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Abstract

Few-shot image classification has recently witnessed the
rise of representation learning being utilised for models
to adapt to new classes using only a few training exam-
ples. Therefore, the properties of the representations, such
as their underlying probability distributions, assume vital
importance. Representations sampled from Gaussian dis-
tributions have been used in recent works, [19] to train
classifiers for few-shot classification. These methods rely
on transforming the distributions of experimental data to
approximate Gaussian distributions for their functioning.
In this paper, I propose a novel Gaussian transform, that
outperforms existing methods on transforming experimen-
tal data into Gaussian-like distributions. I then utilise
this novel transformation for few-shot image classification
and show significant gains in performance, while sampling
lesser data.

1. Introduction
Learning from limited data, and adapting neural net-

works to unforeseen tasks has attracted signification at-

tention in recent years. This is essential since the devel-

opment of large datasets for supervised training requires

significant costs, in terms of finances and the amount of

human effort required. Considerable progress has been

made in machine learning in the limited data regime. After

the development of sophisticated optimization-based meta-

learning techniques such as Model-agnostic-Meta-Learning

[5], and metric-based meta-learning techniques, such as

ProtoNets and MatchingNets[13, 17], there has been a

recent shift towards representation learning for few-shot

learning [14, 3, 15, 9]. For example, Tian et al. [14] lever-

age self-supervision and regularization for learning mean-

ingful representations, and state that “a good embedding is

all you need” for few-shot image classification. They pro-

pose a meta-free model as a new State-of-the-Art for few-

shot image classification. Therefore, studying the proper-

ties (such as the underlying probability distributions), of the

learned representations is a useful pursuit in decoding their

usefulness in few-shot learning.

Gaussian representations play an essential role in few-

shot learning. For example, instead of using point proto-

types for few-shot image classification, Lin et al. [8] pro-

pose modelling prototypes as multi-dimensional Gaussian

distributions, and rectify these prototypes using mutual in-

formation maximization. Yang et al. [19] propose a dis-

tribution calibration mechanism to calibrate the represen-

tations of few-shot data and train classifiers by sampling

Gaussian data around the calibrated representations. They

make use of Tukey’s Ladder of Powers [1] to transform the

data so that the underlying distribution of the transformed

data is approximately Gaussian.

In this paper, I propose a novel “data-to-Gaussian” trans-

form that “Gaussianizes” data. (Gaussianization of data

or inducing “normality” into data refers to transforming

the data so that its underlying distribution is approximately

normal). I demonstrate the utility of the proposed trans-

formation method by transforming a variety of data dis-

tributions (including data from experimental datasets) and

show (through qualitative and quantitative evaluation) that

the transform produces data following a distribution that is

closer to a Gaussian distribution. Finally, I replace the dis-

tribution calibration mechanism proposed by Yang et al.
[19] with the proposed transformation method and show

small yet consistent improvements in the classification ac-

curacies, while sampling a significantly lesser amount of

data.

Therefore, in this paper, I make the following contribu-

tions -

• I propose a novel transformation (called the Log-

Tukey transformation) to induce “Gaussianization”

within experimental data.

• I replace the distribution calibration mechanism pro-

posed by Yang et al. [19] with the novel transform and

devise an alternative algorithm for few-shot learning.

• I perform experiments on commonly known bench-

mark datasets, and show significant performance gains
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while sampling 5x lesser datapoints.

The rest of the paper is organized as follows - Sec.2 de-

tails the related work, both in terms of making data more

Gaussian, and representation learning for few-shot learning.

Sec.3 explains the Log-Tukey transform for Gaussianiza-

tion of data. In Sec.4, I first briefly discuss the distribution

calibration method proposed by Yang et al. [19], since the

proposed work is heavily based on it. Next, I detail how

I incorporate the Log-Tukey transform into the algorithmic

setup proposed by them. Sec.5 shows experimental results

of how the method proposed in Sec.4 outperforms the base-

line and Sec. 6 concludes the paper.

2. Related Work

Making data Gaussian-like - A significant amount of

prior work exists in transforming experimental data such

that it follows Gaussian-like distributions. This is because

of the usefulness of Gaussian data. Tukey’s Ladders of

Powers [1] are one of the prominent methods available for

this task. Other transforms such as Log transforms and In-

verse transforms are also used for this purpose. In addi-

tion to these, the Box-Cox [2] transform is another useful

method that is widely used for transforming data and mak-

ing it more Gaussian-like, but can only be used for positive

values. The Yeo-Johnson transform [20] is a modification

of the Box-Cox transform and can also be used for negative

values.

Representation Learning for Few-Shot Learning -

Tian et al. [14] debunk the need for complicated meta-

learning methods for few-shot learning, and emphasize the

utility of representations learned through a proxy task such

as image classification. Mangla et al. [10] make use of self-

supervision and regularization to learn meaningful struc-

tures in the representations of data. Luo et al. [9] ap-

proach few-shot learning by learning global representations

whereas Tokmakov et al. [15] learn compositional repre-

sentations for few-shot learning.

3. Log-Tukey Transform

As stated earlier, “Gaussianization” of data plays an es-

sential role in few-shot learning. Hence, there exist multiple

techniques to transform existing data such that it follows an

approximate Gaussian distribution. Tukey’s Ladder of Pow-

ers transform [1], as shown in Eq. 1, is by far one of the most

popular methods used to Gaussianize data.

x̂ =

{
xλ, ifλ �= 0

log(x), ifλ = 0
(1)

Commonly, the value of λ used is 0.5. However, only using

exponents of the data is not immune to data skew and does

not ensure maximum “normality”/“Gaussianization” in the

data.

Fig. 1 shows the probability distribution function of a

data sample drawn from an Exponential(0.5) distribution af-

ter transforming it using Tukey’s Square Root transform and

that of the corresponding Gaussian distribution. The peaks

of the Tukey-Transformed data distribution and the corre-

sponding Gaussian distribution are misaligned (The peak

of the Tukey-transformed data is to the left of the peak of

the Gaussian distribution). This happens because the ex-

ponential distribution is positively skewed and the Tukey-

transform is unable to sufficiently shrink the large values,

consequently, the distribution of the transformed data is still

positively skewed. (Gaussian distributions do not have any

skew) This is a common problem with the method, there-

fore, maximum “normality” is not ensured in the trans-

formed data. A transform that is used to Gaussianize data

must significantly reduce/remove the skew in a skewed dis-

tribution. Skew (and long tails) in the data is often over-

come by using the logarithm function [7]. Consequently,

in this paper, I introduce the Log-Tukey transform, which

makes use of logarithm along with Tukey’s Square-root

transform, as shown in Eq. 2.

x̂ = log(
√
x+ ε+ 1) (2)

where ε is a small value to prevent the transformation

from zeroing out the input. In the experiments, a value of

1e-4 is used for ε. The +1 is added to ensure that the result-

ing values after the transform are positive.

The Log-Tukey transform removes the data skew and

shrinks the data in a way that the underlying distribution

is much closer to a Gaussian-distribution, with the same

mean and variance, as shown in Fig. 2 (The peaks are hori-

zontally aligned, and the edges lie very close). A quantita-

Figure 1. KDE plot (Probability distribution function) of Tukey-

transformed data sampled from an Exponential(0.5) distribution.

The “Corresponding normal distribution” shown in the figure is

a Gaussian distribution with the same mean and variance as the

Tukey-transformed data. Due to skew in the data, the transformed

data is somewhat different from the corresponding normal distri-

bution.
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Figure 2. KDE plot (Probability distribution function) of Log-

tukey-transformed data sampled from an Exponential(0.5) distri-

bution. The “Corresponding normal distribution” shown in the fig-

ure is a Gaussian distribution with the same mean and variance as

the Log-Tukey transformed data. The skew in the data is removed

and the distribution is much closer to a Gaussian distribution with

the same mean and variance.

tive comparison of the various “Gaussianization” methods

is carried out, where the “closeness” of the distributions is

estimated in terms of the Wasserstein distance [16], which

can be interpreted as the minimum cost of transforming one

of the distributions into the other. Here, I also consider the

Box-Cox [2] and Yeo-Johnson [20] transforms, which are

commonly used for Gaussianization of data. As is evident

from Table. 1, the Log-Tukey transformation has the low-

est Wasserstein distance in all cases, thereby showing the

enhanced ability of the transformation in inducing “normal-

ity” within the data ( The table also includes data from the

Iris dataset [6]). In deep learning, this ability is crucial in

places where we do not know the ground truth distributions

of data/weights, but assume that the underlying distribution

is Gaussian. An example of this is shown in Sec.4 where

we sample data for few-shot learning in the representation

space, assuming it follows a multivariate Gaussian distribu-

tion.

4. Gaussian Sampling for Few-Shot Classifica-
tion

In this section, I make use of the Log-Tukey transform

for few-shot image classification.

4.1. Problem Setting

The typical few-shot classification problem formula-

tion is adopted, where we have a labelled dataset D =
{(xi, yi)|1 ≤ i ≤ T}, where xi is a data sample, and

yi is the corresponding label, T denotes the size of the

dataset. Each datapoint in the dataset is labelled as one of

|C| classes, where C denotes the set of all classes. C is

partitioned into base classes Cb and novel classes Cn, such

that Cb ∩ Cn = φ and Cb ∪ Cn = C. The few-shot clas-

sification model is trained on the base classes, and the goal

Distribution Transform Mean Std Wasserstein

Dev Distance ↓
Uni(0,1) None 0.5 0.289 0.0458

Uni(0,1) Tukey 0.661 0.238 0.0402

Uni(0,1) Box-Cox -0.598 0.384 0.0579

Uni(0,1) Yeo-Johnson 0.456 0.258 0.0405

Uni(0,1) Log-tukey 0.497 0.152 0.0308
Exp(0.5) None 0.5 0.5 0.1482

Exp(0.5) Tukey 0.625 0.326 0.0338

Exp(0.5) Box-Cox -0.928 0.826 0.0227

Exp(0.5) Yeo-Johnson 0.244 0.145 0.0169

Exp(0.5) Log-Tukey 0.466 0.197 0.008
Feature 0 None 5.843 0.825 0.0827

from Tukey 2.411 0.17 0.0153

Iris Box-Cox 1.549 0.109 0.01

Dataset Yeo-Johnson 1.43 0.065 0.0057

Log-Tukey 1.226 0.05 0.0042

Table 1. Quantitative comparison of ”Gaussianization” methods.

Uni stands for the continuous uniform distribution, and Exp stands

for the exponential distribution.

is to train the model in such a manner that it is able to adapt

well to the novel classes, using only a few examples. Typ-

ically, abundant data is available for the base classes but

only few samples are available for the novel classes. The

generalization ability of the model is evaluated in terms of

accuracy in N-way-K-shot tasks [17], where each task con-

sists of N novel classes sampled from Cn and K labeled

samples from each of the N classes. This few-shot labeled

set available for model adaption is called the support set.

The performance of the model is evaluated on the query set

Q, which consists of q test cases from each of the N classes

Q = (xi, yi)
N ·K+Nq

i=N ·K+1. Therefore, the average accuracy of

the model on multiple N-way-K-shot tasks is used as an es-

timate of the model performance.

4.2. Distribution Calibration [19]

In accordance with the growing interest in using effective

representations for few-shot learning , Yang et al. [19] pro-

pose a distribution calibration mechanism which uses statis-

tics of the well-separated base-classes to calibrate the rep-

resentations of novel classes, and make them separable in a

few-shot setting, without over-fitting. They utilize the train-

ing method proposed by Mangla et al. [10] trained on the

base classes, as a feature extractor F . After training, they

record the classwise statistics - mean μbase = {μi|1 ≤ i ≤
|Cb|} and covariances Σbase = {Σi|1 ≤ i ≤ |Cb|} for the

base-classes.

For each few-shot task, they calibrate the Tukey-

transformed representation (obtained by using F on the in-

put image, followed by transformation using Eq. 1) of each

image, using the base class statistics μbase and Σbase. Fi-

nally, they sample data around the calibrated representa-
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tions, and train a linear classifier on data sampled around

all points in the support set. They show that logistic regres-

sion/SVM classifiers trained on the calibrated representa-

tions and sampled data outperform sophisticated optimiza-

tion, metric and generation-based meta-learning methods.

One point that must be noted is that they sample data around

each point in the support set, therefore, if p points are sam-

pled for each image in an N-way-K-shot task, a total of N x

K x p points are sampled. Algorithm.1 outlines the distri-

bution calibration mechanism proposed by Yang et al. [19].

Algorithm 1 Algorithm for training a Few-Shot classifier

using Distribution Calibration

Require : Support features S = (x, y)NxK
i=1

Require : Base class statistics μbase,Σbase

1: Transform S with the Tukey transform (Eq. 1)

2: for (xi, yi) ∈ S do
3: Obtain calibrated mean x′

i and covariance Σ′
i for xi

using the method proposed by Yang et al. [19]

4: Sample multivariate Gaussian data using x′
i and Σ′

i,

and label them as yi
5: end for
6: Train a linear classifier on the sampled + support set fea-

tures

4.3. Gaussian Sampling

I build on the work of Yang et al. [19], since they utilize

Tukey’s Square Root transform. The experimental setting is

a 5-way-5-shot image classifier. As is shown in Sec. 3, the

Tukey-transform alone is not optimal in inducing “normal-

ity” into the data. The sampled Gaussian data, therefore, is

not as close to the ground truth representations of the novel

classes, as possible and there is room for further correction.

Hence, I replace the Tukey-transform and distribution

calibration steps with the Log-Tukey transformation on the

representations of the novel classes in an attempt to make

them more “Gaussian”, following which classwise means

and covariances are calculated using the images from the

support set. Next, data is sampled for each class around the

mean and a linear classifier is trained on the sampled data.

Therefore, if p points are sampled around each mean, a to-

tal of N x p datapoints are sampled, p datapoints for each of

the N classes. In an N-way-K-shot setting, this is K times

lesser than that of the distribution calibration proposed by

Yang et al. [19]. Since a 5-shot setting has been adopted,

5x lesser data is sampled.

Thus, applying the Log-Tukey transform ensures that the

data is more “Gaussian”, therefore sampling Gaussian data

around the class-mean generates more accurate represen-

tations of the novel class. This “Gaussian Sampling” of

data from each class aids in few-shot learning and deliv-

ers a small yet consistent improvement in performance (as

shown in Sec. 5.3), while sampling 5x fewer data, thereby

decreasing the computation. Algorithm. 2 shows the over-

all algorithm of training a few-shot classifier using Gaussian

Sampling.

Algorithm 2 Algorithm for training a Few-Shot classifier

using Gaussian Sampling

Require : Support features S = (x, y)NxK
i=1

1: Transform S with the Log-Tukey transform (Eq. 2)

2: Calculate classwise-means μ’s and covariance Σ’s from

the transformed features

3: Sample multivariate Gaussian data using μ’s and Σ’s for

each class, label them with the corresponding class label

4: Train a linear classifier on the sampled + support set fea-

tures

5. Experiments

5.1. Datasets

I validate the Gaussian Sampling method on the miniIm-

ageNet [11] and the CUB [18] datasets. A variety of classes

including various animals and objects can be found in the

miniImageNet dataset while CUB is a more fine-grained

dataset that includes various species of birds. Datasets with

different levels of granularity may have different distribu-

tions for their feature space. I show the validity of the sam-

pling mechanism on both datasets

miniImageNet is derived from ILSVRC-12 dataset [12].

It has 100 diverse classes with 600 images per class, each

of size 84 × 84 × 3. The data split used in the following

experiments is as proposed by Ravi et al. [11], with 64 base

classes, 16 validation classes, and 20 novel classes.

CUB is a fine-grained few-shot classification bench-

mark. It has a total of 11,788 images, each of size 84 ×

84 × 3, of 200 different classes of birds. The dataset is split

into 100 base classes, 50 validation classes, and 50 novel

classes, following Chen et al.[4]

5.2. Implementation and Metrics

I follow the implementation provided by Yang et al. [19].

I use the method proposed by Mangla et al. [10] as the

feature-extractor, trained on the base classes and evaluate its

performance on the novel classes. I adopt the 5-way-5-shot

setting for the experiments. The values of hyper-parameters

are as per the implementation provided by Yang et al. [19].

I evaluate the performance in terms of classification accu-

racy on the query set. This is evaluated over a total of 500

tasks, in 5 runs of sets of 100 tasks each. Since the distri-

bution calibration proposed by Yang et al. [19] already sur-

passes the performance of other existing methods, and since

the proposed method is heavily based on it, I only compare
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Trial Without GS (%) With GS (%) Difference (%)

1 82.733 83.053 0.320

2 83.053 84.067 1.014

3 84.067 84.177 0.11

4 83.987 84.24 0.253

5 84.187 84.973 0.786

Avg 83.605 84.102 0.497

Table 2. Accuracy on the query set of the MiniImageNet dataset.

Each trial consists of 100 tasks, run with and without Gaussian

Sampling (GS).

Trial Without GS (%) With GS (%) Difference (%)

1 90.747 91.093 0.346

2 91.747 92.4 0.653

3 91.747 92.213 0.466

4 90.307 90.88 0.573

5 90.307 90.813 0.506

Avg 90.9707 91.48 0.509

Table 3. Accuracy on the query set of the CUB dataset. Each trial

consists of 100 tasks, run with and without Gaussian Sampling

(GS).

the proposed method against theirs [19] 1. I show the im-

provement in the performance across multiple runs for both

the miniImageNet and CUB datasets.

5.3. Results

Table. 2 shows the accuracies of the distribution cali-

bration mechanism [19] and the Gaussian sampling (ours)

mechanism for the miniImageNet dataset. In all the trials,

the average accuracy of all tasks is better with the Gaussian

Sampling than without. Similar results are observed for the

CUB dataset, as seen in Table. 3. From the tables, it is clear

that with the addition of a single log function, the accuracy

can improve by ∼0.5%. This is a significant gain while

using 5x lesser sampled data. All the results shown have

been obtained after sampling 750 datapoints in total for the

Gaussian sampling method, and 750 x 5 = 3750 datapoints

for the distribution calibration method.

I also examine the effect of Gaussian Sampling with the

variation of the number of datapoints sampled for each point

in the support set. Fig. 3 shows the variation in average task

accuracy for the miniImageNet dataset. Although the differ-

ence in accuracy is small, Gaussian sampling consistently

outperforms distribution calibration [19]. Fig. 4 shows a

similar trend in the variation in average accuracy for the

CUB dataset with different amounts of sampled data.

1The code for the experiments is publicly available at -

https://github.com/ganatra-v/gaussian-sampling-fsl

Figure 3. Variation in the accuracy with the number of sampled

data per point in the support set, with/without Gaussian Sampling

for the miniImageNet dataset. The number of datapoints sampled

for the plot without Gaussian Sampling is 5x the value on the x-

axis

Figure 4. Variation in the accuracy with the number of sampled

data per point in the support set, with/without Gaussian Sampling

for the CUB dataset. The number of datapoints sampled for the

plot without Gaussian Sampling is 5x the value on the x-axis

6. Conclusion

In this paper, I propose a new method to induce “normal-

ity” within experimental data, called the Log-Tukey trans-

form. By transforming data sampled from various distribu-

tions, I show the effectiveness of this transform in making

data more Gaussian-like as compared to the existing meth-

ods. Further, I employ this transform to sample Gaussian

representations in a few-shot learning method, and show

significant incremental gains while reducing the amount of

computation. I also demonstrate the generality and utility of

the method by conducting experiments on datasets of var-

ied granularity, and with different amount of sampled data.

A gain of ∼0.5% in accuracy by the addition of a single

logarithm function seems like a good bargain. A possible

direction for future work would be to examine the effective-

ness of the Log-Tukey transform in other scenarios where

Gaussian priors and sampling multi-variate Gaussians from

experimental data are involved!
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