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Abstract

Continual egocentric activity recognition aims to un-

derstand diverse first-person activities from the multimodal

data of a wearable device captured in streaming environ-

ments, which is an emerging and challenging task. Existing

continual learning methods ignore the dynamic change of

multiple modalities’ correlation and hardly learn discrim-

inative representations for the sequentially isolated activ-

ity classes from different stages. In this paper, we pro-

pose a Confusion Mixup Regularized Multimodal Fusion

Network (CMR-MFN) to address this issue. Firstly, CMR-

MFN is composed of a ternary-modality-input dynamic

expansion architecture, which progressively grows addi-

tional branches for in-stage class recognition. Each in-

put owns a frozen modality-specific backbone to avoid for-

getting caused by parameter shifts. Secondly, CMR-MFN

captures the dynamics of multimodal inputs via learnable

self-attention layers. We augment unknown classes by lin-

early mixing up the samples from two known classes and

assigning a biased weight to one of them, which makes the

unknown class samples confusing toward the known class

with a higher weight. By learning from the current and aug-

mented training data together, we regularize the multimodal

fusion representation to distinguish the in-stage classes

from their confusing samples of unknown classes, which im-

plicitly pushes the out-stage classes’ samples far from the

in-stage classes’ ones when they are similar to each other.

Experiments show that the proposed method significantly

outperforms state-of-the-art methods for multimodal con-

tinual egocentric activity recognition. Our code is available

at https://github.com/Hanna-W/CMR-MFN .
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1. Introduction

Multimodal egocentric activity recognition [12, 11, 23,

36] refers to the task of recognizing and understanding hu-

man activities from a first-person perspective using multi-

ple modalities of data, such as visual, audio, and inertial

sensor data [19, 18, 17, 21, 20]. This field of research fo-

cuses on developing algorithms and models that can ana-

lyze and interpret the actions and behaviors of individu-

als captured through wearable devices, like head-mounted

cameras or smart glasses. However, in practical applica-

tions, the training data is typically acquired in stages rather

than being obtained all at once as in the traditional training

paradigm. Therefore, continual egocentric activity recogni-

tion is highly desirable in practical applications. In this pa-

per, we explore a multimodal continuous learning method

for egocentric activity recognition.

The main challenge of Continual Learning (CL) is how

to strike a balance between acquiring new knowledge and

preserving old knowledge, which is also known as the

stability-plasticity dilemma [7]. The root of this problem

lies in two aspects: data isolation and unified architec-

ture [28], which force the model to overfit the data at the

current stage and lead to catastrophic forgetting. More intu-

itively, catastrophic forgetting is the result of confusion be-

tween the representations of data from different stages in the

feature space [44]. This problem becomes more serious for

multimodal data, which may confuse with each other when

even only one modality is overlapped in the feature space.

The current continual learning methods primarily focus on

single modality data and do not take into account the rep-

resentation discriminability of fusing multiple modalities in

streaming environments. As a result, multimodal continual

learning becomes even more challenging.

Most of the existing methods attempt to tackle the afore-

mentioned issues of data isolation and unified architecture

through rehearsal and dynamic architecture. Rehearsal-

based works [16, 32, 10, 37, 42, 44, 45, 43] involve the

storage of prototypes or exemplar instances from previous
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Figure 1. Top: In-stage classes have discriminative representa-

tions. Bottom: Traditional training hardly learns discriminative

representations for isolated in-stage and out-stage classes, while

CMR-MFN training will alleviate the confusion between in-stage

and out-stage classes.

tasks, which are subsequently replayed during the training

of new tasks. Unfortunately, this is particularly true in the

context of first-person behavior recognition, where privacy

considerations are paramount. Recent approaches based on

dynamic architecture [34, 26, 35, 15] have demonstrated

impressive performance by incorporating new modules for

learning new tasks while preserving the knowledge of old

ones. Thereby, designing based on dynamic architecture

enables better handling of a growing training distribution

while maintaining the learned parameters associated with

previous classes fixed.

To address these issues, in this paper, we aim to present

a multimodal continuous learning method that incorporates

three properties: 1. rehearsal-free: The method does not

rely on the use of any replay samples or prototypes during

the training process; 2. dynamic expansion: The method

utilizes a network architecture that dynamically expands; 3.

generalized multimodal fusion: The method incorporates a

learnable fusion network that is capable of acquiring more

discriminative multimodal representations.

To this end, we initially employ a dedicated pre-trained

transformer backbone for each modality and keep them

frozen as a strong prior. Then we adopt the strategy of stage

isolation which allows each stage to independently learn the

fusion network and classifier. This approach enables the fu-

sion network and classifier to achieve the optimal perfor-

mance in their stage as shown at the top of Fig. 1. Each

fusion network consists of a self-attention layer, enabling it

to learn better feature representations by dynamically cap-

turing the intrinsic connections among different modalities.

However, traditional training would lead to stage-level over-

fitting. As shown in the bottom-left of Fig. 1: the data out-

side the stage may not learn a discriminative representation

and it is easy to overlap with the data in the stage. Hence,

inspired by Mixup [39], we synthesize confusing samples

by linearly combining any two known categories and giving

a higher weight to one of them. Through the joint training

of the current and augmented data, regularization is applied

to the representation learning of the multimodal fusion net-

work so that the learned multimodal representation can ef-

fectively distinguish the in-stage and out-stage data.

In conclusion, we propose a rehearsal-free multimodal

continuous learning method for egocentric activity recogni-

tion called CMR-MFN, our main contributions are summa-

rized as follows:

• We design a dynamic expansion fusion architecture to

ensure the data within each stage can learn the optimal

multimodal representation.

• We introduce a called confusion mixup regularized

multimodal fusion network that can capture the dy-

namic change of correlation from different modalities

and help alleviate the confusion between the in-stage

data and out-stage data in the feature space.

• Our method significantly outperforms SOTA unimodal

methods on existing multimodal continual learning

benchmarks for egocentric activity recognition.

2. Related Work

2.1. Multimodal Egocentric Activity Recognition

Given the wide range of modalities through which ego-

centric activities can be represented, an increasing amount

of research is dedicated to exploring the multimodal domain

for first-person activity recognition. Audio data provide

complementary information to appearance and motion in

visual data. TBN [12] draws inspiration from TSN [27] and

utilizes a temporal binding window to fuse audiovisual fea-

tures. This approach combines modalities before temporal

aggregation, using shared modality and fusion weights over

time. [11] presents MTCN, a transformer-based model that

learns to focus on surrounding activities and model mul-

timodal temporal context. Inertial sensors data from ac-

celerometers and gyroscopes have been used for egocentric

activity recognition, allowing recognition beyond the lim-

ited field of view of vision-based sensors. A hierarchical

fusion framework is presented in [23, 36], utilizing LSTM

and CNN based on motion sensor data and photo streams at

different levels, respectively. MKL [2] is proposed to adap-

tively weigh the visual, audio, and sensor features, addition-

ally, feature and kernel weighting and recognition tasks are

performed simultaneously. [9] introduces a first-view mul-

timodal framework based on knowledge-driven approaches,

GCN and LSTM.
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2.2. Continual Learning

Regularization-based methods can be categorized into

two aspects based on parameter regularization and knowl-

edge distillation. Parameter regularization-based meth-

ods [13, 38, 1] aim to retain previous class knowledge by

penalizing changes to former classes during model updates.

In [13], the importance of parameters is assessed using the

Fisher information matrix, and significant parameters are

restricted in their updates. However, conflicts arise due

to the differing importance matrices for each task, which

subsequently impacts the effectiveness of the algorithm.

On the other hand, knowledge distillation-based methods

[14, 5, 40, 30] employ implicit regularization by applying

knowledge distillation techniques to continuous learning.

BiC [30] and WA [40] propose effective solutions to address

the issue of classifier bias that arises after distillation.

Rehearsal-based methods primarily rely on utilizing

old-task data to mitigate catastrophic forgetting. [16, 30, 40,

8] allocate specific memory to store exemplars of past tasks,

allowing access to a portion of the old data which is then re-

played to reinforce previous knowledge during the learning

of new tasks. Furthermore, some approaches [31, 32, 22]

involve generating old-task data using separate generative

models for replay, rather than directly storing the original

data. However, it is important to consider that storing large

amounts of old-task data can be memory-intensive and may

raise privacy concerns. Additionally, generative models of-

ten face challenges such as instability and inefficiency dur-

ing training. To address these issues, some researchers have

focused on leveraging class-representative prototypes of old

data. For example, [45] adopts a prototype selection strat-

egy while [44] focuses on prototype augmentation. In ad-

dition, [43] proposes classAug on the basis of prototype

augmentation to prevent the bias of prototype representa-

tion.

Dynamic-networks-based methods design dynamic

modules to satisfy evolving training distributions without

task identifiers. [34] continuously expands feature extrac-

tors, which are subsequently fed into a unified classifier.

Furthermore, the network undergoes pruning after model

learning. Similarly, [6] introduces a task dynamic strategy

based on the transformer architecture, where task tokens are

continuously expanded without requiring any hyperparam-

eter adjustments to control network expansion. Another no-

table contribution is made by [29], which proposes a novel

framework for continual learning through prompt tuning.

Additionally, [26] presents a two-stage learning paradigm

that utilizes dynamic expansion modules and compression

models based on the gradient boosting algorithm. How-

ever, conflicts can arise between different modules during

dynamic expansion. To address this, [25] introduces a uni-

fied energy-based theory and framework to mitigate con-

flicts in the expansion process.

3. Proposed Method
3.1. Problem Definition

Continuous learning aims to enable the model to learn a

continuous stream of information, only accessing the cur-

rent stage samples during training, and effectively catego-

rizing the test samples from all previously learned stages

during testing. Let
{D1,D2, ..,DT

}
be continuous data

stream, where{1, 2, .., T} is the sequence of stages. The

incoming data at stage t is denoted as Dt = {xt
b, y

t
b}N

t

b=1,

which have N t labeled samples of this stage. Specif-

ically, the model receives xt
b = {vtb, atb, gtb} as the in-

put of multimodal data, where vtb, atb, gtb represent the vi-

sual signal (R), acceleration signal (A) and gyroscope sig-

nal (G), respectively. ytb is the corresponding label for

xt
b which is expressed in the form of one-hot encoding:

ytb = [l1, l2, · · · , lk], where k is the number of category,

li = 1 when it belongs to class i otherwise li = 0. For

class incremental learning, ytb is selected from Yt where

Yt represents the label space of class groups without over-

lapping classes. In the t-th incremental step, the model

learns knowledge from the available training samples Dt,

and then is expected to perform well on all seen classes

Ỹt = ∪t
i=1Yi.

3.2. Overview of Framework

In this paper, we present a rehearsal-free multimodal

continual learning approach. The framework of our method

is shown in Fig. 2. During the training phase, we use

frozen pre-trained transformers to extract features for each

modal input. Before multimodal fusion, we introduce con-

fusion samples generated by mixup in current training data

to regularize multimodal fusion network learning. Then we

train the fusion network and classifier independently at each

stage. During the testing phase, the test samples choose the

prediction result by selecting the highest score from all clas-

sifiers.

The detail of the feature extractor is shown in Fig.3. At

step t, for the visual data, we uniformly sample 8 RGB

frames vtb from the video. Subsequently, we feed them into

the feature extractor Fv , yielding the RGB feature f t
v . Re-

garding the inertial sensor data, considering that both the ac-

celerometer and gyroscope provide three-dimensional data

atb and gtb, three spectrograms are generated after STFT,

whereafter individually passed to the corresponding feature

extractors Fa and Fg to obtain their respective features f t
a

and f t
g . For simplicity, for image frames that contain time

information, we employ pre-trained TimeSformer [3] as the

backbone, while for the spectrograms derived from inertial

sensor data, we utilize pre-trained ViT-B/16 [4].

In the following sections, we will first provide a com-

prehensive introduction to the confusion mixup strategy,

which effectively addresses the confusion between in-stage
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Figure 2. Framework of CMR-MFN. The method involves several steps during training: feature extraction for each modality, addition of

generated confusing samples and independent training of the fusion network and classifier at each stage. In the inference phase, the test

samples select the highest score from all classifiers as the prediction result.

Figure 3. The specific architecture of the feature extractor.

and out-stage data caused by data isolation. Additionally,

we will present the self-attention based multimodal fusion

process. By independently training the fusion network and

classifiers, they can achieve optimal performance at their

respective stages without being influenced by other stages.

3.3. Confusion Mixup

In the training phase, only the data from the current stage

is available, while all previously learned classes are seen

during testing. Traditional training methods would lead to

overfitting at the stage level, causing confusion in feature

space between in-stage and out-stage data and resulting in

catastrophic forgetting. Typically, these confusing out-stage

data exhibit similar characteristics to a specific category

within the stage. To address this issue, we explore the use of

mixup to synthesize similar samples based on available data

and regularize the fusion network to learn more generalized

multimodal representations.

Specifically, at stage t, the incoming data Dt contains a

total of k classes. For each class n, we assign a confusion

class n + k. During training, we fuse the embedding of

the pair (xt
i, x

t
j) from two different classes a and b in the

mini-batch as a confusion sample xt′ =
{
f t′
v , f t′

a , f t′
g

}
:

f t′
m = λmFm(mt

i) + (1− λm)Fm(mt
j), (1)

where m ∈ [v, a, g] and λ is sampled from Beta(α, α). In

contrast to the setting described in [43], we impose a re-

striction on the sampling of λ, confining it to the interval

of [0.5, 1]. As shown in Fig. 4 and 5, our confusion mixup

ensures that the synthesized samples of the new class are

closer to one class of the original data.

And the sample generated by Eq. 1 would be labeled as:

yt
′
= [l1, · · · , la+k, · · · , l2k], (2)

where la+k is equal to 1 and the others are equal to 0. We

represent the synthetic data set as Dt′ while the correspond-

ing label set as Yt′ . Therefore, the original k-class problem

in the current stage is transformed into a 2k-class problem.

Furthermore, in order to maintain sample balance, the num-

ber of each synthesis will align with the batch size. In our

all experiments, α is set to 0.2.
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Figure 4. The illustration of mixup under different λ settings, tak-

ing RGB as an example. We randomly select two samples from

class a and class b, generate 50 new samples through mixup, and

plot them in a 2D space for visualization.

Figure 5. The distance distribution between the synthetic samples

and a specific original sample. The y-axis is the count of mixup

samples, and the x-axis is the cosine distance to the class a.

3.4. Self-attention based Multimodal Fusion

Following data augmentation through confusing mixup,

we employ a self-attention layer [24] as the fusion net-

work to fuse the features from different modalities, de-

noted as SA. SA consists of three parts: query Q, key

K, and value V . The input Z = [fv||fa||fg], where ||
denotes the concatenation of the features for each modal-

ity, will be projected into the same space, represented as

[Q,K, V ] = [WQZ,WKZ,WV Z]. The final output of

SA(Z) can be computed as follows:

SA(Z) = Softmax

(
QKT√
dk/h

)
V, (3)

where dk represents the embedding dimension, and h in-

dicates the number of attention heads. Moreover, training

a single fusion network by fine-tuning parameters allows it

to accommodate new tasks but possibly results in forgetting

the knowledge acquired from previous ones.

To this end, we introduce expandable multimodal fu-

sion networks. Initially, we have only one fusion network

denoted as SA1. As we progress to each new stage, we

propose expanding the parameter space by creating a new

fusion network while retaining the previous ones. Corre-

spondingly, we extend the classifier at each new stage. This

implies that at step t, we train a new fusion network SAt in-

dependently, along with a corresponding classifier Ht. Our

expansion would add approximately 0.7% new parameters

in each stage. Additionally, the incremental learning pro-

cess only involves training these new parameters, leading to

a significantly faster model training.

3.5. Optimization Objective of CMR-MFN

By combining the aforementioned techniques, we obtain

a complete loss function of CMR-MFN which consists of

two terms:(1) the cross entropy loss Lce of the original data

Dt, (2) the cross entropy loss L′
ce of the synthetic data Dt′ .

The total loss is presented as follows:

L = Lce + L′
ce. (4)

During the training process of stage t, Lce and L′
ce can be

calculated as:

Lce = Fce(Ht(SAt(F(Dt));Yt), (5)

L′
ce = Fce(Ht(SAt(F(Dt′));Yt′), (6)

where Fce represents the standard cross entropy function.

When the testing phase at stage t, the test sample

{x, y} ∈ ∪t
i=1Di traverses through a series of fusion net-

works {SA1,SA2, ..,SAt} and the corresponding classi-

fiers {H1,H2, ..,Ht}. It should be noted that the additional

class nodes generated by confusion mixup in the classifier

will be discarded. Thus, the output of each classifier can be

formulated as:

PHi
(y | x) = Softmax(Hi(SAi(F(x)))[: k]). (7)

Ultimately, we integrate the outputs from all the classi-

fiers and select the category with the highest confidence as

the final prediction result:

ŷ = argmaxPH1||···||Ht
(y | x), ŷ ∈ Ỹt. (8)

4. Experiments
4.1. Benchmarks & Implementation

Benchmarks. We evaluate our model on UESTC-

MMEA-CL [33]. UESTC-MMEA-CL is the first multi-

modal dataset for continual egocentric activity recognition.

It contains 30.4 hours of video clips, accelerometer data and

gyroscope data. UESTC-MMEA-CL comprises 32 daily

activities including basic human movements, indoor work

tasks, leisure activities, etc. The standard continual scenario

in UESTC-MMEA-CL has 8 steps and 4 steps. Thus we

compare performances on 4 classes per step and 8 classes

per step on UESTC-MMEA-CL.
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Figure 6. (a) Results of CMR-MFN with different modal inputs on UESTC-MMEA-CL with 8 steps. (b) Results on UESTC-MMEA-CL

with 8 steps. (c) Results on UESTC-MMEA-CL with 4 steps.

Comparison Methods. We compare our proposed

method against the state-of-the-art CL methods. Com-

parison methods include rehearsal-free methods LwF [14],

EWC [13] and ESN [28], as well as rehearsal-based

methods iCaRL [16], BiC [30], WA [40], Coil [42] and

DyTox [6]. DyTox and ESN are recently published

transformer-based methods. Besides, we use joint training

performance as the upper bound for CMR-MFN. For fair

comparison, we use the same ImageNet pre-trained trans-

former backbone for all comparison methods and CMR-

MFN. Specifically, all comparison methods rely on visual

single-modal input with the RGB backbone being Times-

former, which is identical to CMR-MFN’s. Moreover, we

adopt the same settings as in the original work for DyTox

and ESN, which are specially designed based on ViT. To

ensure uniformity, we replace our RGB backbone with ViT-

B/16, referred to as CMR-MFN∗. In addition, we equip our

approach with a rehearsal buffer called CMR-MFN-R for a

fair comparison with rehearsal-based methods.

Implementation Details. For inertial sensor data pro-

cessing, to address the outliers in the acceleration and gy-

roscope signals, we employ a median filter with a kernel

size of 5. Additionally, we mitigate the bias drift in the

gyroscope signals by subtracting the mean value. We ex-

tract 10.32s of inertial sensor data from a video and con-

vert them into spectrograms using the STFT with a sam-

pling frequency of 25Hz, window length of 4, overlap rate

of 2, and nfft of 256. Finally, we generate two-dimensional

spectrograms of size 224 × 224. For more training details,

we implement our methods in PyTorch and PyCIL [41] with

a single NVIDIA RTX 3090 GPU. All data streams (R, A,

G) are trained by the Adam optimizer with a weight decay

of 0.0005 and a learning rate of 0.001. The batch size is set

to 16 and the dropout is 0.5. All networks are trained for 50

epochs, and the learning rate is decayed by a factor of 10 at

epoch 10 and 20.

4.2. Metrics

Following [33], we use average accuracy and average

forgetting as evaluation metrics, which are defined as fol-

lows:

Average Accuracy (AA) Define ajk(j ≤ k) as the accu-

racy evaluated on task j after training task k. Thus average

accuracy on task k can be calculated as Ak = 1
k

∑k
j=1 a

j
k.

Average Forgetting (F) Forgetting denotes the knowl-

edge forgetting degree about the task throughout the learn-

ing process. It is defined as the difference between the max-

imum accuracy during the learning process and the current

accuracy, which can be formulated as

f j
k = max

l∈1,··· ,k−1
(ajl − ajk), (9)

thus average forgetting on task k can be calculated as Fk =
1

k−1

∑k−1
j=1 f

j
k .

4.3. Quantitative Results

We conduct experiments based on UESTC-MMEA-CL.

The performance curves are illustrated in Fig. 6, while Ta-

ble 1 and Table 2 report the average accuracy and average

forgetting for 4 and 8 incremental tasks, respectively. Ad-

ditionally, Table 3 displays the results of transformer-based

methods.

Average accuracy. In Fig. 6 (a), we can clearly see that

by incorporating the inertial sensor modality accelerometer

and gyroscope, the multimodal prediction accuracy signifi-

cantly surpasses the accuracy of the single modality, start-

ing from task 2. However, as the number of modalities

increases, the rate of improvement starts to diminish. Fi-

nally, CMR-MFN(All) achieves an accuracy of 67.4% for 4

class-incremental learning, which is over 18% higher than

the accuracy obtained with the single RGB modality. Com-

pared to other methods, CMR-MFN(All) also demonstrates

state-of-the-art performance in average accuracy, both with
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Methods Memory Size AA(↑) F(↓)

iCaRL

150

71.5 30.97

BiC 69.45 30.17

WA 62.08 41.12

Coil 56.53 38.67

CMR-MFN-R(All) 78.27 5.47

FT

0

12.92 98.08

LwF 47.04 43.53

EWC 61.32 36.32

CMR-MFN(R) 49.47 16.52
CMR-MFN(R+A) 63.07 18.3

CMR-MFN(R+G) 66.26 18.91

CMR-MFN(All) 67.4 19.96

Upper-bound - 94.6 1.9

Table 1. Results on UESTC-MMEA-CL for 4 class-incremental

learning.

Methods Memory Size AA(↑) F(↓)

iCaRL

150

79.26 24.52

BiC 82.98 16.8

WA 73.63 31.97

Coil 72.64 28.89

CMR-MFN-R(All) 84.27 6.4

FT

0

29.86 91.13

LwF 74.24 17.94

EWC 75 26.76

CMR-MFN(R) 67.4 5.49
CMR-MFN(R+A) 81.69 7.74

CMR-MFN(R+G) 80.09 8.34

CMR-MFN(All) 83.51 8.85

Upper-bound - 95.14 1.22

Table 2. Results on UESTC-MMEA-CL for 8 class-incremental

learning.

and without exemplars. Remarkably, our rehearsal-free

method outperforms individual exemplar-based methods

significantly, particularly with 8 incremental tasks. Specifi-

cally, CMR-MFN(All) exhibits a 0.53% superiority over the

best performing exemplar-based method BiC.

Average Forgetting. From Table 1 and Table 2, it can

be observed that, similar to the average accuracy, the av-

erage forgetting also exhibits an increasing trend as modal

input rises. This is because CMR-MFN(R) has a limited

ability to acquire new knowledge, resulting in less forget-

ting. Nevertheless, CMR-MFN-R(All) also reaches 5.47%
in average forgetting, which is in close proximity to the up-

per limit of 1.9%. CMR-MFN-R(All) demonstrates signif-

icantly lower average forgetting compared to methods uti-

Methods Memory Size AA(↑) F(↓)

DyTox 150 63.6 16.11

ESN
0

63.83 15.22
CMR-MFN∗(All) 73.02 19.91

Upper-bound - 95.29 1.22

Table 3. Results of transformer-based methods on UESTC-

MMEA-CL for 4 class-incremental learning.

lizing exemplars. Even in the absence of exemplars, our

method exhibits superior performance compared to most

methods, showcasing its ability to resist catastrophic for-

getting.

4.4. Ablation Study

To the efficacy of our proposed model, we conduct

a series of ablation experiments on the UESTC-MMEA-

CL dataset, and all experimental results are based on the

ternary-modality-input. The performance improvement of

our proposed model can be primarily attributed to two es-

sential components: the learnable multimodal fusion and

the confusion mixup strategy.

The Effect of learnable multimodal fusion. To demon-

strate the functionality of the learnable multimodal fusion,

we compare it with the baseline, which solely employs a

fusion network to concatenate the multimodal data. As ev-

ident from Table 4, the multimodal fusion network with a

self-attention layer brings a 19.3 % improvement on the av-

erage accuracy, while the average forgetting decreases by

2.66 %. Additionally, in Fig.7 (a) and (b), it is evident that

the learnable multimodal fusion networks enhance the ag-

gregation and discriminative capacity of representations.

The Effect of confusion mixup. To demonstrate the

superiority of the confusion mixup strategy, we compared

CMR-MFN’s performance against the model that solely uti-

lizes the learnable multimodal fusion. As shown in Table

4, the confusion mixup strategy led to a 3.65 % improve-

ment on the average accuracy. Fig. 7 visually presents the

impact of the confusion mixup strategy on the representa-

tion from the feature space. Specifically, in subfigure (b),

the orange ellipse area and the black ellipse region over-

lap to a large extent, indicating that it is challenging to

differentiate between in-stage and out-stage data. For in-

stance, the classes ”wash hand” (in-stage) and ”wash dish”

(out-stage) display substantial similarity at stage 3, leading

to significant confusion when employing solely multimodal

fusion networks. As the number of learning tasks increases,

the likelihood of encountering similarities between classes

from different stages also rises, exacerbating the confusion

between classes. Conversely, in subfigure (c), the mixup

strategy effectively enhances the discriminative capability
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Figure 7. The influence of our model on representations. Each stage encompasses four classes, visually represented by the orange dotted

elliptical area indicating the in-stage classes and the black dotted ellipse area representing the out-stage classes. (a) Baseline. (b) Learnable

multimodal fusion. (c) CMR-MFN. (d) Partial enlargement. We can clearly see that CMR-MFN results in a better distinction between

in-stage and out-stage classes.

of the in-stage classes from the out-stage classes. In more

detail, subfigure (d) clearly shows that CMR-MFN effi-

ciently reduces the overlap between the ”wash hand” and

wash dish classes. Furthermore, when incorporating the

confusing samples into the data within stages, such as the

classes ”cooking” and ”brush teeth”, where the representa-

tions in subfigure (b) already exhibit the ability to distin-

guish classes from different stages, the discriminatory ca-

pacity of the representations remains unaffected. This is

evident in subfigure (c), where there is virtually no negative

impact. The same observation holds true for stage 2.

5. Conclusion

In this paper, we propose a novel and effective method

of CMR-MFN for continual egocentric activity recognition.

CMR-MFN incorporates a ternary-modality-input dynamic

expansion architecture with learnable self-attention layers.

Furthermore, we employ a confusion mixup strategy to reg-

ularize the multimodal fusion representations. Exhaustive

experiments conducted on the latest UESTC-MMEA-CL

Componets
AA(↑) F(↓)Learnble Confusion

Fuison Mixup

� � 44.45 22.60

� � 63.75 19.94
� � 67.4 19.96

Table 4. Ablation study of our method on UESTC-MMEA-CL.

database demonstrate that our proposed method is signifi-

cantly better than state-of-the-art approaches for continual

egocentric activity recognition.
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and Matthieu Cord. Dytox: Transformers for continual learn-

ing with dynamic token expansion. In 2022 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 9275–9285, June 2022.

[7] Stephen T Grossberg. Studies of mind and brain: Neural

principles of learning, perception, development, cognition,

and motor control, volume 70. Springer Science & Business

Media, 2012.

[8] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and

Dahua Lin. Learning a unified classifier incrementally via

rebalancing. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 831–839,

2019.

[9] Yi Huang, Xiaoshan Yang, Junyu Gao, Jitao Sang, and

Changsheng Xu. Knowledge-driven egocentric multimodal

activity recognition. ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMM),

16(4):1–133, 2020.

[10] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and

Cordelia Schmid. Memory-efficient incremental learning

through feature adaptation. In Computer Vision–ECCV

2020: 16th European Conference, Glasgow, UK, August

23–28, 2020, Proceedings, Part XVI 16, pages 699–715.

Springer, 2020.

[11] Evangelos Kazakos, Jaesung Huh, Arsha Nagrani, Andrew

Zisserman, and Dima Damen. With a little help from my

temporal context: Multimodal egocentric action recognition.

arXiv preprint arXiv:2111.01024, 2021.

[12] Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and

Dima Damen. Epic-fusion: Audio-visual temporal bind-

ing for egocentric action recognition. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 5492–5501, 2019.

[13] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-

maran, and Raia Hadsell. Overcoming catastrophic for-

getting in neural networks. Proceedings of the National

Academy of Sciences, 114(13):3521–3526, Mar. 2017.

[14] Zhizhong Li and Derek Hoiem. Learning without forgetting.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 40(12):2935–2947, Dec. 2018.

[15] Zhuoyun Li, Changhong Zhong, Sijia Liu, Ruixuan Wang,

and Wei-Shi Zheng. Preserving earlier knowledge in contin-

ual learning with the help of all previous feature extractors.

arXiv preprint arXiv:2104.13614, 2021.

[16] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H. Lampert. icarl: Incremental classi-

fier and representation learning. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2001–2010, 2017.

[17] Hengcan Shi, Hongliang Li, Fanman Meng, and Qingbo Wu.

Key-word-aware network for referring expression image seg-

mentation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 38–54, 2018.

[18] Hengcan Shi, Hongliang Li, Fanman Meng, Qingbo Wu,

Linfeng Xu, and King Ngi Ngan. Hierarchical parsing net:

Semantic scene parsing from global scene to objects. IEEE

Transactions on Multimedia, 20(10):2670–2682, 2018.

[19] Hengcan Shi, Hongliang Li, Qingbo Wu, Fanman Meng, and

King N Ngan. Boosting scene parsing performance via reli-

able scale prediction. In Proceedings of the 26th ACM inter-

national conference on Multimedia, pages 492–500, 2018.

[20] Hengcan Shi, Hongliang Li, Qingbo Wu, and King Ngi

Ngan. Query reconstruction network for referring expres-

sion image segmentation. IEEE Transactions on Multimedia,

23:995–1007, 2020.

[21] Hengcan Shi, Hongliang Li, Qingbo Wu, and Zichen

Song. Scene parsing via integrated classification model

and variance-based regularization. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5307–5316, 2019.

[22] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. Advances in

neural information processing systems, 30, 2017.

[23] Sibo Song, Vijay Chandrasekhar, Bappaditya Mandal,

Liyuan Li, Joo-Hwee Lim, Giduthuri Sateesh Babu, Phyo

Phyo San, and Ngai-Man Cheung. Multimodal multi-stream

deep learning for egocentric activity recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition workshops, pages 24–31, 2016.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017.

[25] Fu-Yun Wang, Da-Wei Zhou, Liu Liu, Han-Jia Ye, Yatao

Bian, De-Chuan Zhan, and Peilin Zhao. Beef: Bi-compatible

class-incremental learning via energy-based expansion and

fusion. In The Eleventh International Conference on Learn-

ing Representations, 2022.

[26] Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan

Zhan. Foster: Feature boosting and compression for class-

incremental learning, July 2022.

3568



[27] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment net-

works: Towards good practices for deep action recognition.

In European conference on computer vision, pages 20–36.

Springer, 2016.

[28] Yabin Wang, Zhiheng Ma, Zhiwu Huang, Yaowei Wang,

Zhou Su, and Xiaopeng Hong. Isolation and impartial aggre-

gation: A paradigm of incremental learning without interfer-

ence. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 37, pages 10209–10217, 2023.

[29] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,

Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer

Dy, and Tomas Pfister. Learning to prompt for continual

learning. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 139–149,

2022.

[30] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-

cremental learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

374–382, 2019.

[31] Ziyang Wu, Christina Baek, Chong You, and Yi Ma. In-

cremental learning via rate reduction. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1125–1133, 2021.

[32] Ye Xiang, Ying Fu, Pan Ji, and Hua Huang. Incremental

learning using conditional adversarial networks. In Proceed-

ings of the IEEE/CVF International Conference on Com-

puter Vision, pages 6619–6628, 2019.

[33] Linfeng Xu, Qingbo Wu, Lili Pan, Fanman Meng, Hongliang

Li, Chiyuan He, Hanxin Wang, Shaoxu Cheng, and Yu

Dai. Towards continual egocentric activity recognition: A

multi-modal egocentric activity dataset for continual learn-

ing. IEEE Transactions on Multimedia, pages 1–15, 2023.

[34] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynam-

ically expandable representation for class incremental learn-

ing. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 3014–3023,

2021.

[35] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju

Hwang. Lifelong learning with dynamically expandable net-

works. arXiv preprint arXiv:1708.01547, 2017.

[36] Haibin Yu, Guoxiong Pan, Mian Pan, Chong Li, Wenyan

Jia, Li Zhang, and Mingui Sun. A hierarchical deep fusion

framework for egocentric activity recognition using a wear-

able hybrid sensor system. Sensors, 19(3):546, 2019.

[37] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz,

Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de

Weijer. Semantic drift compensation for class-incremental

learning. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 6982–6991,

2020.

[38] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. In International

conference on machine learning, pages 3987–3995. PMLR,

2017.

[39] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. arXiv preprint arXiv:1710.09412, 2017.

[40] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-

Tao Xia. Maintaining discrimination and fairness in class

incremental learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

13208–13217, 2020.

[41] Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-Chuan

Zhan. Pycil: A python toolbox for class-incremental learn-

ing, 2023.

[42] Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Co-

transport for class-incremental learning. In Proceedings of

the 29th ACM International Conference on Multimedia, MM

’21, pages 1645–1654, New York, NY, USA, Oct. 2021. As-

sociation for Computing Machinery.

[43] Fei Zhu, Zhen Cheng, Xu-yao Zhang, and Cheng-lin Liu.

Class-incremental learning via dual augmentation. Advances

in Neural Information Processing Systems, 34:14306–14318,

2021.

[44] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-

Lin Liu. Prototype augmentation and self-supervision for

incremental learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

5871–5880, 2021.

[45] Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-

Jun Zha. Self-sustaining representation expansion for non-

exemplar class-incremental learning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 9296–9305, 2022.

3569


