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A. Appendix
A.1. Additional results

In Table 6 and 7, we present results for more extreme
amounts of memory (lower and higher) on Split-Cifar100.
For the low memory setting, we notice that the final accu-
racy results differ more between each method than when
using 2000 memory, with ER-ACE getting the best results
both in terms of final accuracy and stability. However, the
probed accuracy is still close to the one of the i.i.d refer-
ence method. When using more memory, we see that the
performance of the GDumb baselines matches the one of
the i.i.d reference method. However, SCR surpasses both of
these, indicating that it’s still possible to learn more from
the whole stream than from just the memory. We suppose
that this is due to its use of a bigger memory batch size,
which would be beneficial when a bigger memory size is
used. To verify this, we perform an additional experiment
where we provide ER with the same memory batch size as
SCR, we see that with this modification, the performance of

ER matches the one of SCR, indicating that the performance
of SCR in this setting is probably due to the bigger mem-
ory batch size and not so much to the supervised-contrastive
loss.

A.2. Implementation Details

Despite our efforts to make the comparison as fair as pos-
sible, there are a few points on which it was hard to make
every method coincide. We list them in the following sec-
tion:

• Handling of batch normalisation statistics: While
sampling a batch from the current task and the mem-
ory, there is a choice that needs to be made when for-
warding each batch to the model. The default solution
adopted in Avalanche is to concatenate both batches
and perform one pass on the model using the concate-
nated batch statistics (option 1). However, some meth-

1Modified ER version with a memory batch size of size 118 (to match
the size of the SCR one)



Method Acc ↑ AAAval ↑ WC-Accval ↑ Probed Acc ↑
i.i.d 28.3± 1.5 - - 40.0± 0.9

GDumb 8.8± 0.5 - - -
AGEM 3.2± 0.4 10.4± 0.5 3.2± 0.3 19.2± 0.7

ER 15.7± 1.2 28.6± 1.7 7.7± 0.9 38.2± 1.2

ER + LwF 19.7± 1.5 32.5± 1.9 10.6± 0.9 38.0± 1.6

MIR 15.7± 1.4 27.4± 2.4 9.3± 7.7 36.2± 1.0

ER-ACE 20.8± 0.9 32.8± 2.2 11.5± 0.5 36.8± 1.1

DER++ 15.2± 1.4 28.9± 3.0 7.9± 0.6 37.1± 1.5

RAR 14.6± 1.2 28.6± 1.5 7.9± 0.6 35.7± 0.9

SCR 13.2± 0.5 29.4± 1.9 8.5± 0.5 28.4± 0.5

Table 6: Last step results on Split-Cifar100 (20 Tasks) with 500 memory. We report the average and standard deviation over
5 trials

Method Acc ↑ AAAval ↑ WC-Accval ↑ Probed Acc ↑
i.i.d 39.0± 1.8 - - 49.3± 0.9

GDumb 39.6± 0.4 - - -
AGEM 3.1± 0.3 10.5± 0.5 3.1± 0.2 18.6± 0.8

ER 34.9± 1.8 39.1± 1.7 13.2± 0.8 48.7± 0.7

ER + LwF 36.7± 1.3 41.7± 1.8 17.2± 0.9 48.5± 0.9

MIR 31.8± 1.4 33.6± 2.6 8.4± 1.4 47.8± 0.8

ER-ACE 35.1± 1.2 40.6± 1.5 16.8± 1.1 47.0± 0.7

DER++ 36.1± 1.7 40.8± 2.0 14.6± 0.4 49.1± 0.7

RAR 36.9± 2.0 42.2± 1.3 16.1± 1.2 48.1± 1.2

SCR 43.5± 0.7 50.2± 2.1 32.6± 0.7 47.3± 0.7

ER1 43.0± 0.7 52.7± 2.2 30.7± 0.9 49.5± 1.4

Table 7: Last step results on Split-Cifar100 (20 Tasks) with 8000 memory. We report the average and standard deviation over
5 trials

ods were initially implemented by forwarding each
batch separately, which could have a huge influence
since in that case the separate outputs are created us-
ing each internal batch statistics (option 2). In general,
while implementing the methods, we chose the option
that was working best (ER: 1, DER++: 1, ER-ACE: 2,
MIR: 2, SCR: 1, RAR: 2). Note that MIR also updates
the batchnorm statistics when forwarding the bigger
replay batch (from which it selects the samples to re-
play), which also has an influence on training that other
methods do not have.

• Memory batch size: Initially, we wanted to fix the
batch size memory using the hyperparameter valida-
tion protocol described above, so that each method
could select it’s adequate memory batch size. How-
ever, we found that when using a fixed memory size
and doing the hyperparameter selection on only 4

tasks, a big memory batch size was always selected
since it was giving more beneficial results after seeing
only 4 tasks. This is due to the fact that the optimal use
of the full memory size is close to always iterating on
samples from the memory. Because of this, we chose
to also fix the memory batch size to the same size as
the one of the current batch (as done in most works).
However, due to its use of a contrastive loss, SCR re-
quires to sample a big batch from the memory, so we
fixed the memory batch size to a higher number (118),
which makes it behave differently than other methods.

• Dynamic Classifier: In continual learning, the learner
is not suppose to know the total number of classes it
will encounter during the training. This is why we im-
plemented most methods using a dynamic classifica-
tion layer that adds new units whenever encountering a
new class. However, one method (DER++) requires to



replay the logits of samples from previous classes into
the new classes. The official implementation made use
of a classification layer of fixed size, and we used the
same in our experiments, making it different from what
other methods do.

A.3. Hyperparameters

In the code (https://github.com/AlbinSou/
ocl_survey), we provide the script used to perform the
hyperparameter selection (experiments/main hp tuning.py)
as well as the best configurations we found after 200 tri-
als for each method using the first 4 tasks of the stream.
We provide these configurations for each benchmark un-
der the config/best configs folder. The hyperparameter
ranges tested for each method are available in experi-
ments/spaces.py.

https://github.com/AlbinSou/ocl_survey
https://github.com/AlbinSou/ocl_survey

