cameras. LiDAR: A 32-

beam LiDAR with 20FPS is also annotated at every 0.5s.

Metrics: We follow the nuScenes official metrics. Keys

are as follows: nuScenes Detection Score (NDS), mean

Average Precision (mAP), mean Average Translation Error

(mATE), mean Average Scale Error (mASE), mean Aver-

age Orientation Error(mAOE), mean Average Velocity Er-

ror (mAVE) and mean Average Attribute Error (mAAE).

6. Conclusion
For the autonomous vehicle’s perception reliability, ac-

curate 3D-object detection is one of the key challenges we

must solve. Sensor fusion helps make these predictions

more accurate by leveraging the pros of all the sensors on

the platform. Transformers have emerged as one of the top

methods to model these cross-modal interactions, especially

when sensors operate in different coordinate spaces, making

it impossible to align perfectly.
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