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Abstract

Solving image classification tasks given small training
datasets remains an open challenge for modern computer
vision. Aggressive data augmentation and generative mod-
els are among the most straightforward approaches to over-
coming the lack of data. However, the first fails to be ag-
nostic to varying image domains, while the latter requires
additional compute and careful design.

In this work, we study alternative regularization strate-
gies to push the limits of supervised learning on small image
classification datasets. In particular, along with the model
size and training schedule scaling, we employ a heuristic to
select (semi) optimal learning rate and weight decay cou-
ples via the norm of model parameters. By training on only
1% of the original CIFAR-10 training set (i.e., 50 images
per class) and testing on ciFAIR-10, a variant of the original
CIFAR without duplicated images, we reach a test accuracy
of 66.5%, on par with the best state-of-the-art methods.

1. Introduction
In recent years, significant progress has been made in

computer vision through large-scale pretraining on exten-
sive datasets [60, 57]. However, improving the data ef-
ficiency of deep neural networks and enabling successful
training on significantly smaller datasets, ranging from a
few tens to hundreds of images per class, remains an on-
going area of research. Better sample efficiency and gen-
eralization would greatly benefit domains where the high
cost and limited accessibility of data collection and anno-
tation are critical barriers (e.g., the medical domain). The
community has recently increased its focus toward study-
ing limited-sample problems with deep learning through
the organization of dedicated workshops and challenges
[15, 40, 16]. Furthermore, recent work has compared meth-
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Figure 1: Overview. We examine each additional modifi-
cation in our training setup (y-axis) and its corresponding
impact (x-axis). The baseline WRN-16-1 model has been
tuned for optimal learning rate and weight decay on a sub-
set of the small training set.

ods tailored explicitly for image classification with small
datasets and established a dedicated benchmark [12, 13].
A notable result of the latter analysis regards the impor-
tance of hyper-parameter tuning, particularly weight decay,
which plays a significant role in the generalization abil-
ity of networks and has often been overlooked in previ-
ous works. More in detail, a tuned vanilla cross-entropy
classifier favorably compared against most of the evalu-
ated data-efficient methods, powered by sophisticated tech-
niques (e.g., [10, 49]) and inductive biases (e.g., [52, 34]).

Classifiers augmented with aggressive data augmenta-
tion methods (e.g., AutoAugment [18]) or generative mod-
els have recently scored the best results on multiple data-
efficient image classification benchmarks [3, 56]. While
it is expected that additional data synthesis helps general-
ization, this family of approaches still presents challenges.
For instance, recent work has shown that data augmentation
introduces strong class-dependent biases [4]. Furthermore,
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the relevance of image transformations is domain dependent
and requires domain expertise [9]. Generative models in-
stead require sophisticated design, careful engineering, and
multi-stage training [79, 3, 56].

In this work, we investigate in detail the impact of
optimization-related hyper-parameters (HPs) (i.e., learning
rate, weight decay, and momentum), model size (in par-
ticular width), and training schedule length on the popular
ciFAIR-10 small-data benchmark, which comprises 1% of
the original training set of CIFAR-10 and testing set with-
out duplicated images [7]. Based on our empirical analysis,
we devise a simple scheme to maximize the accuracy of a
vanilla cross-entropy classifier by making it as data-efficient
as state-of-the-art methods powered by strong data augmen-
tation methods [22, 56].

As visible in Fig. 1, we start from a baseline Wide
ResNet-16-1 (WRN-16-1) [75], tuned on the small valida-
tion set, which scores 53.3% on the test set, and we reach a
strong 66.5% accuracy with WRN-16-22. In particular, our
proposed training setup involves a heuristic to select HPs
without relying on validation sets (Section 4.2), the removal
of momentum (Section 4.3), the scaling of model size (Sec-
tion 4.4), and training length (Section 4.5).

In summary, this paper builds a robust and easy-to-
implement baseline for training efficiently vanilla cross-
entropy classifiers on small datasets. Furthermore, it pro-
vides insights regarding the impact of HPs, model scale, and
training length. We demonstrate that aggressive data aug-
mentation is not the only way to reach the best performance
in scenarios with limited data. We hope that our empirical
analysis could be helpful for practitioners and researchers
involved in deploying and searching for more data-efficient
image classifiers.

2. Related Work
Impact of scaling model size and training length. Sev-
eral studies have explored the effect of model scaling on
performance. For instance, convolutional networks can be
scaled by depth [26], width [75], or the combination of the
two along with the input resolution [62]. Other works stud-
ied the generalization of networks across data and model
scaling [28, 58], with some focusing on small data regimes
[11, 14]. Differently from [11, 14], we experiment with a
single dataset size and provide insights concerning the im-
pact of optimization-related HPs, model, and training length
scaling.

The relationship between generalization error and model
size, with the empirical finding of the double descent phe-
nomenon, has been observed in older works [65, 51, 46] and
further investigated in the deep-learning era [50, 8, 48, 1].
Although models of different sizes reach the same training
errors, larger models tend to have smaller test errors [1].
While still under discussion in current research, possible

explanations include that large models are more biased to-
wards better minima [20, 19] or explore more features [17].
Finally, additional training iterations benefit generalization
[30, 25], and seem to generate a similar double descent be-
havior but related to the length of training [48, 55]. How-
ever, we are unaware of any preceding work studying the
impact of the training length and focusing on image classi-
fication tasks with small datasets.

Scale-invariant networks. Normalization layers (e.g.,
Batch Normalization (BN) [31]) make modern neural net-
works almost fully scale-invariant. In other words, their
output activations, and consequently, the loss function, does
not change if the weights undergo scaling, implying that
weight decay does not limit the model capacity as previ-
ously believed [66]. The training dynamics of Stochastic
Gradient Descent (SGD) and variants have been widely in-
vestigated and are still under discussion from both an empir-
ical and theoretical perspective [29, 76, 43, 68, 38]. The pa-
rameters’ norm strongly impacts the effective learning rate,
the actual step which a scale-invariant network would take
if optimized over the unit sphere [68, 38]. Recent work has
practically studied predicting and scheduling optimal HPs
by exploiting SGD symmetries as data scales [73, 74]. Our
paper not only focuses on HPs selection but also analyses
the impact of model size and training length.

Image classification with small datasets. Learning from
a small sample is an actual challenge for deep learning.
and shares the goal of deploying data-efficient classifiers
with other popular research areas, such as transfer learn-
ing [54, 39], domain adaptation [69], and few-shot learning
[70]. However, such research domains assume access to a
generally extensive annotated database on which networks
can be trained. This assumption is not always satisfactory,
notably when the domain where the network is transferred
dramatically differs from the original one.

We refer the reader to [13] for a detailed overview con-
cerning learning methods tailored explicitly for learning
from scratch on small datasets. Some methods benefit from
employing geometric priors, such as fixed or learnable fil-
ters based on wavelet transformations [52, 53, 22] or dis-
crete cosine transform [64, 63]. Invariance to input transfor-
mations (e.g., rotation, translation) is achieved by integrat-
ing steerable filters or circular harmonics [71], alternative
padding strategies [34], and specialized convolution blocks
[72, 61]. Cost-based regularization strategies formulate ob-
jective functions and penalties to mitigate overfitting [49],
such as the cosine loss and variants [6, 37, 61]. Other cost-
based regularizers include rotation invariance [72], gradi-
ent penalties and spectral norms [10], low-rank embedding
[41], and temperature calibration [11]. Another set of ap-
proaches performs data augmentation on the input space by
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Figure 2: Impact of small validation sets. Validation and test accuracy scored by a WRN-16-1 trained with momentum.
Having only available a small training set can result in sub-optimal model selection on noisy validation sets. In this case, the
best model on the validation set does not transfer to the best model on the test set.

relying on generative models [79, 78, 3, 56], or on the net-
work’s feature space [32, 35, 44, 45]. Finally, some previ-
ous work warm-start the final classifier after solving a pre-
text task through layer-wise greedy initialization [59], adap-
tive model complexity [21], dictionary-based learning [36],
or self-supervised pre-training [80, 67].

Our work shares with previous work [12, 5] the inter-
est in improving vanilla cross-entropy classifiers on lim-
ited data settings. Differently, we perform a comprehensive
analysis concerning the impact of model size and training
schedule length, which is completely missing in [12]. Fur-
ther, we propose additional insights regarding the search for
optimal optimization parameters and the impact of momen-
tum.

3. Preliminaries
We face an image classification problem in which we are

given a small set of N labeled pairs D = {xi, yi}i=1:N

sampled from distributions X and Y . We train func-
tion approximators fθ (WRNs) with mini-batches of di-
mension B to optimize the objective function Jθ =
1
B

∑
x,y∼D J(fθ(x), y)). The networks are trained for T

iterations with SGD and its variants with momentum (µ)
and weight decay (λ). The latter explicitly penalizes the
L2 squared norm of the weights divided by two. At each
training step t, the parameters follow the update rule:

vt+1 = µvt + αt(∇Jθ + λθt)
θt+1 = θt − vt+1

(1)

with αt being the learning rate adjusted at each itera-
tion step according to a defined learning rate schedule. We
instead refer to α as the initial learning rate. If we con-
sider the simpler case without momentum (i.e., µ = 0.0),
the general SGD update reported in Eq. (1) can be decou-
pled into a weight decay step θt+1 = θt(1 − αtλ) and a

gradient descent one θt+1 = θt − αt∇Jθ. The weight de-
cay update is ruled by the product between αt and λ, which
is referred as the effective weight decay in [24]. If we as-
sume scale-invariance1, i.e., Jθ = Jc·θ, c > 0, it follows
that ∇Jθ · θ = 0 [66, 43]. Hence, each SGD step encom-
passes a combination of two conflicting forces. The effec-
tive weight decay diminishes the parameter norm, whereas
the gradient amplifies it, resulting in a dynamic interplay
between the two.

4. Experiments
To perform our empirical analyses, we choose the popu-

lar WRN architecture of depth 16 widely used in previous
work on the small ciFAIR-10 dataset [52, 12], and vary the
width to increase model size when necessary. We fix the
batch size B for all the training runs to 10, given the success
of small batches in small-data regimes [12, 13]. In addition,
we incorporate the widely used cosine annealing schedule
to adjust the learning rate during training [47]. To have a
good glimpse of the impact of the learning rate and weight
decay on the generalization performance, for most of the
networks, we run grid searches with 100 models, sampling
equally spaced learning rate and weight decay values in log-
space from the interval [5 · 10−5, 5 · 10−1]. We only run a
sub-portion of the grid for bigger models that would have
required an onerous amount of compute. We finally employ
minimal data augmentation composed of random horizontal
flipping and translations of 4 pixels.

4.1. Baseline setup

As a base setup, we choose i) the smallest architecture
of the WRN-16 family, i.e., WRN-16-1, which is computa-
tionally cheap to train; ii) a training schedule of 25k steps as

1All layers of WRNs are scale-invariant except for the BN affine pa-
rameters and final classification head.
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Figure 3: HPs selection via parameters norm. Relationship between the norm of the parameters after one training epoch
(50 iterations) and test loss for different configurations (specified in figure titles). Each network, represented as a dot, has
scored 100% training accuracy on the training set. Colors represent the product between learning rate and weight decay, µ is
momentum, and T is the total number of training steps. Pearson and Spearman’s coefficients are indicated with p and r.

proposed in [12]; iii) momentum µ = 0.9 as standard prac-
tice in deep learning; iv) HPs selection on a small validation
set with the aforementioned grid search. In particular, we
employ the training-validation split proposed in [12].

In Fig. 2, we show the results of the grid searches for
both validation and test sets. Given the accuracy score
on the validation set, we select the model scoring around
53.3% on the testing set. However, we also note that the
best learning rate and weight decay combination found in
the validation set does not transfer to the optimal model,
and the best-achieved accuracy on the test set is already
higher than previously published results of larger networks,
e.g., WRN-16-8 [52, 63, 12, 13]. Reasonably, the search
for HPs is particularly noisy and sub-optimal because we
face a learning task in the small-sample regime. Hence, we
argue that better HPs selection has the potential to deliver
networks that generalize better, particularly for larger mod-
els, as we have just observed that a tiny WRN-16-1 coupled
with optimal parameters could outperform the best accuracy
of a larger WRN-16-8.

4.2. HPs selection without validation sets

We devise a straightforward heuristic that effectively
predicts the generalization performance of models by only
monitoring training-related metrics. In this manner, we
circumvent the requirement of relying on held-out valida-
tion sets, which may be limited and noisy in small-sample
regimes. We first filter out all networks that do not fit the
training set, i.e., those that do not score 100% training ac-
curacy and hence do not have enough representation power
to converge [2]. Secondly, out of this pool of models, we
consider the parameter vector norm ||θt|| at the beginning of
training to be a good predictor for the testing loss. Previous
work supports our intuitive approach by showing that regu-
larization (e.g., weight decay) mostly affects early training
dynamics [23].

In Fig. 3, we plot the test loss as a function of the norm
after one epoch, which coincides with as few as 50 steps,
i.e., ||θ50||. We represent models that share the same learn-
ing rate-weight decay product in the same colors. A ro-
bust monotonic relationship exists between the two vari-
ables, as indicated by Spearman’s rank coefficient surpass-
ing 0.8 most of the time. The models with the smallest norm
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Figure 4: Impact of momentum. Comparison among three couples of architectures in terms of testing loss without (µ = 0.0)
and with (µ = 0.9) momentum. The losses of networks trained without momentum are shown on the y-axis. Momentum
does not seem to provide clear benefits in the optimization leading to similarly performing networks.

are the ones that generalize better by scoring lower testing
losses. The monotonicity increases as the model size and
training length increase. Reasonably, models with similar
initial effective weight decay share norm magnitudes since
their parameter vector is equally decayed. The symmetries
across the learning rate-weight decay space (left-to-right di-
agonals) are also visible in Fig. 2 (right). However, not all
the models generalize the same along a constant αλ since
the gradient update is proportional to only α, not αλ. Mo-
mentum introduces some additional noise, potentially at-
tributable to the more complex dynamics of incorporating
previous gradients. However, the monotonic relationship
remains reliable also if µ = 0.9.

By using the parameter’s norm to select the HPs, we raise
the accuracy of the base WRN-16-1 from 53.3% to 56.9%.
We will use this model-selection strategy in the next exper-
iments.

4.3. Removal of momentum

Momentum is widely used in the deep learning com-
munity. Recent work has shown that it reduces the dis-
tance traveled by the parameters over the loss landscape
[27]. Furthermore, momentum makes the training dynam-
ics slightly more complex due to past-gradients additions.
We conducted experiments to assess the effect of momen-
tum in our constrained data conditions using three models:
WRN-16 with width scales of 1, 3, and 10. All six mod-
els underwent training for 25,000 steps. The test losses
for each architecture, both with and without momentum,
were compared, as depicted in Fig. 4. Remarkably, ap-
proximately 50% of the time, the best models are either
with µ = 0.0 or µ = 0.9, indicating a similar test per-
formance. These results suggest that making the SGD tra-
jectories noisier may not necessarily penalize learning in
limited data scenarios. To this end, we remove momen-
tum and maintain more predictable training dynamics. In
this manner, our momentum-free WRN-16-1 reaches a test
accuracy of 58.1%, higher than the previous 56.9%. No-
tably, by removing momentum and performing HPs selec-
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Figure 5: Impact of training length. Maximal achievable
test accuracy as a function of the employed architecture and
number of training iterations. A longer training schedule
improves generalization.

tion with our newly introduced metric (parameters’ norm),
we made a small WRN-16-1 as data-efficient as a larger
WRN-16-8 tuned with Asynchronous HyperBand with Suc-
cessive Halving (ASHA) search, which scored on the same
benchmark 58.2% test accuracy [12].

4.4. Increased model size

Scaling up model size is a popular way to improve gen-
eralization [26]. However, with limited data, scaling the
model without providing the right amount of regularization
easily leads to overfitting. To better analyze the impact of
scale, we report the test accuracy of WRN-16-1, WRN-16-
3, and WRN-16-10, all trained without momentum in Fig. 6.

Increasing the width by 3× already provides a maxi-
mum increase of 4.4 percentage points. The best achiev-
able accuracy rises from 62.8% with WRN-16-3 to 65.2%
with WRN-16-10. Our HPs selection metric correctly pre-
dicts the optimal learning rate-weight decay combination,
and hence we gain 7.1 percent points to reach 65.2% test
accuracy from the previous 58.2%.
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Figure 6: Impact of model scale. Test accuracy over the predefined learning rate-weight decay space. Increased model
width significantly improves maximal achievable test accuracy but plateaus when moving from WRN-16-10 to WRN-16-22.
All networks are trained for 25k iterations.

4.5. Increased training length

Prior empirical evidence indicates that extended train-
ing schedules have demonstrated comparable performance
to pre-trained networks [25]. The limited data in small-
sample scenarios bears the risk of under-training networks
if the number of epochs and batch size are directly imported
from the default setups with more data, as in [49, 37], be-
cause that would result in a lower number of actual training
steps. Indeed, previous work showed that the number of
training updates plays the most important role in learning
[30].

To this end, we test a longer training schedule that
closely matches the one originally proposed in the paper
that introduced the WRN architecture [75]. In particular,
WRNs were trained on 50,000 samples for 200 epochs and
mini-batches of size 128, resulting in a training schedule of
∼ 78k steps. To match this length, we triplicate the number
of epochs from 500 to 1,500 while maintaining the batch
size of dimension 10 to get a total of 75k training steps.

At all model scales, the tested networks improve their
testing accuracy (see Fig. 5). In particular, the smallest
WRN obtained the highest gain of 4 percent points. Not
negligible improvements of 1.5, 1.6, and 2.1 percent points
are scored by networks of widths 3,10 and 22, respectively.
We also tested a longer training schedule of 4,500 epochs
for the WRN-16-1 in preliminary experiments. We have

not obtained significant improvements and hence stopped at
3,000. However, we do not rule out that increased training
time could provide additional but moderate gains at large
model scales.

Our final architecture becomes the WRN-16-22 trained
for 75k iterations. The model selection strategy predicts
the second-best model, which slightly underperforms the
highest-scoring one (66.5% vs 67.6%). Increasing the
model width from 10 to 22 and tripling the training length
make us gain 1.3 percent points over the previous setup.

4.6. Comparison with the state of the art

In the preceding sections, we tested and discussed sev-
eral design choices to enhance our training scheme’s overall
performance without relying on hand-crafted data augmen-
tations or costly generative models.

To gauge the effectiveness of our approach, we now com-
pare our WRN-16-22 against the best state-of-the-art meth-
ods. In particular, we benchmark against WRN-16-8 archi-
tectures trained with cross-entropy loss [12] plus basic, i.e.,
translation and horizontal flipping, or strong data augmen-
tation methods such as MixUp [77] or ChimeraMix [56].
The hyper-parameters, i.e., learning rate and weight decay,
were selected through ASHA search in the above cases. We
also report the performance of recent parametric scattering
networks [22] powered with AutoAugment [18].

We show the results in Table 1. Our WRN-16-10
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Figure 7: Norm and test accuracy evolution. We show the evolution of the weights norm and test accuracy for the WRN-
16-10s reaching 100% training accuracy and trained for 500 epochs (25k iterations). The models with the highest αλ
products experience more chaotic training dynamics (noisy test accuracy profile), fast decay of parameters norm, and better
generalization.

Pub. Architecture Augmentation Accuracy

[12] WRN-16-8 plain 58.22
[22] Scatt. WRN AutoAugment 63.13± 0.29∗

[56] WRN-16-8 MixUp 66.16± 0.78
[56] WRN-16-8 ChimeraMix1 65.83± 0.78
[56] WRN-16-8 ChimeraMix2 67.30± 1.21
Ours WRN-16-10 plain 65.9
Ours WRN-16-22 plain 66.5

Table 1: Comparison with state-of-the-art methods. All
networks are trained on CIFAR-10 with 50 samples per
class. ∗Scattering WRN has 22.6M parameters and is eval-
uated on the CIFAR-10 test set rather than ciFAIR-10.
ChimeraMix1 employs a grid-based patch selection while
ChimeraMix2 a gradient-based methodology. Plain aug-
mentation is composed of simple horizontal flipping and 4-
pixel translations.

and WRN-16-22 architectures trained with our scheme
achieve recognition performance on par with ChimeraMix
and MixUp and significantly outperform the WRN-16-8
from [12] and scattering networks coupled with AutoAug-
ment [22]. Our reliance on plain data augmentation and
implicit regularization techniques proves advantageous, as
it enables our solution to generalize effectively across var-
ious domains, enhancing its practicality and transferabil-
ity. Furthermore, our scheme could be theoretically cou-
pled with such powerful data augmentation techniques if the
image domain is agnostic to the biases introduced by hand-
crafted augmentations or if enough computational resources
are available to train generative models properly.

4.7. Additional Analyses

Importance of HPs selection. We highlight that prop-
erly selecting hyper-parameters, particularly weight decay,

is fundamental to providing optimal performance. For in-
stance, referring to Fig. 6, if the value of weight decay is
set too small (5 · 10−5), and a line search is performed over
the learning rate, the maximum test accuracy improvement
among WRN-16-1 and WRN-16-22 is approximately three
percentage points. On the other hand, if the search is also
expanded over the weight decay direction, the gain almost
doubles to 7 percentage points.

Chaotic train dynamics generalize better. In Fig. 7, we
provide additional insights regarding the evolution of the
parameters norm and generalization through the test accu-
racy in the case of WRN-16-10 trained for 25k iterations.
The largest weight decay-learning rate combinations that
manage to fit the training set cause a fast decay of the pa-
rameters norm (as studied in Section 4.1) and also chaotic
training dynamics. The right plot of Fig. 7 shows that a high
αλ combination generates noisy test accuracy profiles and
late convergence. Our findings align with previous studies
[42, 33, 38], which suggest that training with higher learn-
ing rates leads to solutions with improved sharpening and
generalization profiles.

HPs transfer across model sizes. Interestingly, it is also
visible that the difference in parameter norm at the start of
training due to increased model size drifts the area of bet-
ter generalization towards the bottom right. This is partially
explainable because the weight decay, as mentioned in Sec-
tion 4.1, directly scales the weight vector by αtλ while the
gradient update does not depend on the parameter norm but
just the learning rate. Consequently, when the weight norm
increases, the gradient step becomes smaller than the weight
decay update. However, as visible in Fig. 6, the best HPs
combination remains constant across sizes, although the
number of parameters has increased from 0.17M of WRN-
16-1 to approximately 82.73M of WRN-16-22. Further in-
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vestigations are necessary to gain a deeper understanding of
this phenomenon. The consistency of optimal HPs presents
a promising avenue for future research, offering potential
computational savings and improved efficiency.

5. Conclusions
In this work, we presented and ablated a simple method-

ology to push the limits of classifier recognition perfor-
mance with small training datasets in image classification.

While approaches based on aggressive data augmenta-
tion and generative models can raise classification abili-
ties through data synthesis, they still have limitations, such
as being domain-specific or requiring extensive computa-
tional resources and careful design. On the other hand,
we explored several factors to improve the model’s per-
formance with alternative regularizations, including select-
ing optimal HPs more reliably and scaling the model size
and training schedule. By implementing these techniques,
we achieved state-of-the-art performance on the popular
ciFAIR-10 small-data benchmark, demonstrating the valid-
ity of our empirical analyses.

Although tested on a single dataset, our work pro-
vides valuable insights that can benefit practitioners and
researchers interested in developing strategies to improve
generalization in small-data settings.
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OLÉ: Orthogonal low-rank embedding-a plug and play geo-
metric loss for deep learning. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018. 2

[42] Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explain-
ing the regularization effect of initial large learning rate in
training neural networks. Advances in Neural Information
Processing Systems, 2019. 7

[43] Zhiyuan Li, Kaifeng Lyu, and Sanjeev Arora. Reconciling
modern deep learning with traditional optimization analyses:
The intrinsic learning rate. Advances in Neural Information
Processing Systems. 2, 3

[44] Luyue Lin, Bo Liu, Xin Zheng, and Yanshan Xiao. An effi-
cient image categorization method with insufficient training
samples. IEEE Transactions on Cybernetics, 2020. 3

[45] Luyue Lin, Dacai Liu, Bo Liu, and Yanshan Xiao. A latent
variables augmentation method based on adversarial training
for image categorization with insufficient training samples.
In 2020 16th International Conference on Control, Automa-
tion, Robotics and Vision (ICARCV), 2020. 3

[46] Marco Loog, Tom Viering, Alexander Mey, Jesse H Krijthe,
and David MJ Tax. A brief prehistory of double descent.
Proceedings of the National Academy of Sciences, 2020. 2

[47] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. In International Conference
on Learning Representations (ICLR), 2017. 3

[48] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan
Yang, Boaz Barak, and Ilya Sutskever. Deep double descent:
Where bigger models and more data hurt. Journal of Statis-
tical Mechanics: Theory and Experiment, 2021. 2

[49] Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik,
and Ethan Fetaya. Auxiliary learning by implicit differenti-
ation. In International Conference on Learning Representa-
tions, 2021. 1, 2, 6

[50] Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey
Pennington, and Jascha Sohl-Dickstein. Sensitivity and gen-
eralization in neural networks: an empirical study. arXiv
preprint arXiv:1802.08760, 2018. 2

147



[51] M Opper, W Kinzel, J Kleinz, and R Nehl. On the ability of
the optimal perceptron to generalise. Journal of Physics A:
Mathematical and General, 1990. 2

[52] Edouard Oyallon, Eugene Belilovsky, and Sergey
Zagoruyko. Scaling the scattering transform: Deep
hybrid networks. In IEEE International Conference on
Computer Vision (ICCV), 2017. 1, 2, 3, 4

[53] Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos
Komodakis, Simon Lacoste-Julien, Matthew Blaschko, and
Eugene Belilovsky. Scattering networks for hybrid represen-
tation learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2018. 2

[54] Sinno Jialin Pan and Qiang Yang. A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engineering,
2009. 2

[55] Mohammad Pezeshki, Amartya Mitra, Yoshua Bengio, and
Guillaume Lajoie. Multi-scale feature learning dynamics:
Insights for double descent. In International Conference on
Machine Learning, 2022. 2

[56] Christoph Reinders, Frederik Schubert, and Bodo Rosen-
hahn. Chimeramix: Image classification on small datasets
via masked feature mixing. In Luc De Raedt, editor, Pro-
ceedings of the Thirty-First International Joint Conference
on Artificial Intelligence, IJCAI 2022, 2022. 1, 2, 3, 6, 7

[57] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi
Zelnik-Manor. Imagenet-21k pretraining for the masses.
arXiv preprint arXiv:2104.10972, 2021. 1

[58] Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov,
and Nir Shavit. A constructive prediction of the generaliza-
tion error across scales. arXiv preprint arXiv:1909.12673,
2019. 2
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