
Clustering-based Domain-Incremental Learning - Appendix

Christiaan Lamers 1

NORCE
Grimstad, 4879, Norway

chla@norceresearch.no

René Vidal
Institute for Data Engineering and Science

University of Pennsylvania
Philadelphia, USA

vidalr@seas.upenn.edu

Nabil Belbachir
NORCE

Grimstad, 4879, Norway
nabe@norceresearch.no

Niki van Stein
Leiden Institute of Advanced Computer Science

Leiden, 2333 CA, The Netherlands
n.van.stein@liacs.leidenuniv.nl

Thomas Bäck
Leiden Institute of Advanced Computer Science

Leiden, 2333 CA, The Netherlands
t.h.w.baeck@liacs.leidenuniv.nl

Paris Giampouras
Johns Hopkins University
Baltimore, MD 21218, US
parisg@jhu.edu

A. Averaged Gradient Episodic Memory
A-GEM uses a projected gradient descent-type approach

for updating the weights of the model. It first calculates
the gradient of the loss function ∇Lt(w) ∈ Rp and then
compares this to a reference gradient ∇Lref (w) ∈ Rp, of
the loss function Lref (w) as defined by

Lref (w) =
1

|M̃ |

∑
(x,y)∈M̃

L(x,y)(w), (1)

where M̃ is a randomly selected batch of data sampled from
the episodic memory M which contains label training data
from tasks seen before time t i.e., M = ∪k<tMk, where
Mk is the episodic memory for task k. When the inner prod-
uct between the gradient of the loss function ∇Lt(w) and
the reference gradient ∇Lref (w) is non-negative, the gra-
dient update boils down to a vanilla gradient descent step
without projections. However, when this inner product is
less than zero, the weights of the model are updated using a
projected gradient-type update, i.e.,

w ← w − ηg̃ (2)

where η denotes the step size and g̃ is defined as,

g̃ = ∇Lt(w)−
∇Lt(w)

⊤∇Lref (w)

∇Lref (w)⊤∇Lref (w)
∇Lref (w). (3)

1Corresponding author.

Note that g̃ is now orthogonal to the reference gradient
∇Lref (w); thus, if ∇Lref (w) successfully represents a
non-forgetting direction of previously sees tasks, then the
update rule of the weights of the model in (2), decreases the
loss on the current task without incurring any forgetting of
previous tasks [1].

Algorithm 1 shows pseudo-code for A-GEM [1]. It
uses both a loss gradient ∇L(w) and a reference gradi-
ent ∇Lref (w) that is computed using a sub sample of the
episodic memory, namely M̃ . If the dot product between
the loss gradient and the reference gradient is greater or
equal to zero, gradient descent proceeds as normal. How-
ever, if it is smaller than zero, the loss gradient is projected
onto the reference gradient and the resulting component is
subtracted from the loss gradient. The weights w are then
updated using this newly obtained gradient and the step size
η. After the training on task k finishes, s samples are taken
from the data of task Tk and added to the episodic memory
M .

B. Orthogonal Gradient Descent

Orthognal Gradient Descent (OGD) departs from A-
GEM, which uses the gradient of the loss function, and per-
forms projections leveraging gradients of the output f(x;w)
of the model denoted as ∇f(x;w) ∈ Rp×c, x ∈ Tkt . We
also denote as

∇fj(x;w) ∈ Rp, (x, y) ∈ Tkt
(4)

Algorithm 1 Averaged Gradient Episodic Memory
Input: Task sequence T1, T2, T3, ... learning rate η
Output: Model

1: Initialize M ← {};w ← w0

2: for Task ID k = 1, 2, 3, ... do
3: repeat
4: L(w)← 1

|Tkt |
∑

(x,y)∈Tkt
L(x,y)(w)

5: Lref (w)← 1
|M̃ |

∑
(x,y)∈M̃ L(x,y)(w)

6: if ∇L(w)⊤∇Lref (w) ≥ 0 then
7: g̃ ← ∇L(w)
8: else
9: gproj ← ∇L(w)⊤∇Lref (w)

∇Lref (w)⊤∇Lref (w)
∇Lref (w)

10: g̃ ← ∇L(w)− gproj
11: end if
12: w ← w − ηg̃
13: until converge
14: for i = {1, ..., s} do
15: (x, y) ∼ Tk

16: M ←M ∪ (x, y)
17: end for
18: end for

the gradient associated with the output logit j:

fj(x;w) ∈ R, (x, y) ∈ Tkt
, (5)

i.e. the j-th output of the final layer, where j again is the
class label. For simplicity, from now on, we refer to (4) with
the term model gradient.

OGD uses projected gradient-type updates in order to
update the model parameters for a new task in directions
that minimally increase the loss for samples from previ-
ously seen tasks. Specifically, after training on task k is
finished, an update takes place that stores the relevant model
gradients for task k in the model gradient pool.

Assume our model has been trained on task T1 using
SGD and denote as w∗

1 the weights learned through the
training process. The gradient pool after the training on task
T1 is the set S1, defined as

S1 = {∇fj(x;w∗
1) | j : yj = 1, (x, y) ∈ T1}. (6)

When training on the next task T2, rather than training us-
ing standard SGD, OGD first projects the gradient of the
loss for each batch onto the orthogonal complement of the
subspace spanned by all elements of the gradient pool S1.
More specifically, the updates of the weights of OGD for
given batches of task T2 have the following form,

w ← w − ηĝ (7)

where η is the stepsize and ĝ = g −
∑

u∈S1
proju(g) with

g denoting the gradient ∇Lt(w) of the loss Lt(w) cor-
responding to the batch Tkt

. When training on T2 ends

with weights w∗
2 , OGD augments the gradient pool S1 with

model gradients for T2 and so on. After training on task
Tk−1, the gradient pool is redefined as

S1:k−1={∇fj(x;w∗
i) | j : yj = 1, 1 ≤ i < k, (x, y) ∈ Ti}.

(8)
Hence, when training on task Tk using the update in (7), we
have that ∀u∈S1:k−1

, ĝ ⊥ u.
The stored model gradients are interpreted as the direc-

tions of most change on the previous task. Thus, by pro-
jecting orthogonal to these, the resulting projected gradient
steps move the weights towards the region of low error on
the new task (Task B), while minimally changing the per-
formance on previous tasks (Task A).

Algorithm 2 shows pseudo-code for OGD [2]. The loss
gradient ∇L(w) is projected on an orthogonal basis S and
the resulting component is subtracted from the loss gradient
∇L(w). The weights w are then updated using this newly
obtained gradient and the step size η. After the training on
task Tk is finished, samples (x, y) from the task Tk are used
to calculated the model gradient fj(x;w), which represents
the gradient of the jth output of the network, where j cor-
responds to the label y. This model gradient is then added
to the basis S, but it is first made orthogonal to all elements
in S, to assure that S remains an orthogonal basis.

Algorithm 2 Orthogonal Gradient Descent
Input: Task sequence T1, T2, T3, ... learning rate η
Output: Model

1: Initialize S ← {};w ← w0

2: for Task ID k = 1, 2, 3, ... do
3: repeat
4: L(w)← 1

|Tkt |
∑

(x,y)∈Tkt
L(x,y)(w)

5: gproj ←
∑

v∈S
∇L(w)⊤v

v⊤v
v

6: g̃ ← ∇L(w)− gproj
7: w ← w − ηg̃
8: until converge
9: for (x, y) ∈ Tk and j ∈ [1, c] s.t. yj = 1 do

10: fproj ←
∑

v∈S
∇fj(x;w)⊤v

v⊤v
v

11: u← ∇fj(x;w)− fproj
12: S ← S ∪ {u}
13: end for
14: end for

C. Clustering Mechanism
Algorithm 3 shows the clustering mechanism used by

TA-A-GEM and TA-OGD, when adding a sample z to the
pool. First, a pool C is initialized as an empty set. The
maximum number of clusters is denoted with Q. The max-
imum cluster size is P . The fist Q samples z initialize a
cluster q, be being added to it and by setting the cluster’s

mean µq to z. After all clusters are initialized, the ℓ2 norm
is used to determine the cluster q∗, that has its mean closest
to z. z is then added to this cluster. The size of q∗ is kept
below the maximum cluster size P , by removing its oldest
member zq

∗

oldest. The mean of the cluster q∗, namely µq∗ , is
recalculated by taking the average of all its members.

Algorithm 3 Clustering Mechanism

1: C ← {}
2: Q← 100
3: P ← 3
4: procedure ADD(z)
5: if |C| < Q then
6: q ← {z}
7: C ← C ∪ q
8: µq ← z
9: else

10: q∗ ← argminq∈{1,2,...,Q}∥z− µq∥22
11: q∗ ← q∗ ∪ z
12: if |q∗| > P then
13: q∗ ← q∗ \ zq

∗

oldest

14: end if
15: µq∗ ← 1

|q∗|
∑|q∗|

p=1 z
q∗

p

16: end if
17: end procedure

D. Metric definition
The accuracy Al is defined as Al =

Mkl

Nkl

, where Mkl

is the number of correctly classified samples in dataset Tkl

and Nkl
, is the total number of samples corresponding to

task Tkl
. Note that the index kl is the index of samples

from task k at epoch l. The forgetting Fl on the validation
accuracy is calculated from the validation accuracy Al, at
epoch l using,

Fl = max({Ai|i ≤ l})−Al (9)

E. Learning Rate Scheduler
Algorithm 4 shows the pseudo-code of the learning rate

scheduler as used by the TA-OGD method. It lowers the
learning rate, by multiplying it with a Factor < 1, when the
learning process stagnates, i.e. when the loss value reaches
a plateau. It increases the learning rate, by resetting it to
LR init, when a large spike in the loss value overshoots the
Best loss value by more than the Reset Threshold value.
The Patience value, together with the counters N Stagnant
and N Spike, make sure that the learning rate scheduler
does not react to irrelevant outlier loss values. The Min
LR determines a minimum learning rate, which the learn-
ing rate should never fall below. The values mentioned in

the pseudo-code are used in the experiments.

Algorithm 4 Learning Rate Scheduler

1: Factor : 0.9999
2: Min LR : 10−5

3: LR init: 10−3

4: Patience : 5
5: Best : ∞
6: N Stagnant : 0
7: N Spike : 0
8: Threshold: 10−4

9: Reset Threshold: 1
10: procedure STEP(Loss, LR)
11: if Loss < Best ∗ (1− Threshold) then
12: Best← Loss
13: N Stagnant← 0
14: else
15: N Stagnant← N Stagnant +1
16: end if
17: if Loss > Best + Reset Threshold then
18: N Spike← N Spike +1
19: else
20: N Spike← 0
21: end if
22: if N Spike > Patience then
23: LR← LR init
24: Best← Loss
25: N Spike← 0
26: end if
27: if N Stagnant > Patience then
28: LR← max(LR ∗ Factor, Min LR)
29: N Stagnant← 0
30: end if
31: return LR
32: end procedure

F. Experiments
Two main classes of experiments are described in the

main paper, the “Disjoint tasks experiments” and the “Con-
tinuous change experiments”. In this section, figures and
results are given, for which no space existed in the main
paper.

F.1. Best practices

In order to test the effectiveness of a continual learning
method, different tasks need to be presented to it over time.
These tasks can be synthesized from standard datasets, but it
is crucial that the produced tasks give a good representation
of a real world continual learning setting. In designing our
experiment, we abide by all the desiderata described in [3],
i.e., 1) cross-task resemblances between tasks, 2) a shared

output head, 3) no test-time assumed task labels, 4) no un-
constrained retraining on old tasks, and 5) the use of more
than just two tasks. By conforming to these, we ensure that
the continual learning task is not trivially easy and thus a
method does not seem to be more effective than it would
truly be in real-case scenarios. Note that for the case of the
experiments on permutation for task generation, we “vio-
late” the cross-task resemblances since such a requirement
is impossible to be enforced.

F.2. Task generation details

Separate tasks were created from existing datasets by
means of permutation, rotation and class splitting. The task
permutation mechanism picks one permutation that shuf-
fles all pixels at random per task and then applies this one
permutation to all images in the dataset. The task rotation
mechanism rotates every image in one task with a given
number of degrees. We chose to increment the number of
degrees by 20 for each new task. The class splitting mecha-
nism splits the dataset on disjoint sets of labels. As subsets
we chose the labels (0,1), (2,3), (4,5), (6,7) and (8,9).

To make the tasks more disjoint, for the task permutation
and task rotation, the data was first split into disjoint subsets
(one for each task). After this, the permutation or rotation
was applied. For class splitting, the different tasks are al-
ready completely disjoint, so no extra separation step was
required. Note that we do not use head swapping, mean-
ing that we have one fixed output layer for all tasks. For
the class split scenario, only two classes are given to the
network during one task. Therefore we chose to give the
network just two output nodes, instead of ten. To accom-
modate this, we changed the labels. All even labels were
set to 0 and all odd labels were set to 1.

F.3. Environment

Each experiment instance ran on a single NVIDIA Tesla
T4 card with 15 Gb of video memory. Up to fifteen NVIDIA
Tesla T4 cards were available in parallel, together with 32
physical processor cores and 252 GB of RAM.

F.4. Disjoint tasks experiments

Figures 1, 2, 3, 4 and 5 show the average validation ac-
curacy, the validation accuracy on the first task and the for-
getting on the validation accuracy during training for differ-
ent task split methods, using the MNIST, Fashion MNIST,
NOT MNIST, CIFAR10 and SVHN datasets. Table 1 and
2 summarize the results on the validation accuracy on the
first task and the forgetting on the validation accuracy on
the first task, respectively. A summary for the average vali-
dation accuracy is included in the main paper.

Specific settings for the task splitting can be seen in table
6. The settings specific to TA-A-GEM and TA-OGD can be

seen in table 7 and 8, respectively. All results depicted are
the average of five independent runs.

F.5. Continuous change experiments

In the Continuous change experiments, tasks slowly
change into the next task halfway through the training pro-
cess. For the first 10 epochs (0-9), the network is trained on
purely the current task. For epoch 10 to 19, for every batch,
slowly more and more samples of the next task are mixed
in. So the first batch of epoch 10 will contain 100% sam-
ples from the current tasks and 0% of the next task, while
the last batch of epoch 19 will contain 0% samples of the
current task and 100% samples of the next task. These per-
centages gradually change by linear interpolation. Table 3
shows the result of the continuous change experiments. In
these experiments, tasks gradually change into the next task.
This is accomplished by first loading two datasets A and B,
where dataset A represent the current task and dataset B
represents the next task. For each epoch, A is randomly
shuffled and B is randomly shuffled. A fraction q ∈ (0, 1)
determines how many samples of A and how many samples
of B should be mixed into one batch. A batch of size z is
taken from both A and B. From the batch of A, the first
⌊q ∗z⌋ samples are selected. From the batch of B, we select
the last ⌈(1 − q) ∗ z⌉ samples. Since datasets A and B are
shuffled every epoch, this is equivalent to random sampling
without replacement. The selected samples are joined in a
mixed batch. This mixed batch is then shuffled again, so
no distinction between the tasks can be made. This mixed
batch is then used for training.

For this experiment, training commences for each pair of
datasets for 20 epochs. For the first 10 epochs (0-9), q is set
to 1.0. This means that for these epochs, only the first of
the datasets is presented to the learner. For the next 10 tasks
(10-19), q gradually changes for each batch from 1.0 to 0.0.
This means that for the first batch of epoch 10, q equals 1.0
and for the last batch of epoch 19, q equals 0.0. Between
these batches, q changes linearly.

Figures 6, 7, 8, 9 and 10 show the average validation ac-
curacy during training for different task split methods, using
the MNIST, Fashion MNIST, NOT MNIST, CIFAR10 and
SVHN datasets, for the “Continuous change” experiments.
Table 4 and 5 summarize the results on the validation ac-
curacy on the first task and the forgetting on the validation
accuracy on the first task, respectively. Again, all results are
the average of five independent runs.

G. Sampling Rate
For simplicity, we simply always add one sample per

batch and set a maximum pool size. Once the pool is full,
for every sample that is added, one is removed. If we re-
move one sample at random however, samples that are rel-
evant to previous tasks quickly disappear from the pool. In

(a) Average validation accuracy

(b) Validation accuracy of the first task

(c) Forgetting on validation accuracy of the first task

Figure 1: Results of the “Disjoint tasks experiments” on the MNIST dataset. (a) Average validation accuracy, (b) Validation
accuracy of the first task, (c) Forgetting on validation accuracy of the first task, averaged over all tasks trained thus far, then
averaged over five runs, depicted by a solid line plot with ± one standard deviation as a shaded area. From left to right: task
separation by permutation, task separation by rotation and task separation by class split.

this case, the pool itself suffers from catastrophic forgetting.
The easiest way to fix this is to lower the sampling rate,
i.e. the frequency at which samples are added to the pool.
In pre-experiments, we found out that setting the sampling
rate to 0.01 gave optimal results in negating the forgetting.
This effectively means that one sample was added to the
pool every 100 batches. As it turned out, this gave the al-
gorithm enough time to take a decent amount of samples
for a task, while it did not take so many samples as to com-
pletely eliminate samples from older tasks from the pool.
We then realized however, that this “optimal” sampling rate

was completely dependent on the fact that every task was
presented to the model for 20 epochs. It thus completely
depends on the knowledge that a task will change after 20
epochs. In a truly task-agnostic setting, this information is
not known. We therefore consider this method that solely
relies on the “optimal” sampling rate to be a trivial case that
is useless in a task-agnostic setting.

H. Clustering versus Random sampling

Figure 14 demonstrates that using clustering is a neces-
sity. It shows that without the use of clustering (TA-A-

(a) Average validation accuracy

(b) Validation accuracy of the first task

(c) Forgetting on validation accuracy of the first task

Figure 2: Results of the “Disjoint tasks experiments” on the Fashion MNIST dataset. (a) Average validation accuracy, (b)
Validation accuracy of the first task, (c) Forgetting on validation accuracy of the first task, averaged over all tasks trained thus
far, then averaged over five runs, depicted by a solid line plot with ± one standard deviation as a shaded area. From left to
right: task separation by permutation, task separation by rotation and task separation by class split.

GEM random), TA-A-GEM can only counteract the for-
getting with an “optimal” sampling rate (sr) of 0.01, that
is completely dependent on the frequency of task change;
once every 20 epochs in this case. When clustering is intro-
duced (TA-A-GEM), a wide variety of sampling rates, 0.01,
0.1 and 1 can effectively negate forgetting.

To further investigate the effect of clustering on the
model gradient pool, the content of the pool is plotted over
time for TA-A-GEM, that uses clustering and TA-A-GEM
with random cluster assignment. In the latter, a newly sam-
pled data point is added to a randomly selected cluster in-

stead of being added to the cluster that has its mean closest
to it (as is the case in the standard clustering-based TA-A-
GEM approach). We test the performance of the two meth-
ods for three different values of the sampling rate i.e., 0.01,
0.1 and 1. Figures 11, 12 and 13 show the content of the
gradient pool for TA-A-GEM (left) and TA-A-GEM with
random cluster assignment (right), for a sampling rate of
0.01, 0.1 and 1. Looking at the cluster contents of TA-A-
GEM, it can be seen that the amount of task variety is highly
affected by the sampling rate. The sampling rate can there-
fore be tweaked to an optimal value, in this case 0.01, given

(a) Average validation accuracy

(b) Validation accuracy of the first task

(c) Forgetting on validation accuracy of the first task

Figure 3: Results of the “Disjoint tasks experiments” on the NOT MNIST dataset. (a) Average validation accuracy, (b)
Validation accuracy of the first task, (c) Forgetting on validation accuracy of the first task, averaged over all tasks trained thus
far, then averaged over five runs, depicted by a solid line plot with ± one standard deviation as a shaded area. From left to
right: task separation by permutation, task separation by rotation and task separation by class split.

that a new task arrives every 20 epochs. This is a trivial
case that we consider not to be truly task-agnostic, since it
is tweaked on 20 epochs. By using clustering, TA-A-GEM
manages to keep a wide variety of task information in the
pool for all sampling rates. It therefore improves on the
trivial case, which arises by fine-tuning the sampling rate.

(a) Average validation accuracy

(b) Validation accuracy of the first task

(c) Forgetting on validation accuracy of the first task

Figure 4: Results of the “Disjoint tasks experiments” on the CIFAR10 dataset. (a) Average validation accuracy, (b) Valida-
tion accuracy of the first task, (c) Forgetting on validation accuracy of the first task, averaged over all tasks trained thus far,
then averaged over five runs, depicted by a solid line plot with ± one standard deviation as a shaded area. From left to right:
task separation by permutation, task separation by rotation and task separation by class split.

(a) Average validation accuracy

(b) Validation accuracy of the first task

(c) Forgetting on validation accuracy of the first task

Figure 5: Results of the “Disjoint tasks experiments” on the SVHN dataset. (a) Average validation accuracy, (b) Validation
accuracy of the first task, (c) Forgetting on validation accuracy of the first task, averaged over all tasks trained thus far, then
averaged over five runs, depicted by a solid line plot with ± one standard deviation as a shaded area. From left to right: task
separation by permutation, task separation by rotation and task separation by class split.

MNIST Fashion MNIST NOT MNIST CIFAR10 SVHN
perm rot class perm rot class perm rot class perm rot class perm rot class

SGD 0.691 0.419 0.643 0.682 0.254 0.657 0.825 0.408 0.707 0.364 0.288 0.692 0.527 0.231 0.622
SGD lr adapt 0.693 0.429 0.669 0.686 0.255 0.684 0.827 0.408 0.761 0.365 0.288 0.699 0.520 0.231 0.635

BGD 0.812 0.431 0.606 0.716 0.270 0.646 0.813 0.425 0.711 0.365 0.297 0.682 0.596 0.261 0.623
TA-OGD 0.779 0.487 0.721 0.686 0.302 0.831 0.804 0.429 0.866 0.332 0.283 0.708 0.473 0.235 0.637

TA-A-GEM 0.858 0.465 0.748 0.734 0.625 0.931 0.830 0.415 0.738 0.347 0.285 0.695 0.536 0.236 0.640
OGD 0.737 0.461 0.645 0.688 0.306 0.699 0.766 0.426 0.817 0.293 0.285 0.703 0.414 0.229 0.634

A-GEM 0.830 0.654 0.95 0.735 0.640 0.934 0.834 0.605 0.906 0.338 0.308 0.725 0.443 0.292 0.757

Table 1: Validation accuracy of the first task, averaged over all epochs, then averaged over five runs, for the disjoint tasks
experiments when using a MLP. Per column, the best result for the task-agnostic methods are written in bold. In case a task-
agnostic method’s result is less optimal and not significantly different from the best result, with a confidence of 99%, it is
also written in bold. The results for the task-aware methods OGD and A-GEM are given for context. Since these algorithms
benefit from knowing task identities and changes, we just use them here as baselines for indicating the best performance we
can achieve.

MNIST Fashion MNIST NOT MNIST CIFAR10 SVHN
perm rot class perm rot class perm rot class perm rot class perm rot class

SGD 0.213 0.485 0.356 0.099 0.527 0.329 0.056 0.473 0.270 0.060 0.136 0.209 0.068 0.364 0.337
SGD lr adapt 0.209 0.473 0.330 0.091 0.521 0.302 0.053 0.471 0.215 0.056 0.134 0.201 0.064 0.353 0.322

BGD 0.115 0.496 0.393 0.104 0.550 0.340 0.081 0.469 0.266 0.065 0.133 0.212 0.032 0.367 0.328
TA-OGD 0.123 0.415 0.278 0.081 0.464 0.154 0.070 0.444 0.109 0.086 0.135 0.193 0.091 0.330 0.319

TA-A-GEM 0.049 0.442 0.251 0.058 0.167 0.057 0.053 0.468 0.239 0.078 0.139 0.207 0.078 0.378 0.322
OGD 0.165 0.441 0.354 0.089 0.470 0.286 0.113 0.453 0.160 0.128 0.137 0.198 0.170 0.354 0.323

A-GEM 0.074 0.250 0.049 0.046 0.142 0.052 0.048 0.276 0.072 0.086 0.116 0.176 0.153 0.303 0.202

Table 2: Forgetting on validation accuracy of the first task, averaged over five runs, then averaged over all epochs, for the
disjoint tasks experiments when using a MLP. Per column, the best result for the task-agnostic methods are written in bold.
In case a task-agnostic method’s result is less optimal and not significantly different from the best result, with a confidence
of 99%, it is also written in bold. The results for the task-aware methods OGD and A-GEM are given for context. Since
these algorithms benefit from knowing task identities and changes, we just use them here as baselines for indicating the best
performance we can achieve.

MNIST Fashion MNIST NOT MNIST CIFAR10 SVHN
perm rot class perm rot class perm rot class perm rot class perm rot class

SGD 0.841 0.647 0.816 0.738 0.471 0.814 0.849 0.588 0.866 0.378 0.348 0.728 0.597 0.396 0.755
SGD lr adapt 0.859 0.654 0.819 0.748 0.487 0.821 0.854 0.592 0.893 0.380 0.349 0.731 0.592 0.394 0.772

BGD 0.884 0.678 0.808 0.765 0.515 0.812 0.860 0.621 0.865 0.390 0.358 0.719 0.605 0.419 0.760
TA-OGD 0.875 0.706 0.912 0.748 0.522 0.902 0.846 0.622 0.937 0.335 0.343 0.735 0.567 0.392 0.792

TA-A-GEM 0.876 0.670 0.87 0.745 0.594 0.929 0.850 0.592 0.876 0.369 0.346 0.715 0.606 0.403 0.765

Table 3: Average validation accuracy, averaged over all tasks trained thus far, then averaged over all epochs, then averaged
over five runs, for the continuous change experiments when using a MLP. Per column, the best result is written in bold. In
case a result is less optimal and not significantly different from the best result, with a confidence of 99%, it is also written in
bold.

MNIST Fashion MNIST NOT MNIST CIFAR10 SVHN
perm rot class perm rot class perm rot class perm rot class perm rot class

SGD 0.702 0.414 0.657 0.659 0.267 0.665 0.810 0.395 0.694 0.359 0.289 0.707 0.490 0.230 0.626
SGD lr adapt 0.785 0.420 0.672 0.693 0.278 0.684 0.825 0.404 0.769 0.361 0.289 0.717 0.479 0.228 0.658

BGD 0.812 0.426 0.645 0.702 0.297 0.663 0.804 0.409 0.675 0.366 0.299 0.695 0.588 0.264 0.636
TA-OGD 0.819 0.476 0.803 0.682 0.317 0.842 0.789 0.422 0.851 0.325 0.284 0.719 0.457 0.228 0.681

TA-A-GEM 0.842 0.442 0.726 0.729 0.600 0.926 0.813 0.398 0.712 0.331 0.286 0.704 0.509 0.233 0.634

Table 4: Validation accuracy of the first task, averaged over all epochs, then averaged over five runs, for the continuous
change experiments when using a MLP. Per column, the best result is written in bold. In case a result is less optimal and not
significantly different from the best result, with a confidence of 99%, it is also written in bold.

(a) Average validation accuracy

(b) Validation accuracy of the first task

(c) Forgetting on validation accuracy of the first task

Figure 6: Results of the “Continuous change experiments” on the MNIST dataset. (a) Average validation accuracy, (b)
Validation accuracy of the first task, (c) Forgetting on validation accuracy of the first task, averaged over all tasks trained thus
far, then averaged over five runs, depicted by a solid line plot with ± one standard deviation as a shaded area. From left to
right: task separation by permutation, task separation by rotation and task separation by class split.

MNIST Fashion MNIST NOT MNIST CIFAR10 SVHN
perm rot class perm rot class perm rot class perm rot class perm rot class

SGD 0.192 0.478 0.342 0.104 0.492 0.319 0.066 0.475 0.281 0.046 0.127 0.185 0.057 0.312 0.325
SGD lr adapt 0.107 0.470 0.327 0.067 0.478 0.300 0.049 0.464 0.207 0.041 0.124 0.174 0.053 0.299 0.290

BGD 0.106 0.492 0.355 0.110 0.512 0.323 0.088 0.480 0.302 0.058 0.132 0.190 0.027 0.351 0.310
TA-OGD 0.073 0.416 0.196 0.067 0.429 0.142 0.077 0.441 0.124 0.069 0.127 0.171 0.050 0.283 0.268

TA-A-GEM 0.055 0.454 0.273 0.047 0.172 0.061 0.064 0.473 0.265 0.078 0.131 0.147 0.064 0.335 0.322

Table 5: Forgetting on validation accuracy of the first task, averaged over five runs, then averaged over all epochs, for the
continuous change experiments when using a MLP. Per column, the best result is written in bold. In case a result is less
optimal and not significantly different from the best result, with a confidence of 99%, it is also written in bold.

(a) Average validation accuracy

(b) Validation accuracy of the first task

(c) Forgetting on validation accuracy of the first task

Figure 7: Results of the “Continuous change experiments” on the Fashion MNIST dataset. (a) Average validation accuracy,
(b) Validation accuracy of the first task, (c) Forgetting on validation accuracy of the first task, averaged over all tasks trained
thus far, then averaged over five runs, depicted by a solid line plot with ± one standard deviation as a shaded area. From left
to right: task separation by permutation, task separation by rotation and task separation by class split.

Task generation Mechanism Parameters
Permutation Number of tasks 10
Rotation Rotation angles [0, 20, 40, 60, 80, 100, 120, 140, 160, 180]
Class split Subset labels [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]

Table 6: Summary of the settings used for the task split for the “Disjoint tasks” experiment and the “Continuous change”
experiment

(a) Average validation accuracy

(b) Validation accuracy of the first task

(c) Forgetting on validation accuracy of the first task

Figure 8: Results of the “Continuous change experiments” on the NOT MNIST dataset. (a) Average validation accuracy,
(b) Validation accuracy of the first task, (c) Forgetting on validation accuracy of the first task, averaged over all tasks trained
thus far, then averaged over five runs, depicted by a solid line plot with ± one standard deviation as a shaded area. From left
to right: task separation by permutation, task separation by rotation and task separation by class split.

Parameter name Value Explanation
Learning rate 10−3 The same as for TA-OGD
Batch size 10 The same batch size as TA-OGD is chosen.
Sampling rate 1 The number of labeled data points sampled per batch, so in this case, one labeled data point is sampled every batch.
Number of pools 10 or 2 The number of separate pools; one for each class, so 10 classes for permutation and rotation and 2 for class split.
Number of clusters 10 or 50 Each pool contains 10 clusters in case there are 10 classes, or 50 clusters in case there are 2 classes.
Cluster size 3 The maximum number of sampled data points per cluster, if this number is exceeded, the oldest sample is removed.

Table 7: TA-A-GEM uses these parameters. Their values were hand picked to maximize the average accuracy.

(a) Average validation accuracy

(b) Validation accuracy of the first task

(c) Forgetting on validation accuracy of the first task

Figure 9: Results of the “Continuous change experiments” on the CIFAR10 dataset. (a) Average validation accuracy, (b)
Validation accuracy of the first task, (c) Forgetting on validation accuracy of the first task, averaged over all tasks trained thus
far, then averaged over five runs, depicted by a solid line plot with ± one standard deviation as a shaded area. From left to
right: task separation by permutation, task separation by rotation and task separation by class split.

Parameter name Value Explanation
Learning rate 10−3 The same as in the OGD paper of Farajtabar et al. [2]
Batch size 10 TA-OGD needs small batch sizes. Larger batch sizes will not yield good results.
Sampling rate 1 The number of gradients sampled per batch, so in this case, one gradient is sampled every batch.
Number of pools 1 TA-OGD uses one pool for all sampled model gradients.
Number of clusters 99 The number of distinct model gradient clusters.
Cluster size 3 The maximum number of model gradients per cluster, if this number is exceeded, the oldest model gradient is removed.

Table 8: TA-OGD uses these parameters. Their values were hand picked to maximize the average accuracy.

(a) Average validation accuracy

(b) Validation accuracy of the first task

(c) Forgetting on validation accuracy of the first task

Figure 10: Results of the “Continuous change experiments” on the SVHN dataset. (a) Average validation accuracy, (b)
Validation accuracy of the first task, (c) Forgetting on validation accuracy of the first task, averaged over all tasks trained thus
far, then averaged over five runs, depicted by a solid line plot with ± one standard deviation as a shaded area. From left to
right: task separation by permutation, task separation by rotation and task separation by class split.

Figure 11: The horizontal lines depict the content of clusters when using class split as a task segmentation method on Fashion
MNIST with a sampling rate of 0.01. Each task is associated with a unique color. The color of the vertical lines represents
the oldest task information that is present in the cluster. The moment that a new task starts is indicated by a black vertical
line. The clusters with index 0 to 49 correspond to the pool of class label 0. The clusters with index 50 to 99 correspond to
the pool of class label 1. Left: Clustering helps in keeping a greater variety of task information in the gradient pool, but this
effect is hardly noticable due to the optimal sampling rate being used. Right: Using random cluster assignment can result in
a good amount of variety, but it is completely dependent on the optimal sampling rate of 0.01. but it is still just as effective at
counteracting forgetting, as compared to clustering. This is only ideal when every task presents itself for exactly 20 epochs
each time. For this, the frequency of task switching need to be known, thereby destroying the task-agnostic nature of the
method.

Figure 12: The content of clusters using when using class split as a task segmentation method on Fashion MNIST with
a sampling rate of 0.1. Left: The use of clustering assures a good variety of task information is kept in the pool. Right:
Information from previous tasks is quickly lost with this sampling rate setting.

Figure 13: The content of clusters when using class split as a task segmentation method on Fashion MNIST with a sampling
rate of 1. Left: Even with a high sampling rate, the clustering assures a good variety of task information in the pool. Right:
Information from previous tasks is immediately lost after the moment of task change.

Figure 14: TA-A-GEM without its clustering mechanism
(TA-A-GEM random) can only successfully negate forget-
ting with an “optimal” sampling rate (sr) of 0.01, that can
only be known if the task change frequency is known,
thus undoing its task-agnostic nature. On the other hand,
when clustering is introduced to TA-A-GEM (TA-A-GEM),
a wide variety of sampling rates (sr) (0.01, 0.1 and 1) can
effectively reduce the amount of forgetting.

References
[1] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with A-
GEM. arXiv preprint arXiv:1812.00420, 2018. 1

[2] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li.
Orthogonal gradient descent for continual learning. In Inter-
national Conference on Artificial Intelligence and Statistics,
volume 108, pages 3762–3773. PMLR, 26–28 Aug 2020. 2,
14

[3] Sebastian Farquhar and Yarin Gal. Towards robust evaluations
of continual learning. arXiv preprint arXiv:1805.09733, 2018.
3

