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Abstract

In most works on deep incremental learning research, it
is assumed that novel samples are pre-identified for neural
network retraining. However, practical deep classifiers of-
ten misidentify these samples, leading to erroneous predic-
tions. Such misclassifications can degrade model perfor-
mance. Techniques like open set recognition offer a means
to detect these novel samples, representing a significant
area in the machine learning domain.

In this paper, we introduce a deep class-incremental
learning framework integrated with open set recognition.
Our approach refines class-incrementally learned features
to adapt them for distance-based open set recognition. Ex-
perimental results validate that our method outperforms
state-of-the-art incremental learning techniques and ex-
hibits superior performance in open set recognition com-
pared to baseline methods.

1. Introduction

Deep learning-based classification, underpinning ad-

vancements in areas like object recognition [48] and sen-

timent analysis [11], heavily relies on ample pre-collected

data. In realistic scenarios, accumulating extensive train-

ing data quickly is often infeasible due to episodic and

unpredictable data emergence. Thus, the appeal of deep

incremental learning, which assimilates new data while

retaining prior knowledge [31, 6, 40, 47]. This mode

of learning eschews retraining from scratch, eliminating

the need for complete datasets during successive training
sessions. Among various continual learning paradigms,

class-incremental learning, wherein models assimilate new

classes and retain information about observed ones, is

paramount.

A notable oversight in the realm of class-incremental

learning is the prerequisite identification of novel samples

or open sets. While numerous works have addressed the

Open Set Recognition (OSR) challenge [2, 10, 13, 18, 26,

36, 35], only a handful have sought an integrative frame-

work combining OSR and incremental learning. While [20]

charted this terrain within object detection, their approach

was restrictive in scope and application. It’s imperative to

establish a singular model adept at OSR that also evolves

with new classes.

Our investigation aligns closely with task-free contin-

ual learning [1, 19, 42], a domain where the onus is on

innate model mechanisms to discern data drifts and insti-

gate model updates. Notably, these works diverge in their

handling of new class identification and rarely evaluate this

performance aspect. Our proposition centers on a unified

model employing distillation-based continual learning.

In this work, we meld class-incremental learning with

OSR considerations, leaning on distance-based OSR and

rehearsal-infused continual learning (see 2.1 and 2.2). The

central challenge is maintaining discernible inlier and out-

lier features post-training. We discern that feature spaces

undergo distortions during incremental training, leading to

intertwined inlier and outlier features—a probable cause of

the catastrophic forgetting phenomenon.

Response-based knowledge distillation [16], pivotal in

staving off catastrophic forgetting in deep incremental

learning, often bypasses feature relation transfer, resulting

in distortions. We counter this by leveraging relation-based

knowledge distillation (RKD) and supplement with super-

vised contrastive learning (SupCon) [21] to bolster class-

specific feature separation. Unlike the method in [7], our

focus is a holistic framework for OSR and class-incremental

learning, not merely an incremental learning strategy. Fu-

ture explorations might traverse other OSR and incremental

learning intersections.

Our primary contributions are:

• Pinpointing feature distortion as an aftermath of incre-

mental learning.

• Crafting a cohesive framework for open set recognition

and class-incremental learning.

• Empirical validation of our approach on public and

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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continual learning benchmarks, achieving commend-

able results for both facets.

2. Background

Since our work relates to both open set recognition and

class-incremental learning, we will review the main ap-

proaches of these two domains in this section. Meanwhile,

our method is closely connected to knowledge distillation.

We will therefore briefly introduce it as well.

2.1. Open Set Recognition

Open set recognition is an everlasting topic for super-

vised classifiers while the openness of the data is usu-

ally unknown and the novel classes can always appear

and should be detected. For deep neural networks, there

are mainly three categories of OSR methods, namely

distance-based [2][10][13][18][26][36][41][8], generative

model-based [37][5][30][43], and background class-based

[15][44][12].

Bendale et al. have first proposed OpenMax that mod-

els the Euclidean distances between the softmax outputs

of each data sample and their closest class centers using

Weibull distribution [2]. The outliers are then discrimi-

nated by thresholding the inference probability. Moreover,

Dhamija et al. proposed the Objectosphere loss [10] and

Hassen et al. presented their ii-loss [13] to learn features

that are better clustered. Miller et al. proposed the Class
Anchor Clustering loss that enforces the inlier features to

be close to each other [26]. There are more works introduc-

ing similar methods, such as [36] and [35].

Generative model-based methods directly model the in-

liers. In [37], variational autoencoders are trained using in-

liers to recognize outliers. Analogously, Cao et al. applied

variational autoencoders to learn the latent features for in-

liers that are used for both inlier class clustering and outlier

detection [5]. Perera et al. proposed to augment the inlier

samples with GANs to gain more informative features that

can be more discriminative from the outliers [30].

Background class-based methods are straightforward in

that one extra outlier class output is added to the original

classifiers and the entire models are trained in a supervised

way. Yu et al. proposed to generate pseudo outliers using

GANs inspired by the principle of adversarial training [44].

The generated pseudo samples are then utilized altogether

with the inliers to train a (C+1) classifier (C is the number

of inlier classes). Analogously, Ge et al. trained a (C +
1) classifier with synthetic outliers to calibrate the feature

distances in OpenMax [12]. The drawback of these methods

lies in that the open set classes are infinite and cannot be

completely collected, especially the ”unknown unknowns”.

2.2. Class-Incremental Learning

The challenge behind deep incremental learning is catas-
trophic forgetting that the models will lose the capabil-

ity for observed tasks after the new training session. To

prevent catastrophic forgetting, there are two main cate-

gories of class-incremental learning approaches, namely

parameter-based methods [23][45] and distillation-based

methods [31][6][17][25].

Parameter-based methods require no stored history ex-

emplars and apply constraints directly on the model param-

eters. Elastic Weight Consolidation (EWC) [23] proposed

to constrain the weights in the region of low-performance

degradation for observed classes. Synaptic Intelligence (SI)

[45] regulates the weights during new training sessions to

keep the important weights from significant changes.

The distillation-based methods apply knowledge distil-

lation (see 2.3) in new training sessions to directly trans-

fer the knowledge learned by old models (i.e. the teacher)

to the new models (i.e. the student). A portion of ob-

served data (i.e., exemplars) should be stored in these meth-

ods. Learning without Forgetting (LwF) [25] has first ap-

plied response-based knowledge distillation in incremental

learning. Incremental classifier and Representation Learn-
ing (iCaRL) [31] adapts a similar knowledge distillation ap-

proach but classifies the test samples with nearest-mean-of-
exemplars approach instead of the final softmax layer be-

cause of the class imbalance.

2.3. Knowledge Distillation

In the context of deep learning, knowledge distillation

(KD) was first known in [16] and [33] that enables to trans-

fer the knowledge learned by a larger model (teacher) to a

smaller one (student). There are three types of knowledge

that can be transferred, namely response-based knowledge,

feature-based knowledge, and relation-based knowledge.

Response-based knowledge distillation is to directly

align the predictions between students and teachers. The

divergence between the logit layers of teachers and students

is encouraged to be minimized. In [16], the logit layer of

the teacher network is adapted as soft targets when comput-

ing the softmax loss so that the student can be expected to

give the same outputs as the teacher.

In feature-based knowledge distillation, not only the last

logit layer but also the intermediate layers of the teachers

are utilized to transfer knowledge. The students can there-

fore output similar features as the teachers. In [33], the neu-

ral activations of the first layers in the teacher model are

directly used to match the student model. Kim et. al. pro-

posed to extract the factor maps of teachers’ and students’

layers using convolutional modules and let the student fac-

tor mimic the teacher factor [22]. Similarly, Passban et. al.

proposed a combinatorial technique that can merge the fea-

tures of multiple layers in the teacher model using the atten-
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tion mechanism [29].

Unlike the previous two categories that align the layer

outputs between the teachers and students, relation-based

knowledge distillation tends to preserve the relation-

ships among the features in different layers or instances

[28][39][38]. Park et. al. proposed the relational knowl-

edge distillation that transfers the instance relations be-

tween teachers and students [28]. Tung et. al. proposed the

similarity-preserving knowledge distillation, in which the

similarities between the instance features can be transferred

to the students [39].

3. Problem Statement
The goal of this study is to enable neural networks to

learn representations that are suitable for open set recog-

nition under class-incremental learning settings. Distance-

based OSR methods are often based on two assumptions

(see Assumption 1 and 2 below) [26][13][41][8], which

are from the Smoothness Assumption [9] stating that if two
points are near, their corresponding output values can-
not be arbitrarily far from each other. The problem is

then converted to how to enable the learned representations

to still hold these two assumptions after repeating class-

incremental training.

Assumption 1 Data representations of the same class
should be close to each other.

Assumption 2 Data representations of different classes
should be pushed apart.

The metrics intra spread, Sintra, in Equ. (1), and inter
spread, Sinter, in Equ. (2) are introduced in [13] to eval-

uate how well the learned representations follow the above

two assumptions respectively. In Equ. (1) and (2) and the

following text, μ represents the euclidean centers of each

class and zi are the instance representations. The number

of inlier classes is denoted using K, and Cj is the number

of instances of each class. According to Assumption 1 and

2, Sinter should be as large as possible whereas Sintra is

supposed to be small. However, the distances are of differ-

ent scales in different models and are hard to be compared

directly. We, therefore, propose to fuse these two metrics

using their ratio, i.e., Rs = Sintra

Sinter
. It is straightforward to

understand that the smaller the Rs is, the more suitable the

feature is for OSR.

Sintra =
1

N

K∑

j=1

Cj∑

i=1

‖�μi − �zi‖22 (1)

Sinter = min
1≤m≤K

m+1≤n≤K

‖ �μm − �μn‖22 (2)

It can be found from Tab. 1 that Rs in incremental

learning settings are much larger than in normal training

(line Joint in the table). We believe it is because the fea-

ture relations between the data samples are not preserved

when the models are updated incrementally. For incre-

mental learning methods based on rehearsal and regular-

ization, such as iCaRL, the knowledge learned in previ-

ous sessions is preserved mainly through response-based

knowledge distillation. As stated in [28], response-based

knowledge distillation cannot transfer data-sample relations

between teachers and students. Therefore, Assumption 1

and 2 can be easily broken with these incremental learn-

ing methods. For regularization-based incremental learning

methods, such as EWC and SI, the critical weights for ob-

served classes are constrained to change during retraining

to prevent catastrophic forgetting. In these approaches, the

newly optimized models have achieved balances between

the loss functions of old and new tasks. But they ignored

maintaining the relations between the features as well.

In order to prevent such a phenomenon, the main re-

search question in this study is to search for an incremental

learning method, with which the above two assumptions for

data representations can still be maintained after repeating

incremental training. And the newly learned representations

are hence adaptable for OSR.

The problem we address in this paper can be formulated

as follows: the labeled observed training data is denoted

using Dobser = (Xobser,Yobser) = {xi, yi} and the la-

bel yi ∈ Cobser = [0, 1, ..., cobser − 1]. A deep classi-

fier F(xi) → ŷi is trained using Dobser. ŷi denotes the

predictions and F(xi) = (H ◦ E)(xi), in which E and

H are the deep encoder and classification header respec-

tively. zi = E(xi) represents the feature maps outputted

by the deep encoder. When the new classes Cnew appear,

then Dobser = Dobser ∪ Dnew, cobser = cobser + cnew
and F(·),E(·) and H(·) will be updated using incremen-

tal learning approach I so that F′(·) = I(F(·)), H′(·) =
I(H(·)) and E′(·) = I(E(·)). We intend to optimize I in

order to let Rs over E′(xobser) be as small as possible.

4. Methods
This study is aimed to propose a deep class-incremental

learning method in which the learned features can fulfill

Assumption 1 and 2 for distance-based open set recogni-

tion. As discussed in Sec. 2 and 3, deep incremental learn-

ing using response-based knowledge distillation loss cannot

transfer the instance relations to the new models and there-

fore fails the OSR methods. Hence, we apply relation-based

knowledge distillation in this research. Furthermore, com-

pared with cross-entropy loss, which is the most applied

training strategy in classification problems, supervised con-

trastive learning is capable of learning features that satisfy

Assumption 1 and 2 better as we will prove in the follow-
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#Classes 10 (base) 20 30 40 50 60 70 80 90 100

Joint 2.54 3.38 3.76 3.95 4.06 3.98 4.07 3.65 3.85 3.82

SI [45] 2.54 5.56 6.64 6.61 6.82 7.42 7.33 7.25 9.83 7.25

EWC [23] 2.54 11.70 10.14 9.83 10.64 13.48 14.96 15.17 13.79 12.28

iCaRL [31] 2.54 3.41 3.40 6.87 5.70 5.98 6.06 6.11 7.05 7.15

LwF [25] 2.54 5.11 4.74 6.41 6.66 6.05 6.29 5.52 6.37 7.44

Table 1: Rs for joint retraining and incremental training using methods in [45][23][31][25] on Cifar-100 dataset [24]. The

dataset is split into 10 tasks with 10 novel classes each. The base 10-class models are the same for all methods. All models

are trained using the best configurations given in [4].

ing text. In summary, the deep incremental learning ap-

proach proposed in this study is based on supervised con-

trastive learning and relation-based knowledge distillation.

We name it OpenIncrement. The loss function is in Equ.

(3), in whichLSupCon stands for supervised contrastive loss

and Ldistill represents the distillation loss. α is the hyper-

parameter to balance both.

Ltotal = α ∗ LSupCon + (1− α) ∗ Ldis (3)

4.1. Supervised Contrastive Learning

In contrastive learning, the samples from the same class

(positive sets) are pushed closer in feature space and vice

versa. Normally, contrastive learning is applied in a self-

supervised fashion, in which the positive sets are formed

using data augmentation or co-occurrence. Khosla et al.

developed contrastive learning to a supervised manner so

that the labels can guide the selection of positive and neg-

ative sets and have gained higher accuracy in image recog-

nition tasks than cross-entropy loss [21]. The supervised

contrastive loss function is shown in Equ. (4), in which zi
and zp are positive feature pairs belonging to positive set

P (i), and A(i) stands for the negative sets for zi. τ is the

temperature scaling factor that can tune the discrimination

between the positive and negative sets.

LSupCon = −
∑

i∈I

1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(4)

In order to prove its superiority for satisfying Assump-

tion 1 and 2 as cross entropy loss, we compare their Rs

through image recognition task on Cifar-100 dataset [24]. It

can be found from Fig. 2 that the Rs in the models trained

using supervised contrastive loss are much lower than those

trained using cross entropy loss no matter how many classes

are. Meanwhile, as reported in [46], the cross entropy loss

has less capability in reducing intra-class feature scattering

than contrastive learning that can increase Sintra. Consider-

ing all the above, we adopt supervised contrastive learning

for our approach.

4.2. Relation-based Knowledge Distillation

As introduced above, relation-based knowledge distilla-

tion is better for preserving feature relations. Inspired by

[28], we utilize a temporal angle-wise and distance-wise

distillation method in this paper to transfer the structural

knowledge between the models before and after incremen-

tal training.

The angle-wise similarity, ψA, is illustrated in Equ.

(5), in which zi, zj , zk represent a triplet of features.

Let ψA(z
t−1
i , zt−1

j , zt−1
k ) and ψA(z

t
i, z

t
j , z

t
k) represent the

angle-wise feature similarities given by the models in train-

ing session t−1 and t respectively (see Equ. (5)), the tempo-

ral angle-wise distillation loss is in Equ. (6). N stands for

the number of exemplars (see 4.3.1 for exemplar manage-

ment). The angle-wise distillation loss is finally composed

using the sum over the L2 norms of the angle-wise similar-

ity changes of all triples between the training sessions of all

the exemplars.

ψA(zi, zj , zk) = cos∠zizjzk = 〈eij , ekj〉,
eij =

zi − zj
‖zi − zj‖2

, ekj =
zk − zj
‖zk − zj‖2

(5)

Ldis−A =
∑

i,j,k∈N

‖ψA(z
t−1
i , zt−1

j , zt−1
k )− ψA(z

t
i, z

t
j , z

t
k)‖2

(6)

Besides, distance-wise distillation in Equ. (7) is also ap-

plied to enforce the transfer of structural knowledge that

aims to penalize distance chances between the correspond-

ing sample pairs. ψD is Euclidean distance in our settings.

Ldis−D =
∑

i,j∈N

‖ψD(zt−1
i , zt−1

j ), ψD(zti, z
t
j))‖2 (7)

The distillation loss is the sum of Ldis−A and Ldis−D

as in Equ. (8). λdis stands for a hyperparameter to balance

Ldis−A and Ldis−D.

Ldis = Ldis−A + λdis · Ldis−D (8)
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Training Samples

Exemplars

1  Incremental Training
(Contrastive Loss + Distillation Loss)

2  Neural Classifier 
  Training 

3  OSR through KNN and
   Inlier Classification

4  Exemplar Update

Convolutional
Layers

Fully Connected
Layers Inlier Classifier

K-closest
Exemplar Samples
Test Sample Features

Figure 1: Illustration of our proposed framework. 1. A CNN encoder (backbone) is continuously trained with supervised

contrastive learning and relation-based knowledge distillation. 2. A neural classifier after that is then trained with cross-

entropy loss. 3. During testing, the features of the testing samples and exemplars given by the backbone are compared and

outliers are detected using K nearest neighbor method. The inliers are classified using the neural classifier. 4. Exemplars are

updated after each training session. Better viewed in color.

Figure 2: Rs of the feature maps extracted from ResNet-18
trained on Cifar-100 using supervised contrastive loss and

cross entropy loss respectively.

4.3. OpenIncrement Framework

The incremental learning method proposed in this pa-

per belongs to rehearsal-based approaches. Exemplars

from the observed classes should be selected and stored.

We name our method OpenIncrementNN (OpenIncrement
Nearest Neighbor).

4.3.1 Exemplar Management

In order to select exemplars that are representative for each

class, we propose an Isometric Sampling method as shown

in Alg. 11. When the new task T comes, a portion of the

exemplars of old classes are randomly removed if the mem-

ory is fixed. For the features Fc belonging to the newly

observed classes, their centers μc are firstly derived. For

each feature point zn in Fc, their Euclidean distances to

zn, E(μc, zn), are computed and sorted. Then the samples

are selected isometrically according to the distances to their

class centers.

4.3.2 Unified Classification for In- and Outliers

The testing phase consists of two parts, namely open

set recognition and inlier classification as illustrated in

Fig. 1. The set of features of the exemplars in each

observed class c extracted by the backbone, ZC
exem =

{zcexem,0, z
c
exem,1, ..., z

c
exem,Nc

}, is first stored. For each

testing sample feature zi, we search for its K-nearest neigh-

bors, Zc,i
K , in Zc

exem with cosine similarity, which is de-

noted using S(·). We use Sc,i
K to denote the set of K

similarities between zi and Zc
exem. The overall set of K

similarities between zi and exemplar sets of all classes is

{S0,i
K ,S1,i

K , ...,SC,i
K }. The score, scosr, for discriminating

outliers is given in Equ. (9), in which each Sc,i
K is first nor-

malized and its maximum is selected as scosr.

scosr = argmax
c

Sc,i
K∑

c S
c,i
K

(9)

scosr is then compared with a pre-defined threshold τosr. If

scosr is smaller than τosr, it is an outlier, otherwise inlier.

We train a neural classifier inputted by the backbone fea-

tures, ZC
exem, for inlier classification. The classifier consists

1All the pseudo-code semantically follows python and Numpy style in

this paper
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Algorithm 1 Isometric Sampling for Selecting Exemplars

1: Input: Task T with Cnew new classes and

Cold old classes, class centers of the old classes

{c1, c1, ..., cCold
}, samples in new classes Xnew and

their features Fnew, rehearsal memory size R, exemplar

set for old classes E = [E1,E2, ...,ECold
] and their

features Fold.

2: Output: Updated exemplars set E′ for Cnew and Cold.

3: Initialize: r = R/Cold, r′ = R/(Cnew + Cold),
E′ ← ∅.

Update exemplars for old classes for fixed memory:
4: for c = 1, 2, ..., Cold do
5: I = random.sample(range(r), r′)
6: E′ ← E′ ∪Ec[I]
7: end for

Select exemplars for new classes:
8: Isometric sampling the indices i = range(0, N, r′)
9: for c = 1, 2, ..., Cnew do

10: Read features belonging to class c with N instances,

Fc ⊂ Fnew, Fc = [z1, z2, ..., zN ]
11: Class center μc =

1
N

∑
i∈N zn

12: Initialize distance set D← ∅
13: for zn ∈ Fc do
14: D← D ∪ E(μc, zn)
15: end for
16: Sort D in ascending order and get the indices I ←

argsort(D)
17: I← I[:, :, N//r′]
18: E′ ← E′ ∪Xnew[I]
19: end for

of one fully-connected layer. In order to prevent data imbal-

ance between old and new classes, we use exemplars of the

new classes instead of the full dataset to train the classifier.

5. Experiments
We test our method for incremental learning and open set

recognition on image recognition tasks. The code is open

source online 2.

5.1. Settings

5.1.1 Datasets

We test our method on two open source datasets for im-

age recognition, namely Cifar-100 [24] and Tiny ImageNet
[34]. Cifar-100 contains 100 classes of natural color im-

ages belonging to 20 sub-classes and there are 600 images

2https://github.com/gawainxu/OpenIncremen.git

Datasets � Classes per Session/� Sessions

CIFAR-100 10/10

Tiny ImageNet 20/10

Table 2: Class split settings of each dataset for class-

incremental learning

in each class. Tiny ImageNet is the subset of ImageNet [34]

and consists of 200 classes of natural images. We split the

above two datasets into multiple non-overlapping sessions

for different continual learning tasks and to act as inliers and

outliers. The number of classes in each session is shown in

Tab. 2. The classes in the last session of each dataset are

outliers. Datasets are augmented before training. The de-

tails of data augmentation are in Appendix A.2.

5.1.2 Network Architecture

For all experiments, we use ResNet-18 [14] (residual neural

network) as the backbone model. The last fully-connected

layer that outputs class probability is replaced by two fully

connected layers, which are the head in [21]. ResNet-18 is

a convolutional neural network and was originally used for

image recognition. The output dimension of the last layer

is 512. As introduced above, the neural classifier for inliers

is one fully-connected layer.

5.1.3 Training

We conduct all experiments under the class-incremental

learning settings. Following the class split protocol intro-

duced in 5.1.1, the models were trained in a sequential way,

i.e., session after session. The backbones are trained using

Adam optimizer and the classifiers are trained with stochas-

tic gradient descent (SGD) strategy. The model hyperpa-

rameters were selected using grid search and their search

space and final configurations are shown in Appendix A.3.

The baselines in 5.1.4 are trained using the configurations

in the original paper if they are available.

5.1.4 Baselines

We select the state-of-the-art incremental learning meth-

ods as our baselines for inlier classification, namely SI[45],

EWC[23], LwF[25], ER[32], iCaRL[31], LUCIR[17], and

Der[4]. As mentioned in 2.2, SI, EWC, and LwF are

parameter-based methods. ER, iCaRL, LUCIR, and Der are

replay-based methods.

For open set recognition, since there is no existing work

or benchmarks on the same topic in literature, we take the

three settings listed in Tab. 5 as baselines.
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Methods CIFAR-100 Tiny-ImageNet
Msize 500 2000 2000 5000

Joint 74.44 53.55

SI [45] 17.26 6.58

EWC [23] 23.1 7.58

LwF [25] 16.22 8.46

ER [32] 22.10 38.58 12.14 27.2

iCaRL [31] 46.52 49.82 13.38 13.98

LUCIR [17] 40.59 41.73 14.97 17.61

Der [4] 36.60 51.89 34.75 36.73

Supcon Full 75.46 55.34

CE+ResKD 18.63 41.91 12.3 14.5

CE+RKD 32.57 44.37 14.22 15.23

DeepIncrement (ours) 49.95 63.73 33.65 37.76

Table 3: Average accuracy (in %) for inlier classification of class-incremental learning. Some results are from [4] and [3].

Bold indicates the best results except Joint.

Methods CIFAR-100 Tiny-ImageNet
Msize 500 2000 2000 5000

Supcon Full 74.51 62.54

CE+ResKD 55.05 60.64 50.23 51.57

CE+RKD 56.55 59.7 50.98 51.58

DeepIncrement 63.09 72.23 56.88 59.39

Table 4: AUROC for open set recognition on CIFAR-100 and Tiny-ImageNet datasets. Msize stands for the memory size.

Bold indicates the best results except Joint.

Settings Details

CE+ResKD
Cross-entropy loss with response-based

knowledge distillation in [16]

CE+RKD Cross-entropy loss with RKD

Supcon Full
Supervised contrastive learning trained

in joint fashion

Table 5: Baselines for open set recognition

5.1.5 Evaluation Metrics

As in most works, we evaluate the incremental learning

method for inlier classification using accuracy defined in

Equ. 10. Cinliers is the number of correctly classified in-

liers whereas Ninliers is the total number of inlier testing

samples.

Aincremental =
Cinliers

Ninliers
(10)

Since the approach for OSR in 4.3.2 requires setting the

threshold manually, a direct result comparison with differ-

ent thresholds is not reasonable. A threshold-independent

metric, the area under the receiver operating characteris-
tic (AUROC) curve [27] is taken as the metric to evaluate

the OSR method. In the AUROC curve, the true positive

rate is plotted against the false positive rate by varying the

threshold. The higher AUROC is, the better the method can

detect outliers (if outliers are assumed positive). When the

AUROC value is 0.5, it is basically equivalent to tossing

coins.

5.2. Results

5.2.1 Class-incremental learning

The experiment results for class-incremental learning are

shown in Tab. 3. Joint stands for normal offline training

with all class samples using cross entropy loss. Our method

surpasses most of the state-of-the-art baselines. Compared

with the three baselines proposed by us, besides Supcon
Full, our method is much superior to the rest two. The re-
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sults can also suggest that supervised contrastive learning is

more robust in continual learning than cross entropy.

5.2.2 Open Set Recognition

The results of open set recognition are in Tab. 4. Similar to

the results of the inlier classification, our method shows bet-

ter performance than the two baselines. It should be noted

that we use the exemplars to detect outliers even for Supcon
Full. We have observed during conducting the experiments

that the OSR performance also drops with the increase of

training sessions, which is the same as for inlier classifica-

tion (see the plots in Appendix B).

6. Conclusion & Future Work
In this work, we presented a unified framework for class-

incremental learning and open set recognition (OSR). Our

method achieves state-of-the-art inlier classification accu-

racy and excels over baseline models in OSR, yet there re-

mains room for improvement.

The field is in its infancy, prompting several pivotal ques-

tions for further exploration:

While catastrophic forgetting seems to induce feature

map distortion post-continual learning, the specific nature

of forgotten class-specific features causing this distortion

warrants investigation. It remains to be determined whether

the features vital for OSR and inlier classification are con-

gruent, and how continual learning impacts feature reten-

tion. Enhancing other continual learning methodologies for

outlier detection is essential. Concurrently, strategies to em-

bed continual learning within established OSR techniques,

ensuring retained efficiency, should be explored. Despite

the inherent synergy between open set recognition and con-

tinual learning, research intersections remain sparse. We

urge a focused exploration in this domain, given its signifi-

cance in evolving adaptive and autonomous machine learn-

ing systems.
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