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Abstract

When learning multiple tasks in a sequence, deep neu-
ral networks tend to loose accuracy on tasks learned in
the past while gaining accuracy on the current task. This
phenomenon is called catastrophic forgetting. Memory-
based Class Incremental Learning (CIL) methods address
this problem by re-learning exemplars retained in the mem-
ory from previous tasks. However, due to data imbalances
between the training data for the current task and the lim-
ited exemplars from previous tasks, existing methods strug-
gle to balance the accuracy across all seen tasks. Here,
we propose to address data imbalance and in addition to a
generic model to learn a set of task-specific parameters. In
particular, we propose a novel methodology of Tangent Ker-
nel for Incremental Learning (TKIL) that seeks an equilib-
rium between current and previous representations. Specif-
ically, TKIL achieves such equilibrium by tuning different
task-specific parameters for different tasks with a new Gra-
dient Tangent Kernel (GTK) loss. Therefore, when rep-
resenting previous tasks, task-specific models are not im-
pacted by the samples of the current task and are able to
retain learned representations. As a result, TKIL equally
considers the contribution from all task models. The gen-
eralized parameters that TKIL obtains allow it to automat-
ically identify which task is being considered and to adapt
to it during inference. Extensive experiments on five CIL
benchmark datasets with ten incremental learning settings
show that TKIL outperforms existing state-of-the-art meth-
ods, e.g., achieving 9.4% boost on CIFAR-100 with 25 in-
cremental stages.

Figure 1. We propose a Tangent Kernel optimization for Incremen-

tal Learning (TKIL) with a novel Gradient Tangent Kernel (GTK)

loss for optimal class-balanced learning.

1. Introduction

Visual content is evolving and its volume is rapidly in-

creasing. Indeed, high-quality and large-scale visual media

streaming data could become infeasible to store and process

fully [8, 28, 31, 56]. Therefore, it is appealing to develop

learning agents that do not require complete data at the on-

set of training and continuously learn new data [52]. Class

Incremental Learning (CIL) addresses the development of

such methods, where agents are expected to learn with in-

cremental arrival of new tasks along with limited exemplars

from previous tasks [54, 33].

This learning scenario is significantly different from con-

ventional learning, especially for classification tasks, due to

the data imbalance between current and previous tasks [17].

Since full past data is not retained, there is significantly less

data available for them than for the current task. Therefore,

CIL aims to achieve an equilibrium between current and

previous representations [43]. Current methods propose ad-

ditional finetuning steps to correct this imbalance, e.g., bal-

anced finetuning or task-level bias rectification. However,

training a fixed model for all tasks limits the ability to deal
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with imbalanced data [1, 52].

Here, we propose a different approach based on the prin-

ciple of attaining task-independent generic representations.

Instead of training a fixed model for all tasks, we propose to

learn a set of generalized parameters and consolidate them

into a generic model. The model predicts the task that is

at hand and would adapt to the corresponding task auto-

matically during inference. To achieve that, the gradients

with respect to the parameters of the generic model are sup-

posed to consider the contributions of all tasks in a balanced

way [7].

To obtain generic representations, we propose a novel

Tangent Kernel optimization approach for Incremental

Learning (TKIL). This approach utilizes a novel Gradient

Tangent Kernel (GTK) loss, which is inspired by tangent

kernel theory. Tangent kernels describe the weights evolu-

tion of a neural network during training [26, 47]. To transfer

learned generic representations, we use the previous tan-

gent kernel to regulate the tangent kernel of the current

model. Therefore, we define GTK loss as a cosine similarity

loss that minimizes the discrepancies between the gradients

(with respect to parameters) from previous and current tan-

gent kernels. GTK is different from previously proposed

tangent kernels, since NTK is designed for infinite-width

neural networks only, while GTK is applicable to finite-

width networks that particularly appear in CIL [15, 43].

During updates of the generic model, TKIL tunes different

task-specific models representing current and previous tasks

with GTK loss, and then takes the average of task-specific

gradient updates as the update of the generic model. Since

TKIL updates the task parameters separately, it overcomes

the bias of the current task by design. In such updates, the

GTK loss is expected to transfer from the previous model

to task-specific models and prevent their divergence from

each other. During inference, such a generic model cooper-

ates with the inference pipeline to predict the task at hand

when given testing points and adapts itself to this task to

perform classification.

In summary, our main contributions in this work are: 1)
We propose a novel class incremental learning approach,

TKIL, that addresses the imbalances in memory-based in-

cremental learning. 2) The core of TKIL is a novel tan-

gent kernel (GTK) loss for finite-width neural networks.

We show that minimizing GTK loss associated with TKIL

achieves more balanced representations. Such representa-

tions allow TKIL to generate robust task predictions and

to update corresponding task-specific models during infer-

ence. 3) Extensive experiments on MNIST, SVHN, CIFAR-

100, and ImageNet show that TKIL achieves robust accu-

racy on task predictions and this accuracy translates to out-

performing existing incremental learning methods.

2. Related Work
Class Incremental Learning (CIL). CIL addresses in-

cremental learning in its full generality, in contrast to more

specific continual learning, such as Task Continual Learn-

ing [19, 35, 34, 18]. In particular, CIL doesn’t rely on the

task category (domain) being specified. CIL typically in-

cludes three components: Exemplars Selection With Re-
hearsal [43, 5, 14, 30, 38, 37, 29], Forgetting Con-
straints [21, 24, 6, 2], and Bias Corrections [51, 4, 14,

55, 5]. Recent works additionally introduced Memory-free
Approaches and Online Continual Learning Settings for

class incremental learning [44, 22, 32, 9, 53, 39, 32]. These

settings are more realistic when considering limited com-

putational costs, e.g., small memory with few updates. To

follow online settings, we leverage a fixed-size memory

and train all samples only once in an epoch. In summary,

such works contributed to the enhancement and combina-

tion of these components, while in our work we mainly fo-

cus on memory-based methods combined with forgetting

constraints. We describe these two components in detail

below.

• Exemplars Selection With Rehearsal. Rehearsal

methods store a small set of previous task exemplars in a

memory buffer to represent previously learned tasks. Mul-

tiple methods proposed herding heuristics [49] to select the

most representative exemplars [43, 5, 14]. Additional meth-

ods estimated the distribution of previously learned tasks

and generated extra pseudo-exemplars or images to avoid

the imbalance between classes [30, 38, 37]. Recent works

showed that dynamic expansions boost rehearsal methods,

e.g., tuning different task representations [20, 46, 7, 50, 42,

41]. While these methods can preserve unbiased represen-

tations by task parameters, the training cost grows linearly

with the number of tasks. In contrast, our approach does not

rely on a particular selection of exemplars or extra pseudo-

exemplars to boost accuracy, and is designed to be compu-

tationally efficient with a constant training cost.

• Forgetting Constraints. Various regularization terms

have been added to the classification loss to constrain for-

getting of previous representations [21, 24, 6, 2]. In ad-

dition, Knowledge Distillation (KD) has been proposed to

restore previous knowledge representations [43, 5, 25, 1].

Furthermore, Adaptive Feature Consolidation (AFC) [17]

modified KD further to define the discrepancy loss, which

estimates representation changes and retains important rep-

resentation features. While KD loss turned out to be effec-

tive, it appears that KD alone cannot fully resolve imbal-

anced data distributions. Thus, our method tunes different

task-specific models with GTK loss to learn previous and

current tasks separately. As such, TKIL is able to obtain

unbiased knowledge representations.

Tangent Kernels. Neural Tangent Kernels (NTK) were

first introduced in [15] and developed in multiple subse-
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quent works [3, 26, 36, 48]. NTK employs kernels gradient

to describe the convergence behavior of over-parameterized

DNNs in a limit of infinite width such that it can mimic

the accuracy in this limit. While NTK and related methods

motivated our work, infinite-width neural networks do not

apply to incremental learning and finite-width networks re-

quire a novel tangent kernel framework [10]. Recently, Task

Tangent Kernel (TTK) was introduced for finite-width neu-

ral networks [48], based on a kernelized distance across the

gradients of multiple random initialized networks (at least

50 networks in their setting) to estimate the similarity over

different tasks. In contrast, GTK loss calculates the tangent

kernel of a trained network only a single time during new

model training.

3. Methods
Given an imbalanced training distribution at each stage,

we propose a Tangent Kernel Incremental Learning ap-

proach that aims to train a unified classifier sequentially.

Figure 2 illustrates an overview of our approach.

3.1. Notations

We denote the sequential data as a batch of datasets

D = {D1, D2, . . . , DT , . . . }. DT is T -th dataset in D,

which contains training images x = {xi}ni=1 and labels

y={yi}ni=1. Each DT dataset includes m classes, with total

m× T classes. At T -th incremental stage, the training data

in a fixed memory buffer is the full data for current classes

DT , and a small set of previous exemplars MT = {M1 ⊆
D1,M2 ⊆ D2, . . . ,MT−1 ⊆ DT−1}. We denote the T -th

generic model in incremental learning as FT = F (θT ,x),
where bold θT = {φT , θT } is all parameters in the net-

work and {φT , θT } denote the parameters in feature extrac-

tor layers and fully connected layers, respectively. We use

{φT , task i, θT , task i} as the parameters for the task-specific

model i in T -th incremental stage. In Section 3.2, we de-

note F (θ) to represent a finite-width neural network when

analyzing tangent kernels.

3.2. Tangent Kernels

In this section, we introduce tangent kernels and pro-

vide a comprehensive analysis. Consider a minimization

of the squared loss L(θ) = 1
2

∑n
i=1(F (θ, xi) − yi)

2 by

gradient descent with infinitesimally small learning rate
dθ(τ)
dτ = −∇L(θ(τ)). Let u(τ) = F (θ(τ),x) be the net-

work outputs at time τ and y is the ground truth. u(τ)
follows the following evolution [15, 3]:

du(τ)

dτ
= −Kτ (x,x)(u(τ)− y), (1)

where the Tangent Kernel is

Kτ (x,x) =

〈
∂F (θ(τ),x)

∂θ
,
∂F (θ(τ),x)

∂θ

〉
. (2)

The dynamics in Eq. 1 are identical to the dynamics

of kernel regression under the gradient flow (Assuming

u(0) = 0). Thus, the output of a trained neural network

at time τ for any testing input x′ is

F (θ(τ),x′) = Kτ (x
′,x)TKτ (x,x)

−1y. (3)

From Eq. 3, we obtain training predictions when we set the

inputs to be the training data points, i.e., x′ = x,

u(τ) = F (θ(τ),x) = Kτ (x,x)
TKτ (x,x)

−1y. (4)

From Eqs. 1 and 4, we observe that the only variable in

training predictions is the kernel function Kτ (x,x) deter-

mined by the Jacobian matrix
∂F (θ(τ),x)

∂θ . Therefore, the Ja-

cobian matrix solely determines the training outputs u(τ).
This motivates us to employ the Jacobian matrix from the

previous model to assist with training a new model. Since

the previous model does not need to be retrained, its tangent

kernel and the Jacobian matrix are both deterministic.

While some components of the Tangent Kernel definition

are extended from Neural Tangent Kernel (NTK) definition

and theory, these two types of kernels are different in their

purpose and regime. Tangent Kernels are defined for finite-

width neural networks, while NTK is defined and applies

to the scenario of infinite-width neural networks [3]. The

key difference is that Tangent Kernels evolve during back-

propagation in finite-width neural networks, whereas NTK

kernels are deterministic after initialization [47].

3.3. Tangent Kernel Loss for Incremental Learning

In this section, we transfer previous representations by

regulating the tangent kernel in the new model with a novel

Gradient Tangent Kernel (GTK) loss.

In Incremental Learning, training the first task (T = 1)

is similar to conventional learning. We feed the data from

Task 1 to train a new model, without the need for tangent

kernel loss.

In T -th incremental learning stage (T ≥ 2), the current

model FT is supposed to address a new task while preserv-

ing previously learned knowledge representations. We thus

proceed and customize Eq. 4. We show that training the

T -th model with the assistance of the previous (T−1)-th

model gives rise to the minimization of cosine distance in a

Gradient Tangent Kernel (GTK) loss. We explain this more

rigorously below.

Consider the training of T -th model FT with a previ-

ously fully trained model FT−1. We aim to minimize the

cosine distance between training outputs of FT−1 and FT

with the same training data points x to transfer the learned

representations of FT−1 to FT in Eq. 5:

min
θT

(1− 〈FT−1(θT−1,x), FT (θT ,x)〉
‖FT−1(θT−1,x)‖‖FT (θT ,x)‖) ), (5)
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Figure 2. Illustration of Tangent Kernel Incremental Learning approach. (φT−1, θT−1) represent the parameters from the previous generic

model and (φT , θT ) represent the parameters of the current generic model. In the mini-batch, we separate training steps into different tasks.

1) For the previous tasks (task i, i = 1, 2, 3, ...T − 1), we optimize T -th stage task-specific models FT , task i with Binary Cross-Entropy

(BCE) loss (brown), Knowledge Distillation loss (pink), and the Gradient Tangent Kernel loss (red) with exemplars from a fixed memory;

2) For the current task (task T ), only employs BCE loss to train FT , task T (brown). (FE: Feature extractor layers, FC: Fully Connected

layers)

denoting the cosine distance minimization, Eq. 5, as

min
θT

(FT−1(θT−1,x), FT (θT ,x)). (6)

Then we plug Eq. 4 into Eq. 5, and obtain Eq. 7:

min
θT

(KT (x,x)
TKT (x,x)

−1y,

KT−1(x,x)
TKT−1(x,x)

−1y), (7)

where the tangent kernel KT−1 and the Jacobian matrix
∂F (x,θT−1)

∂θ from the previous model FT−1 are constant.

The only variable is the tangent kernel function KT (x,x)
from the current model. To further simply Eq. 7, We note

that the Jacobian matrix
∂F (x,θT )

∂θ solely determines the tan-

gent kernel KT (x,x) and obtain Eq. 9, i.e., minimiza-

tion of the cosine distance between two Jacobian matri-

ces
∂F (x,θT−1)

∂θ and
∂F (x,θT )

∂θ .

min
θT

(KT−1(x,x),KT (x,x)) (8)

⇒ min
θT

(
∂FT−1(x,θT−1)

∂θ
,
∂FT (x,θT )

∂θ
), (9)

Since generic representations are already learned in

FT−1, there is a need to avoid drastic changes in feature

extractor layers FT (φT ,x), where φT is the parameters in

feature layers only. To achieve that, we leverage Eq. 9 and

propose a novel Gradient Tangent Kernel loss (GTK loss)

on feature layers to transfer representations. We select the

cosine similarity loss since recent NTK work shows that the

cosine loss is an effective way to extract feature representa-

tions [48]. Then, we define the kernel objective function as

follows

min
φ

E(x,y)[LGTK(1− 〈GT , GT−1〉
‖GT ‖‖GT−1‖ )], (10)

where GT−1 = ∂FT−1(x,φT−1)
∂φ and GT = ∂FT (x,φT )

∂φ ,

which are Gradients (G) of the last feature layer from the

previous and current model, respectively.

3.4. Tangent Kernel Incremental Learning Ap-
proach

Incremental learning progressively learns N tasks with

m classes per task. From notations defined in Section 3.1,

we consider FT (θT ) as T -th stage generic model with fea-

ture extractor layers and fully connected layers. Training

for the first task (T = 1) is straightforward. We initialize

the parameters of the generic model (θ1) with Gaussian dis-

tribution and optimize the model with D1 with BCE classi-

fication loss.

The tangent kernel optimization approach (see Algo-

rithm 1) is used to train subsequent T -th tasks (T ∈ [2, N ]).
In particular, we collect current data DT and memory

buffer MT as the training data and divide them into mul-

tiple large batches. Our approach combines Task-Specific
Model Training and Generic Model Update as a single

step, and then, repeats the step for all batches. Task-Specific
Model Training aims to preserve learned representations

from the previous generic model. We separate different

task images from one large batch into T mini-batches and

feed them to T task-specific models only once. Generic
Model Update aims to find an unbiased updating direction

for all T tasks. To accomplish this, T task-specific models

are collapsed into a single generic model that can accommo-

date T tasks. We describe the training procedures in detail

below.

Task-Specific Model Training: When a new task is

considered for the T -th incremental learning stage, TKIL

first trains T task-specific models. Each task-specific model

FT,task i(i ≤ T ) is initialized with parameters of the current

generic model (θT ). One large batch BT from MT ∪DT is

being separated into different tasks as T mini-batches. For

each task i, an i-th task-specific model FT,task i is created

and is updated only with i-th mini-batch that corresponds

to this task. To transfer learned representations from the

previous generic model to task-specific models, we employ
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different losses as follows.

(1) For task-specific models representing previous tasks

(FT,task i, i ∈ [1, T −1]), we use three losses: Classification,

Knowledge Distillation (KD) and GTK. Classification loss

minimizes the difference between predicted logits F (x) and

labels y. KD Loss penalizes the change with respect to

the output from the previous generic model as a BCE loss.

GTK loss rectifies the gradients and avoids divergence from

the learned feature representations. Thus, the overall objec-

tive function Lall contains three loss functions, expressed as

(also described in Algorithm 1, lines 8-12):

LClass = L(FT , task i(x),y) (11)

LKD = L(FT−1(x), FT , task i(x)) (12)

LGTK = L(GT , task i, GT−1) (13)

min
θ

E(x,y)[αLClass + βLKD + γLGTK] (14)

Where α, β and γ are hyperparameters.

(2) For the T -th task-specific model, FT,task T, we employ

the classification loss only as at the first time that this task

is being learned. The loss is expressed as (also shown in

Algorithm 1, lines 14-15)

min
θ

E(x,y)[L(FT , task T (x),y)]. (15)

When sequentially introducing more tasks, imbalances in

training data points result in a larger mini-batch size for the

current task model FT,task T (e.g., 512 samples) compared

to other tasks (e.g., 128 samples). Since TKIL updates the

task parameters separately, it inherently overcomes the bias

of task imbalances.

Generic Model Update: At the end of batch training,

the trained task-specific models are collapsed to a single

generic model FT , which represents the average direction

of tasks [39, 46]. Since dynamic expansion methods show

that each task-specific model represents one gradient updat-

ing direction, we obtain the generic model by computing the

average of these updates [42] (also shown in Algorithm 1,

line 19)

FT =
1

T

T∑
i

FT,task i. (16)

Due to imbalanced distribution of data between the cur-

rent data and the memory buffer, training a fixed model

becomes more biased towards the current task, e.g., BIC

and SS-IL train mixed samples from the memory buffer and

the current data together [1, 51]. Dynamic expansion ap-

proaches train separate task parameters to mitigate over-

fits to the current task (e.g., iTAML, KD), but they fail

to maintain learned representations in the previous generic

model [42, 17]. TKIL trains task models and leverages GTK

loss to avoid dramatic changes in feature representations.

Therefore, as the training progresses, the generic model is

Algorithm 1 TKIL Algorithm in one batch

Require: Dataset: DT , Memory: MT , batch BT ⊆ {DT∪
MT }, Hyperparameters: α, β, γ

1: Initialize the current Model (For the first mini-batch):

2: FT−1(φT−1, θT−1) −→ FT (φT , θT )
3: Task-Specific Model Training:
4: Separate BT into T mini-batch

5: for i = 1, 2, 3, ..T do
6: FT −→ FT,task i

7: if i < T then
8: LClass =

∑task i
j LBCE(FT,task i(xj),yj)

9: LKD =
∑task i

j LBCE(FT,task i(xj), FT−1(xj))

10: LGTK =
∑task i

j LBCE(GT,task i(xj), GT−1(xj))
11: Lall = αLClass + βLKD + γLGTK

12: Backpropagation for FT,task i

13: else if i = T then
14: LClass =

∑task T
j LBCE(FT,task T (xj),yj)

15: Backpropagation for FT,task T

16: end if
17: end for
18: Generic Model Update:
19: FT ←− 1

T

∑T
i FT,task i

enhanced by learning new tasks while simultaneously pre-

serving previous representations. The complementary cal-

culation of the gradients for different methods appears in

Supplementary.

4. Experiments and Results

4.1. Datasets, Implementation Details, and Evalua-
tions

Datasets. We conduct experiments on five bench-

marks, e.g., CIFAR-100 [23], ImageNet-100 and ImageNet-

1K [45] with different incremental learning scenarios.

CIFAR-100 dataset contains 50, 000 training images and

10, 000 testing images. ImageNet-1k dataset consists of

1, 281, 167 training images and 50, 000 images for valida-

tion across 1, 000 classes. ImageNet-100 dataset includes

100 randomly sampled classes from ImageNet-1k.

Incremental Learning Settings. We select benchmarks

used by existing Class IL works [43, 42, 17, 11]. We em-

ploy a ResNet-34 as the generic model for ImageNet-1k and

a ResNet-18 for other benchmarks. For all datasets, we

apply several optimizers (SGD, Adam, and RAdam [27],

experiments included in Supplementary) and experimen-

tally select RAdam with an initial learning rate of 0.01

for 70 epochs. The learning rate is divided by 10 after

every 20 epochs. The memory buffer is fixed to 2k for

MNIST, SVHN, CIFAR-100, and ImageNet-100, and 20K

for ImageNet-1K. To follow the online continual learning

3533



Table 1. Performance comparison between TKIL and other SOTA methods on CIFAR-100 (left-half) and ImageNet-100 (right-half)

Methods CIFAR-100, Memory size M = 2k ImageNet-100, Memory size M = 2k

Stages 25 10 5 5 10 25 10 5 5 10

New classes per stage 2 5 10 20 10 2 5 10 20 10

Joint Training (Upper Bound) 86.3% 84.6% 81.3% 76.8%

iCaRL [43] 50.6% 53.8% 58.1% 57.2% 52.6% 54.6% 60.8% 65.6% 60.1% 59.6%

iTAML [42] 55.9% 74.9% 75.4% 74.5% 74.6% 64.7% 69.5% 71.9% 69.3% 70.4%

RMM [29] 59.5% 60.9% 69.5% 62.7% 60.6% 68.8% 71.4% 73.8% 70.5% 69.4%

SS-IL [1] 58.0% 71.5% 75.1% 74.8% 71.1% 69.5% 71.7% 73.5% 68.8% 67.6%

Mnemonics [30] 61.0% 62.3% 64.1% 63.3% 62.2% 69.7% 71.4% 72.6% 70.6% 70.4%

PODNet [11] 62.7% 64.1% 64.5% 58.9% 59.7% 68.3% 74.3% 75.6% 72.5% 71.5%

AFC [17] 64.1% 64.3% 65.9% 64.9% 64.4% 73.4% 75.8% 75.9% 72.9% 71.7%

TKIL (Ours) 73.5% 80.5% 83.6% 80.6% 82.5% 77.3% 78.5% 79.7% 75.7% 75.3%

settings, we feed data from the memory buffer and the

current task only once to train the model in each epoch

[32, 40]. The mini-batch size is set to 128 for CIFAR-100

and 64 for ImageNet. Our inference pipeline records task

predictions first and then finetunes the generic model to the

corresponding task model to perform the classification, see

Supplementary and [42].

TKIL Implementation Details. To avoid a linear in-

crease of the training cost at T -th stage, we train the first

task model, add its weights to a temporary generic model,

and then delete this model to free up the memory. After

repeatedly training and adding weights of all T task mod-

els to the new generic model, the total number of weights

is divided by T to obtain the final generic model (based on

Eq. 16). In Inference, TKIL fine-tunes each of the task mod-

els once, then TKIL infers the task using the generic model

and the class using the corresponding task model. There-

fore, the total computational expense includes fine-tuning,

inferring tasks, and inferring classes and is comparable to

other methods which include fine-tuning only [35, 42]. The

efficiency of fine-tuning depends on the memory size (#

samples in memory) and the number of updates.

Evaluation. Since TKIL is designed for a memory-

based incremental learning method that leverages GTK

loss as a forgetting constraint, we used recent memory-

based approaches as baseline benchmarks in our main re-

sults [42, 30, 1, 11, 17]. Additionally, we conducted abla-

tion studies to evaluate TKIL’s ability to address class im-

balances, including comparisons with methods specifically

designed to tackle class imbalances [42, 46, 7]. The upper
bound accuracy in incremental learning is to train without

increments a generic model with a standard loss (MSE) on

the full dataset, denoted as joint training. We implemented

existing methods based on the publicly available official

code and trained all models on 2080Ti GPUs with a par-

allel computation mode [42, 16]. We report the accuracy at

the last incremental stage on all learned classes.

4.2. Results: CIFAR-100, ImageNet-100, MNIST,
and SVHN

We test TKIL on various incremental learning scenar-

ios and compare it with existing methods on CIFAR-100

and ImageNet-100 in Table 1. TKIL achieves more opti-

mal accuracy than other compared methods in all scenar-

ios. The margin in the accuracy of TKIL vs. existing ap-

proaches is particularly evident in large tasks (stages) sce-

narios, and is consistent with the intent of TKIL to bal-

ance performance across tasks and classes. For example,

on CIFAR-100 with 25 incremental stages, TKIL achieves

an improvement of 9.4% in accuracy vs. the second-best

method, AFC. In such a scenario, the accuracy of the exist-

ing state-of-the-art method, iTAML, drops to 55.9% from

77.6% due to unstable prediction of tasks, where AFC be-

comes leading method among existing methods with 64.1%.

In Table 2, we conduct similar experiments on MNIST and

SVHN. TKIL achieves 97% or higher accuracy on these

benchmarks when learning 2 classes each time. We also

observe that the accuracy of TKIL is approaching the up-

per bound in both two datasets (76% for ImageNet-100 and

85% for CIFAR-100). As a result, TKIL translates to more

optimal accuracy for multi-class problems.

Table 2. Performance comparison between the TKIL and other

state-of-the-art methods on MNIST and SVHN (5 stages, 2 new

classes per stage, Memory size = 2k)

Methods MNIST SVHN

EWC [21] 19.80% 18.21%

RPS-net [41] 96.16% 88.91%

iTAML [42] 97.15% 92.93%

TKIL (Ours) 97.91% (+0.76%) 97.51% (+5.58%)
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Table 3. Performance comparison between TKIL and other SOTA

methods on ImageNet-1k. Memory size: M, Upper Bound: Joint

Training

Methods ImageNet-1k ImageNet-1k
M = 10k M = 20k M = 20k

Stages 10 5 10

New classes per Stages 100 200 100

Joint Training (ResNet-18) 67.9%

Joint Training (ResNet-34) 71.2%

iCaRL (ResNet-34) [43] 44.8% 51.5% 46.8%

BIC (ResNet-34) [51] 48.5% 62.6% 58.7%

Mnemonics (ResNet-34) [30] 48.6% 64.5% 63.5%

PODNet (ResNet-34) [11] 48.8% 64.1% 62.0%

SS-IL (ResNet-18) [1] 57.3% 59.6% 59.4%

SS-IL (ResNet-34) [1] 64.5% 65.5% 65.2%

TKIL (ResNet-18) 64.9% 66.9% 65.7%
TKIL (ResNet-34) 65.6% 68.9% 67.9%

Figure 3. Top: Task accuracy over seen classes on CIFAR-100,

with 5, 10, and 20 stages from left to right; bottom: classifica-

tion accuracy over seen classes on CIFAR-100, with 5, 10, and 20

stages from left to right. TKIL consistently outperforms other ex-

isting methods across different settings.

4.3. Results: ImageNet-1k

Table 3 shows the results of CIL algorithms and TKIL on

a large-scale dataset with different memory settings. Our

results indicate that TKIL is the most accurate method in

all settings. The second accurate baseline, SS-IL, is lower

by about 5% when applied to a compact model, ResNet-18.

This gap indicates that the forgetting constraints strategies

fail to maintain the generalization in feature layers. Since

SS-IL trains a fixed model and only tunes classification lay-

ers for all tasks, the generic parameters in feature extractor

layers are not learned. We reaffirm it with more compar-

isons in the ablation study, which shows that TKIL is more

robust than SS-IL and outperforms SS-IL in all incremental

learning settings in CIFAR-100 and ImageNet-100.

4.4. Analysis and Ablation Studies

Training Cost Analysis. TKIL training complexity is

similar to other memory-based IL methods. In each epoch,

images from the memory buffer and from the current data

are used once. Specifically, we collect a large batch and feed

different task images as mini-batches (e.g., 128 samples in

one mini-batch) to different task models. Due to computa-

tional limitations, when working with extremely large mini-

batches, we split them. Non-task training methods (e.g., SS-

IL, BIC) mix the current data and memory buffer and feed

them to a single model with multiple small batches (e.g.,

128 samples). Therefore, the total training time in TKIL

and other baselines is total number of images/ batch size
∗ processing time of one batch. TKIL Memory usage is

constant in each T -th (T > 1) stage and TKIL does not

accumulate memory storage. In training, we store 3 mod-

els, the previous generic model, the current task model, and

the new generic model. For example, when ResNet-18 is

used as the generic model, TKIL maximum memory usage

is 12.8M × 3 ≈ 38M compared to 12.8M × 2 ≈ 26M for

other baselines.

TKIL VS. Dynamic Expansion Approaches. In Fig-

ure 3, we compare both tasks and classes accuracy of TKIL

with baseline (iCaRL) and dynamic expansion approaches

(KD, iTAML) when tasks are added incrementally, i.e., 5,

10, or 20 classes are added each time on the CIFAR-100

benchmark. iTAML tunes task-specific models with a clas-

sification loss only, while KD adds an extra knowledge dis-

tillation loss to transfer representations on feature extrac-

tor layers. In these experiments, TKIL consistently outper-

forms the compared methods by a large margin (e.g., 82%

vs. 74% in 20 stages scenario). While KD slightly improves

the accuracy, the divergence among task models still exists,

making it difficult to consolidate into an optimum generic

model. TKIL, however, maintains learned representations

and does not show significant events of collapse in the ac-

curacy curve.

TKIL VS. Visual Domain Decathlon (VDD). In addi-

tion to demonstrating the efficiency of TKIL on multiple-

domain dataset learning, we conducted experiments to learn

three domains (CIFAR, ImageNet, and MNIST) sequen-

tially from scratch in Table 4. VDD challenge focuses on

multiple-domain dataset learning but does not address se-

quential incoming tasks without task (domain) categories as

TKIL does [12, 13]. For example, for a scenario with two

tasks (CIFAR and ImageNet), during inference, if the task

category is not provided, VDD methods do not feed correct

samples to the CIFAR or ImageNet task models. In con-

trast, TKIL automatically predicts task categories and feeds

samples to the corresponding task models.

Sample Imbalance Experiments. In Table 5, we com-

pare TKIL and SS-IL with several methods that address

sample imbalance in continual learning [46, 9, 7]. Table 5
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Table 4. TKIL on Visual Domain Decathlon benchmarks

MNIST CIFAR ImageNet

VDD [12, 13] 96.4%±1.3% 86.3%±1.2% 84.3%±1.5%

TKIL 98.4%±0.4% 92.4%±0.5% 87.4%±0.5%

Table 5. Ablation study of Sample Imbalanced Experiments

(MNIST: 5 stages, CIFAR-100:10 stages, ImageNet-1k: 10 stages)

Methods MNIST CIFAR-100 ImageNet-1k

Mean ↑ σ ↓ Mean ↑ σ ↓ Mean ↑ σ ↓
Layerwise [46] 84.3% 0.92 71.3% 2.45 39.5% 1.96

OCL [9] 85.4% 0.73 60.4% 1.51 41.4% 1.82

Subspaces [7] 86.6% 0.97 64.3% 3.14 53.6% 3.37

SS-IL [1] 94.6% 1.23 75.1% 3.45 59.4 % 4.36

TKIL (Ours) 97.9% 0.74 82.5% 1.34 65.7% 1.89

Table 6. Ablation study on large task setting. CIFAR dataset, 50

stages, 1 new class per stage, memory size = 2k.

iTAML [42] SS-IL [1] PODNet [11] AFC [17] TKIL
43.5% 53.4 % 57.8% 60.8% 67.9%

shows that most methods (e.g., OCL) maintain a low level

of variation for imbalanced data. However, the accuracy of

these methods is limited when applied to ImageNet. SS-IL

achieves similar accuracy as TKIL, but the deviation across

different tasks is larger – almost double than TKIL. This

indicates that SS-IL struggles to address imbalanced data.

In summary, TKIL outperforms other methods by showing

improvements in accuracy and a smaller standard deviation

(σ) across all tasks.

Scalability to Large T . In Table 6, we experiment with a

more challenging scenario of a large task incremental learn-

ing setting. When T = 50, the closest comparable dy-

namic expansion method, SS-IL, experiences a significant

decrease in accuracy due to attaining non-optimal represen-

tations. In this case as in other cases, TKIL outperforms

other comparable baselines and approaches the upper opti-

mal bound.

Qualitative Results. In Figure 4, we illustrate t-SNE vi-

sualization of features representation with MNIST dataset.

The feature representations are taken from the final layer

of the feature extractor and are projected into a 2D space.

We find that the features without GTK (top) are not well

clustered when adding more stages, while representations

obtained with GTK loss (bottom) are more efficiently clus-

tered, as indicated by the lower Davies-Bouldin Index. The

possible reason for the successful clustering in TKIL could

be that GTK Loss reduces divergence between task mod-

els. Despite the utilization of dynamic expansions in the

non-GTK approach, a high level of variation among task-

specific models results in an overfitted generic model, espe-

cially when scaling up to more stages. In this scenario, the

non-GTK approach separates only the newly added classes

(i.e., the brown class), but fails to classify the previously

learned tasks (i.e., the navy blue class). Therefore, we ob-

serve that GTK loss has a more robust effect on preserving

Figure 4. T-SNE visualization (colors indicate classes) of feature

representations from the last feature extractor on MNIST with 5

Tasks and 2 new classes introduced in each stage. Represen-
tations by GTK (bottom) are clustered more efficiently (sup-
ported by Davies-Bouldin Index (DBI - lower better)) than rep-

resentations that do not use GTK (top).

learned representations compared to conventional methods

such as KD or MSE loss.

Ablation Study for Inference. Table 7 demonstrates

the accuracy as memory size increases and shows that im-

proves with memory size expansion and also that more up-

dates with at least 20 memory samples are needed. This

leads to estimate that TKIL is able to fine-tune each of the

task models once with 20 samples from memory during in-

ference.

Table 7. Ablation Study for Inference (CIFAR-100, 10 tasks)

# Memory Samples 5 20 50 100

1 Update 66.4%±2.4% 82.5%±0.3% 83.3%±0.3% 84.1%±0.2%

2 Updates 67.1%±2.1% 83.4%±0.3% 83.9%±0.3% 84.5%±0.2%

5 Updates 68.2%±1.8% 84.1%±0.3% 84.5%±0.3% 85.3%±0.2%

5. Conclusion
We propose a tangent kernel optimization approach for

class balanced incremental learning, TKIL, that addresses

imbalances in memory-based incremental learning. Specif-

ically, we formulated gradient tangent kernels loss over fea-

ture layers to learn balanced representations for the generic

model. The generic model is able to execute accurate task

predictions and automatically adapt to the corresponding

task during inference. Our experiments on multiple bench-

marks show that TKIL outperforms existing state-of-the-art

methods in various incremental learning settings.
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