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Abstract

This paper aims to tackle the challenges of continual
learning, where sequential learning from a stream of tasks
can lead to catastrophic forgetting. Simultaneously, it ad-
dresses the need to reduce the computational demands of
large-scale deep learning models to mitigate their environ-
mental impact. To achieve this twofold objective, we pro-
pose a method that combines selective layer freezing with
fast adaptation in a continual learning context. We begin by
conducting an extensive analysis of layer freezing in con-
tinual learning, revealing that certain configurations allow
for freezing a substantial portion of the model without sig-
nificant accuracy degradation. Leveraging this insight, we
introduce a novel approach that optimizes plasticity on new
tasks while preserving stability on previous tasks by dynam-
ically identifying a subset of layers to freeze during train-
ing. Experimental results demonstrate the effectiveness of
our approach in achieving competitive performance with
manually-tuned freezing strategies. Moreover, we quanti-
tatively estimate the reduction in computation and energy
requirements achieved through our freezing strategy by con-
sidering the number of parameters and updates required for
model training.

1. Introduction
In recent years, deep learning has made tremendous

strides in various application domains, achieving state-of-

the-art performance in fields such as computer vision [14,

13, 11, 15] and natural language processing [10, 3, 32].

However, the ability to continuously learn from a stream of

tasks, referred to as continual learning, has not experienced

a comparable level of advancement. Continual learning is

still a major challenge for deep learning models, with catas-

trophic forgetting, a phenomenon where the model forgets

the knowledge of previous tasks while learning new ones,

being a primary roadblock [8, 28].

Simultaneously, there has been an escalating concern

within the research community around the environmental

implications of training large-scale deep learning models.

These models, especially those at the forefront of perfor-

mance in various fields, often require substantial compu-

tational resources for training. As these computational de-

mands increase, so does the associated energy consumption,

leading to a significant environmental footprint [29]. There-

fore, looking for ways to reduce the computational demands

of these models without a substantial loss in performance

has become an imperative need.

In this paper, we begin by presenting an exhaustive anal-

ysis of the effect of layer freezing in a continual learning

context. Our findings reveal that there exist configurations

that allow us to freeze a significant portion of the model

without suffering a notable decrease in accuracy. This

shows that, contrary to common assumptions, not all parts

of a neural network need to be actively trained at all times.

Then, we propose a method designed to address the twin

challenges of continual learning and computational effi-

ciency. Our approach leverages the intuition that suitable

freezing of layers in deep learning models during training

can support both objectives, by providing a mechanism to

preserve important features from previous tasks, while re-

ducing the amount of computation required, which directly

affects the energy impact of model training. In detail, at the

beginning of each continual learning task at training time,

we perform a fast adaptation stage of the model on the new

task, by testing different freezing strategies to dynamically

identify a subset of layers that optimizes plasticity on the

new task and stability on the previous ones. Experimen-

tal results show that our approach achieves performance

that is competitive with manually-tuned optimal freezing

strategies. This eliminates the need for time-consuming

and expertise-intensive hyperparameter tuning, further aug-

menting the computational efficiency of our approach. Ad-

ditionally, we show that our freezing strategy effectively re-

duces the amount of computation and energy requirements,

which we quantitatively estimate in terms of number of pa-

rameters and number of updates required to train a model.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: ResNet-18 architecture and selective freezing strategy. After an initial convolutional layer (apart from the last

fully-connected layer), each colored portion represents a network’s main block, consisting of two residual basic blocks, each

applying two convolutions. For our selective freezing strategy, we treat each basic block as the smallest unit of freezing,

named layer.

The results presented herein may serve as a stepping

stone towards more sustainable and efficient deep learn-

ing, without compromising the power of continual learn-

ing. This aligns with the broader goal of achieving both

environmentally-friendly and effective machine learning

solutions, bringing us closer to fully realizing the transfor-

mative potential of deep learning.

2. Related work
Early work by McCloskey and Cohen revealed

catastrophic forgetting in Artificial Neural Networks

(ANNs) [28], a problem that persists despite recent deep

learning advancements [39, 41]. To address this, Continual

Learning (CL) methods were developed, aiming to uphold

model accuracy on prior data while learning from evolv-

ing inputs [40, 30, 23]. Rehearsal-based strategies main-

tain a memory of past examples, interleaving them with

new data [33, 7, 4, 2, 1, 5]. Pseudo-rehearsal methods

use a generative model for this [35, 38]. Some studies

adopt learning objectives to retain performance on prior

tasks [34, 16, 24, 43], while others employ semi-supervised

techniques to derive general features [6, 31, 20].

Other approaches in the literature have investigated

strategies based on the freezing of network parameters.

Once a task has been learned, parameter freezing allows the

acquired knowledge to remain fixed, thus reducing forget-

ting of previous tasks. Most works have focused on defining

mask-based methods, where a learned mask for individual

weights or groups of weights is used to selectively freeze

or constrain certain parameters. Piggyback [25] uses a bi-

nary mask on the weights of a pre-trained model to create

different sub-networks, introducing an overhead of 1 bit per

network parameter for each task. Similarly, Kang et al. [19]

introduced Winning SubNetworks (WSN), which sequen-

tially learns and selects an optimal subnetwork for each task

by means of an accumulate binary mask. WSN updates

only weights that have not been selected in previous tasks,

resulting in a task-specific subnetwork. HAT [36] learns

near-binary attention vectors by using gated task embed-

dings for each task. These vectors are then used to define

hard attention masks for each task, which are used to con-

strain the network’s weight updates for the following task.

Masana et al. [26] proposed a ternary mask-based approach

for the task-incremental learning scenario. Differently from

the above-mentioned approaches, these masks are applied

to the features of each layer rather than weights, reducing

the number of mask parameters for each new task. Sparse-

MAML [42] proposes a meta-learning approach, where a

subset of weights is frozen during the inner-loop learning

process. Similarly to the previous methods, a binary mask

is learned and then multiplied element-wise with gradient

updates. The PathNet algorithm [12] employs agents em-

bedded in the neural network to identify which parts can be

reused for new tasks. Task-relevant paths that evolved dur-

ing the previous tasks can be frozen or partially reused in

the following tasks. Shi et al. [37] introduced the BLIP ap-

proach, which preserves the information gain on model pa-

rameters provided by each task through a guided bit freez-

ing. In particular, weight quantization is exploited to deter-

mine the weights to be frozen to prevent forgetting. Jung et

al. [18] defined an algorithm that prevents the model from

drifting by freezing the weights associated with the infor-

mation learned in previous tasks, called nodes, while learn-

ing future tasks. Specifically, the loss function involves two

group sparsity-based regularization terms that are used to

define the importance of a node for carrying out the preced-

ing tasks.

Yang et al. [44] proposed a progressive task-correlated

layer freezing method to be used in the context of self-

supervised continual learning (SSCL). More specifically,
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a task correlation ratio, based on the gradient projection

norm, is defined to formally characterize the correlation be-

tween current and previous tasks.

In this work, we perform an empirical analysis of the

effect of layer freezing on the backbone of state-of-the-art

continual learning methods, studying the impact of freez-

ing both at different depths of the network and at different

“times”, i.e., continual learning tasks. Then we present a

novel approach, named selective freezing, to dynamically

freeze layer weights based on a preliminary assessment of

the new task, offering a potentially more efficient and flexi-

ble means of preserving knowledge between tasks.

3. Method

We hereby introduce and describe selective freezing, an

approach aimed at gradually and adaptively freezing a sub-

set of a model’s parameters over a sequence of continual

learning tasks, with the objective of encouraging feature

reuse as well as reducing computational costs.

3.1. Problem formulation

Following the established literature, we pose continual

learning as a supervised classification problem on a non-

i.i.d. stream of data, with the assumption that task bound-
aries, marking changes in the data distributions, are known

at training time. More formally, let D = {D1, . . . ,DT } be

a sequence of data streams, where each pair (x, y) ∼ Di

denotes a data point x ∈ X with the corresponding class

label y ∈ Y; the sample distributions (in terms of both the

data point distribution and the class label distribution) of

different Di and Dj may vary — for instance, class labels

from Di might be different from those from Dj . Given a

classifier f : X → Y , parameterized by θ, the objective

of continual learning is to train f on D, organized as a se-

quence of T tasks {τ1, . . . , τT }, under the constraint that,

at a generic task τi, the model receives inputs sampled from

the corresponding data distribution only, i.e., (x, y) ∼ Di.

The classification model may also keep a limited memory
buffer M of past samples, to reduce forgetting of features

from previous tasks. The model update step between tasks

can be summarized as:

〈f,θi−1,Mi−1〉 Di−→ 〈f,θi,Mi〉, (1)

where θi and Mi represent the set of model parameters

and the memory buffer at the end of task τi.

The training objective is to optimize a classification loss

over the sequence of tasks (without losing accuracy on past

tasks) by the model instance at the end of training:

(2)argmin
θT

T∑
i =1

E(x,y) ∼Di

[
L
(
f (x;θT ) , y

)]
,

where L is a generic classification loss (e.g., cross-entropy),

which a continual learning model attempts to optimize

while accounting for model plasticity (the capability to

learn current task data) and stability (the capability to re-

tain knowledge of previous tasks) [28].

3.1.1 Selective freezing

In accordance to CLS theory [22, 27], we propose a method

for parameter freezing to maximize stability and plasticity.

Specifically, we propose to train the model at the beginning

of each task for a limited number of iterations under varying

parameter freezing settings, providing an opportunity to the

model to find the optimal configuration that combines re-

taining of previous knowledge and learning of the new task.

Formally, we want to model the joint probability be-

tween task data Di, previous experience Mi−1, model pa-

rameters θi and a binary freezing mask mi, with the same

dimensions as θi and such that mi,j = 1 indicates that pa-

rameter θi,j should be frozen:

P (x, y,θi,mi) = P (y | x, f (x,θi,mi))P (θi,mi)P (x),
(3)

where x and y represent samples and labels from Di ∪
Mi−1. The first term of the decomposition of Eq. 3 is the

likelihood of correct labels given the input and the model

prediction, while the joint distribution P (θi,mi) describes

the relation between model parameters θi and the freezing

strategy defined by mi. Assuming the independence be-

tween θi and mi, this distribution can be expressed as:

P (θi,mi) = P (θi |mi)P (mi), (4)

where

P (θi |mi) =
∏
j

N (
θi,j ; θi−1,j , σ

2
i )
)1−mi,j

. (5)

In this formulation, we model the distribution of each pa-

rameter θi,j as a Gaussian distribution depending on the

corresponding mask value mi,j , which removes a term from

the overall probability when mi,j = 1. Note that the mean

of each parameter is set to θi−1,j , i.e., its value at the end of

the previous task (or to 0 for the first task, based on common

initialization strategies).

In order to model P (mi) in a practically feasible way,

we employ some simplifying assumption based on the lay-

ered structure of deep learning models. Given f = l1 ◦ l2 ◦
. . . ◦ lL, where each lk represents a network layer with pa-

rameters θ|k and θ =
[
θ|1, . . . ,θ|L

]
, let us similarly define

0|k and 1|k as two tensors with the same size as θ|k, with

all values set to 0 and 1, respectively. Then, we impose that

possible values for mi must be parameterized by a value l
as follows:

mi(l) =
[
1|1, . . . ,1|l,0|l+1, . . . ,0|L

] ∨mi−1 (6)
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with l ∈ {1, . . . , L}. In practice, parameters frozen at pre-

vious tasks must remain so at the current task, and a layer’s

parameters can only be frozen altogether if all previous lay-

ers are also frozen.

Given these constraints, our goal is to find the optimal bi-

nary mask mi that maximizes the likelihood of the labels y
given the inputs x from current task Di and from long-term

memory Mi−1.This is expressed as the following optimiza-

tion problem:

argmax
mi,θi

P (y | x, f (x,θi,mi))P (θi |mi)P (mi)P (x),

(7)

where the optimization is over parameters θi and all feasible

binary masks mi. The choice of mi is thus carried out by

maximizing this likelihood through the optimization of the

selective freezing loss function Lsf:

(8)
Lsf = E(x,y)∼Di

[L (y, f (x,θi,mi))]

+ αE(x,y)∼Mi−1
[L (y, f (x,θi,mi))] ,

where mi varies as described above, and α is a weighing

factor between data sources. It is important to notice that,

while optimizing for mi necessarily requires updating θi as

well (since freezing, per se, does not alter inference perfor-

mance), the objective is to prepare the model by identifying

the optimal set of parameters that should be kept from previ-

ous tasks in a way that ensures both knowledge retainment

and room for plasticity. For this reason, optimization is car-

ried out for a single epoch over Di. Note that the choice

of L is arbitrary: the proposed formulation allows for plug-

ging in any existing continual learning method, enhancing

it with the proposed training strategy.

4. Experimental results
4.1. Datasets and metrics

In our experiments, in order to define a set of con-

tinual learning tasks {τ1, . . . , τT }, we employ the Seq-

CIFAR10 [4] dataset, which is obtained splitting the

CIFAR-10 dataset [21]. The original dataset consists of 10

classes organized into 6,000 32x32 color images per class.

These classes are then divided into 5,000 images for training

and 1,000 for test. Seq-CIFAR10 is composed of the orig-

inal dataset, divided into T = 5 continual learning tasks,

each comprising two classes.

For the experiments with a pre-trained backbone, the

datasets used for the pre-training phase are ImageNet [9],

CIFAR-100 [21] and ImageNet-10 [17].

The proposed approach and the related baselines have

been evaluated in the standard class-incremental learning
(Class-IL) setting, which is asked to gradually solve the

complete problem while classes become available at differ-

ent times. For the performance evaluation, we report the av-

erage classification accuracy over all dataset classes in the

test set; we assume that the model has no access to task

identity when classifying a given input.

Pretraining ImageNet-1k CIFAR-100 ImageNet-10

Layer 200 500 200 500 200 500

l1 69.84 80.31 55.63 67.42 67.87 74.98

l2 70.18 78.44 56.07 67.39 69.52 75.09

l3 69.27 78.95 57.96 68.15 70.02 74.34

l4 70.34 80.08 54.79 66.51 68.02 74.17

l5 70.10 80.85 54.62 67.29 71.82 75.40

l6 69.06 76.69 53.66 63.56 71.64 75.48

l7 62.02 75.68 43.08 55.39 71.49 77.23

l8 10.13 9.09 7.92 10.18 71.44 74.47

not frozen 72.96 81.96 57.64 68.78 67.51 75.97

Table 1: Effect of layer freezing when using a pre-trained

backbone with DER++. Results are computed at the end

of the last task on Seq-CIFAR10, for different pre-training

modalities, in the Class-IL setting.

Pretraining ImageNet CIFAR-100 ImageNet-10

Layer 200 500 200 500 200 500

l1 79.87 84.94 66.78 73.02 59.69 59.18

l2 79.62 85.80 65.38 73.41 60.32 61.65

l3 79.62 86.03 65.22 72.90 55.93 57.98

l4 80.31 84.47 66.14 71.00 57.79 56.97

l5 80.06 85.76 65.08 69.72 53.45 54.02

l6 79.80 85.56 64.60 70.24 50.76 52.25

l7 79.01 83.96 60.62 67.35 50.71 49.61

l8 11.74 10.47 10.35 11.17 38.57 39.96

not frozen 80.70 85.11 64.94 73.70 59.33 65.66

Table 2: Effect of layer freezing when using a pre-trained

backbone with ER-ACE. Results are computed at the end

of the last task on Seq-CIFAR10, for different pre-training

modalities, in the Class-IL setting.

4.2. Baselines

We carry out a set of experiments, freezing different por-

tions of the backbone network according to different cri-

teria, while employing the well-known continual learning

DER++ [4] and ER-ACE [5] approaches. DER++ is a re-

hearsal approach that applies a form of knowledge distil-

lation on buffered samples by encouraging the model to

predict the corresponding logits, rather than the class di-

rectly (as done in the classic ER approach [7]). ER-ACE,

instead, applies an asymmetric variant of the cross-entropy

loss function, by limiting the computation of softmax scores

on classes present in the current mini-batch (for elements

from the current task), extended with previous-task classes

for buffered samples only.

As a backbone for both approaches, we employ a

ResNet-18 network [14], illustrated in Fig. 1. In standard
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implementations of the model1, the feature extraction por-

tion of the network consists of four main blocks (depicted

with distinct colors in the figure), each of which includes

two basic blocks; in turn, each basic block applies two con-

volutions with a residual connection. In the following ex-

periments, we will treat each block as the smallest unit of

freezing, named layer. Consequently, the network is di-

vided into eight layers, aligning with the original structure

of the basic blocks. The first convolution of the network is

assumed to be part of the first layer.

Layer Task 1 Task 2 Task 3 Task 4

l1 62.32 64.14 65.35 64.24

l2 58.75 63.56 63.09 64.80

l3 60.63 64.24 64.53 65.58

l4 57.58 62.75 66.46 63.34

l5 54.66 62.28 65.18 65.05

l6 54.65 62.93 64.43 63.75

l7 46.70 55.11 54.26 54.03

l8 31.95 49.65 52.36 38.62

not frozen 63.77

Table 3: Effect of layer freezing, when training from

scratch, performed at end of different tasks when using the

DER++ method and a buffer size of 200. Results are com-

puted at the end of the last task on Seq-CIFAR10 in the

Class-IL setting.

Layer Task 1 Task 2 Task 3 Task 4

l1 70.00 72.20 73.94 73.28

l2 67.47 69.59 73.86 73.52

l3 67.70 70.83 73.00 74.31

l4 64.36 69.81 71.85 74.01

l5 62.26 69.28 73.63 72.98

l6 60.87 69.62 71.82 73.40

l7 52.36 60.32 68.57 59.57

l8 44.98 54.90 40.52 49.67

not frozen 72.38

Table 4: Effect of layer freezing, when training from

scratch, performed at end of different tasks when using the

DER++ method and a buffer size of 500. Results are com-

puted at the end of the last task on Seq-CIFAR10 in the

Class-IL setting.

4.3. Training details

In our experiment we follow [4] and adopt the same

training settings. All models are trained by means of

1We refer to the PyTorch implementation.

Layer Task 1 Task 2 Task 3 Task 4

l1 58.67 64.02 54.81 63.88

l2 62.09 62.31 66.38 64.12

l3 59.78 63.53 63.47 66.12

l4 57.75 64.36 66.00 65.65

l5 57.84 62.24 65.93 63.41

l6 58.73 63.07 64.56 66.11

l7 55.10 62.67 51.89 55.07

l8 46.04 53.45 47.03 49.07

not frozen 65.93

Table 5: Effect of layer freezing, when training from

scratch, performed at end of different tasks when using the

ER-ACE method and a buffer size of 200. Results are com-

puted at the end of the last task on Seq-CIFAR10 in the

Class-IL setting.

Layer Task 1 Task 2 Task 3 Task 4

l1 68.27 71.22 70.96 71.91

l2 68.27 70.19 71.17 70.99

l3 67.96 70.82 71.09 71.15

l4 65.04 70.44 71.39 70.99

l5 64.83 69.76 69.27 72.11

l6 62.08 69.21 70.67 72.54

l7 58.49 67.47 60.14 61.09

l8 50.89 55.98 50.98 58.08

not frozen 72.17

Table 6: Effect of layer freezing, when training from

scratch, performed at end of different tasks when using the

ER-ACE method and a buffer size of 500. Results are com-

puted at the end of the last task on Seq-CIFAR10 in the

Class-IL setting.

Stochastic Gradient Descent (SGD) with a fixed learning

rate of 0.03. Training is performed separately for 50 epochs

for each task. Training batches are composed by mixing

data retrieved from the current task and previous samples

from the replay buffer. Buffer sizes 200 and 500 were used

in our experiments. The training dataset is normalized us-

ing the mean and the standard deviation values computed on

data used for the training process. The data augmentation

strategy includes random crop and horizontal flip.

For evaluating the freezing strategies, the optimization

of Eq. 8 is carried out on a distinct portion of the training

set, which we refer to as validation set. Specifically, for a

given task τi, we optimize Lsf on the corresponding vali-

dation Di,val ∪Mi−1,val, where Di,val contains 10% of the

training set Di, and Mi−1,val includes 10% of the buffer

Mi−1. Additionally, as alternative approaches, we also try

3554



using only the data from the current task (Di,val), or exclu-

sively with the data contained in the buffer (Mi−1,val).

All experiments were run on a single NVIDIA RTX 3090

GPU and implemented using the PyTorch framework.

Figure 2: The prevalent freezing scheme when selective

freezing is activated for DER++ trained on Seq-CIFAR10

over 10 runs. Number of parameters indicated within the

bars.

Figure 3: Parameter update count for the complete train-

ing of vanilla DER++ (in orange) compared to our selective

freezing strategy (in green). The numbers above the green

bars depict the percentage improvement points compared to

the baseline.

4.4. Static freezing

We first present a set of experiments aimed at assessing

the overall impact of different static freezing strategies (i.e.,

where the choice of which layers to freeze and the task at

which they are frozen is performed a priori, independently

of the model’s performance). This preliminary analysis pro-

vides useful hints on how continual learning performance

is affected by feature freezing in general; moreover, it al-

lows us to establish a reference for comparison in our ex-

periments with selective freezing.

We first analyze the effect of layer freezing with a pre-

trained ResNet-18 backbone. A common setting of con-

tinual learning methods assumes that model features are

trained from scratch, in order to assess a method’s capa-

bility to learn strong features that support forward transfer

and are not spurious or task-specific. In our scenario, it is

interesting to evaluate the extent to which layer freezing in-

teracts with the availability of pre-trained features: indeed,

this setting should reduce the need for forward transfer (as

we can assume that pre-trained features mitigate spurious

feature learning) and robustness to forgetting (due to freez-

ing). The results of these experiments are shown in Tab. 1

(for DER++) and Tab. 2 (for ER-ACE). We report the class-

incremental learning (Class-IL) accuracy computed after

the last task in Seq-CIFAR10, for buffer sizes 200 and 500,

when freezing up to a certain layer (in the table, the row cor-

responding to li refers to when the i-th layer w.r.t. Fig. 1 is

frozen, along with all previous layers); we take into account

classification pre-training on three different datasets, CI-

FAR100, ImageNet-102 and ImageNet-1k [9]. It is interest-

ing to note that the Class-IL accuracy does not decrease sig-

nificantly when freezing up to layer l6, in several cases even

improving accuracy with respect to the non-frozen case. As

mentioned above, this can be expected, since freezing pre-

trained features helps reduce forgetting while reusing al-

ready good features, at the cost (in this case, negligible) of

giving up learning task-specific low-level features. How-

ever, going deeper with freezing, performance drops when

using pretrained features from CIFAR100 and ImageNet-

1k, showing that a certain degree of feature customization

may be in order. Interestingly, this drop is mitigated when

pre-training on ImageNet-10 (see Tables 1 and 2). A pos-

sible explanation lies in the fact that ImageNet-10 only has

ten classes: as such, it is tailored towards learning features

that are less class-specific and that can be effectively lever-

aged by the final fully-connected layer, even when the entire

backbone of the model is frozen.

The previous results show that layer freezing does not

seem to incur a significant performance loss in a continual

learning, thanks to pre-training. However, it is more inter-

esting to see how this changes when the entire backbone

is trained from scratch. To this aim, Tab. 3, 4, 5, 6 show

the results for DER++ and ER-ACE without a pre-trained

backbone. Accuracy is reported in terms of Class-IL for

different buffer sizes, on Seq-CIFAR10. In detail, each ta-

ble reports these metrics when the backbone is frozen up

to a certain layer at the end of a certain task: during pre-

vious tasks, the entire backbone is updated. This setting

thus takes into account not only the depth but also the mo-
ment at which backbone features are frozen, allowing us

2ImageNet-10 is available at: https://github.com/fastai/imagenette
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to study the trade-off between freezing early (encouraging

feature preservation but reducing plasticity) or late (encour-

aging adaptability to new tasks but risking catastrophic for-

getting). As expected, in the absence of a pre-training stage,

freezing tends to reduce model performance compared to

full training of the entire backbone. A general trend can be

identified for both DER++ and ER-ACE and for both tested

buffer sizes: later freezing (with respect to the sequence of

tasks) yields higher accuracy, as the model can work at its

full capacity for a longer time; deeper freezing (with respect

to the sequence of layers in the backbone), tends to reduce

accuracy, for a similar reason, since the model is forced to

reuse features that — unlike in the pre-training experiments

— may not be representative for future tasks. Neverthe-

less, it is possible to find a “sweet spot” among the differ-

ent freezing configurations, representing good compromises

between accuracy and efficiency. For instance, while freez-

ing after the first task may be too early to learn good fea-

tures, freezing after the second task, even up to l3, leads to

a relatively small decrease in accuracy, on both the Class-IL

and Task-IL metrics. This behavior appears to be consistent

for DER++ and ER-ACE, for buffer sizes 200 and 500.

Validation set DER++ ER-ACE

200 500 200 500

Di,val ∪Mi−1,val 60.20 66.92 59.52 64.65

Di,val 62.20 69.89 58.52 66.26

Mi−1,val 58.84 62.35 57.50 64.62

vanilla training 64.83 72.13 63.81 71.86

Table 7: Effect of selective freezing obtained using DER++

and ER-ACE methods. Results are computed at the end of

the last task on Seq-CIFAR10 in the Class-IL setting, for

both 200 and 500 buffer sizes.

Validation set DER++ ER-ACE

200 500 200 500

Di,val ∪Mi−1,val 57.57 67.90 66.21 71.86

Di,val 58.11 67.56 64.84 71.02

Mi−1,val 56.46 64.77 64.23 69.53

vanilla training 58.21 69.00 66.33 73.77

Table 8: Effect of selective freezing with DER++ and ER-

ACE methods using a backbone pre-trained on the CIFAR-

100 dataset. Results are computed at the end of the last task

on Seq-CIFAR10 in the Class-IL setting, for both 200 and

500 buffer sizes.

4.5. Selective freezing

In this section, we present the results obtained while ap-

plying the proposed selective freezing strategy to DER++

and ER-ACE on the Seq-CIFAR10 dataset, for different

buffer sizes. In detail, Tab. 7 reports Class-IL accuracy at

the end of the final task with the three variants of selective

freezing described in Sect. 4.3, i.e., when the validation set

of freezing decision includes either training samples only

(from the new task), or buffer samples only, or both.

It can be observed that generally the results obtained

with selective freezing are slightly lower compared to the

case of vanilla training, with a drop in accuracy in the range

of 3 to 6 percentage points. The overall performance aligns

with the optimal strategy identified through static freezing,

which involves freezing after task 2 up to l5. Moreover, it

seems that training on new task data only (i.e., without in-

cluding buffer samples) leads to improved performance, in-

dicating that adaptation to new data during selective freez-

ing plays a more important role than recalling past knowl-

edge, which is instead handled during standard training.

Tab. 8 reports results from the same experiments, carried

out starting from a pre-trained backbone. It is interesting to

notice that, in this scenario, ER-ACE seems to benefit from

pre-training significantly more than DER++. This may indi-

cate that ER-ACE exhibits better properties at feature reuse

and forward transfer; interestingly, this interpretation is also

supported by the results shown in the following, accord-

ing to which ER-ACE has a stronger tendency to selectively

freeze larger parts of the backbone at earlier tasks.

We finally assess the computational efficiency of our se-

lective freezing strategy on DER++ and ER-ACE compared

to standard training. Fig. 2 illustrates the prevailing freezing

scheme observed in DER++ during training on CIFAR10,

over 10 different experimental runs, while Figure 3 shows

the resulting efficiency in terms of the number of parame-

ter updates required during the entire training process. No-

tably, the efficiency gain shows an increasing trend with the

growth of the number of epochs per task. When the num-

ber of epochs is relatively low (e.g., 10), selective freezing

leads to a higher number of updates compared to standard

training. This is due to the fact that during the first epoch of

the second task, up to 7 different model configurations are

trained and evaluated in parallel. However, as the number of

epochs increases, the overhead introduced during this phase

becomes progressively more marginal, leading to a consid-

erable efficiency gain of 12.34% with 100 epochs per task.

It is worth noting that the specific behaviors of freez-

ing can also depend on the particular methods of contin-

ual learning employed in the experiments. As an example,

ER-ACE tends to freeze more layers in the initial phase,

showing a preference for a more conservative configuration

right at the beginning of the second task, as depicted in Fig-

ure 4, while DER++ adopts a more gradual freezing strat-
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egy. Indeed, freezing more layers in an early stage has a

positive impact on efficiency: for ER-ACE the efficiency

gain ranges from 8.38% in the case of 10 epochs per task,

to a remarkable 18.72% extending the number of epochs to

100, as shown in Figure 5.

Figure 4: The prevalent freezing scheme when selective

freezing is activated for ER-ACE trained on Seq-CIFAR10

over 10 runs. Number of parameters indicated within the

bars.

Figure 5: The number of parameter updates required to

train the vanilla ER-ACE model (shown in orange) com-

pared to the same count with our selective freezing strategy

(in green). The numbers above the green bars represent the

percentage improvement points compared to the baseline.

5. Conclusions
In this paper, we have presented a novel approach that

performs selective layer freezing to address the challenges

of continual learning and computational efficiency in deep

learning models. Our findings highlight the potential for

freezing a significant portion of the model without sacrific-

ing accuracy: by dynamically identifying the optimal sub-

set of frozen layers during training, we achieve a balance

between plasticity on new tasks and stability on previous

tasks. Experimental results demonstrate the competitive-

ness of our approach compared to manually-tuned freezing

strategies. We have also quantitatively estimated the re-

duction in computation and energy requirements achieved

through our freezing strategy, showcasing its potential for

mitigating the environmental impact associated with large-

scale deep learning models.

While the proposed approach is able to achieve promis-

ing results, its simplicity introduces certain limitations, that

need to be addressed. First, our experiments focus on a

specific network architecture, ResNet-18: while it is the de
facto backbone for many continual learning approaches, it

is important to assess the impact of selective freezing on

different and deeper networks. Second, our analysis and

experiments are conducted based on a specific data set and

task setup: The effectiveness of our approach may vary with

different task characteristics, data set sizes, and variation in

task sequence.

In the future, we also aim to explore more sophisti-

cated freezing strategies, for instance by introducing a finer

selection of parameters, rather than working at the layer

level. Secondly, investigating the interplay between freez-

ing strategies and other techniques, such as regularization

methods, knowledge distillation or architectural modifica-

tions, could provide additional insights into improving con-

tinual learning and computational efficiency.
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