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Abstract

Convolutional layers are a fundamental component of
most image-related models. These layers often implement
by default a static padding policy (e.g. zero padding), to
control the scale of the internal representations, and to al-
low kernel activations centered on the border regions. In
this work we identify Padding Aware Neurons (PANs), a
type of filter that is found in most (if not all) convolutional
models trained with static padding. PANs focus on the char-
acterization and recognition of input border location, in-
troducing a spatial inductive bias into the model (e.g. how
close to the input’s border a pattern typically is). We pro-
pose a method to identify PANs through their activations,
and explore their presence in several popular pre-trained
models, finding PANs on all models explored, from dozens
to hundreds. We discuss and illustrate different types of
PANs, their kernels and behaviour. To understand their rel-
evance, we test their impact on model performance, and find
padding and PANs to induce strong and characteristic bi-
ases in the data. Finally, we discuss whether or not PANs
are desirable, as well as the potential side effects of their
presence in the context of model performance, generalisa-
tion, efficiency and safety.

1. Introduction
Convolution has passed the test of time. Older than

its competitors [7], convolutional neurons have been

successfully integrated with memory-based models (e.g.

LSTM [13], GRU [27]), attention-based architectures [25]

and generative tasks [19]. However, convolution has an un-

desired side-effect: the implicit reduction of internal repre-

sentations [1] caused by the impossibility of applying the

convolved filter on border locations. To avoid this reduc-

tion, the most frequently used technique is padding, adding

Figure 1. On the left, example of two left PAN filters. Activations

on left-border locations (A) give larger outputs than in the centre

(location B). On the right border, outputs are also slightly distinct.

An actual neuron behaving analogously to the centre kernel can be

appreciated in Figure 6.

synthetic data around the border of the input, so that kernels

can activate there, and produce an output for every input.

The most popular padding type is, by far and wide, zero-

padding (adding zeros to the input border). That is, a static

padding, the same for every sample and location. Previous

works noticed this constant signal adds a bias that reduces

generalisation [1, 2, 14, 17], and several dynamic padding

methods have been proposed to prevent it [12, 17, 23, 27],

with very limited adoption 1. The reason for this popularity

is simple: models obtain better top-of-the-line metrics with

static padding, when trained and tested on data from the

same source. So far, the padding bias has been excused.

In this work we dig deeper into how padding influences

models. To do so, we provide evidence on how much model

complexity is dedicated to the data edge bias (between 1%

and 3%), and the magnitude of this shortcut in the model’s

outcome. This is characterized by the presence of padding
aware neurons (PANs), a symptom of padding bias. Our

work shows how PANs are likely present in the vast ma-

jority of models trained with static padding, and proposes a

1https://pytorch.org/vision/stable/models.html

https://www.tensorflow.org/resources/models-datasets

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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diagnosis methodology which allows to locate them through

their activation patterns.

2. Setting
This work has been implemented using PyTorch

1.12.0 [18], torchvision 0.13.0 [16], numpy
1.23.1 [9] and scipy 1.8.1 [22], the latter for

Kolgomorov-Smirnov statistics. All models are provided

pre-trained by PyTorch. These are:

• ResNet-50 [10], trained on ILSVRC2012 [20], named

ResNet101 Weights.IMAGENET1K V2 in torchvision.

• MobileNetV3 [11], trained on ILSVRC2012, named

MobileNet V3 Large Weights.IMAGENET1K V2 in

torchvision.

• GoogLeNet [21], trained on ILSVRC2012, named

GoogLeNet Weights.IMAGENET1K V1 in torchvi-

sion.

For each of these models, we analyse all convolutional

layers with kernels bigger than 1x1. Notice these pre-

trained models are frequently used as source for fine-tuning

other models.

We use a random batch from Caltech101 [6] in §3, for

generating activations. In §4 we use the validation split

of ILSVRC2012 for assessing bias. The code necessary

to reproduce the experiments of this work can be found in

https://gitlab.com/paper14/padding-aware-neurons.

3. Definition & Analysis
Padding aware neurons, or PANs for short, are convo-

lutional filters that learn to recognise the padding added to

the input by some layers (e.g. a convolutional layer). PANs

pass information on border location through the network,

introducing a spatial bias into the model which may or

may not be desirable, depending on the domain of applica-

tion [2]. Padding is often implemented as a vertical or hor-

izontal edge (e.g. zero padding), which makes PANs a type

of edge detector. Edge detectors are fundamental vision ker-

nels. The most popular ones include Prewitt, Sobel and the

Laplacian of Gaussian (shown in Figure 2). These kernels

look for value contrasts anywhere in the input [15, 24], but

are maximised when the value contrast is centred on the

kernel (e.g. centre square of a 3x3). This is visible in the

symmetry exhibited by the filters of Figure 2. On the edges

defined by padding, which are never centred on the kernel,

edge detectors still activate moderately. In contrast to a reg-

ular edge detector, a PAN would maximize its output when

the edge is located at the border of the filter, in order to dis-

criminate the padding edges from other edges in the input.

An example of one such kernels are shown in Figure 1.

Figure 2. Traditional edge detector filters. Prewitt (1st col.), Sobel

(2nd col.) and Laplacian of Gaussian (3rd col.).

We hypothesise the existence of two types of PANs:

nascent and downstream. Nascent PANs react when directly

exposed to a padding area of the inputs of their layer, while

downstream PANs react to the presence of padding as con-

veyed by PANs in previous layers (i.e. they do not directly

perceive padded values). In this work we focus on nascent

PANs, which may have a configuration analogous to the ker-

nel shown in Figure 1. Beyond these toy examples, we con-

sider any neuron that activates distinctively – be it strongly

or weakly – on padded areas as a PAN. Notice a PAN can

react to one or more borders of the input. These include top

row (T), bottom row (B), left-most column (L) and right-

most column (R), but also any combination of these (i.e.

T, B, L, R, TB, TL, TR, BL, BR, LR, TBL, TBR, BLR and

TBLR) in their non-overlapping definition (e.g. T ∩ BT =

∅).

3.1. Finding Edge Detectors

Considering the complexities of characterising PANs

through their high dimensional kernels [3, 8], we decide to

use their activations instead. Next, we propose a method

to identify nascent PANs by looking at the activations they

produce on a padded input sampling. To be precise, we

consider four padding regions of the input (top and bottom
rows, left and right columns, all with corner overlap) of

size one pixel on the short axis2, and the remaining of the

input (centre, with no overlap). We record the activations a

given neuron produces on those five regions while process-

ing a batch of in-distribution data.

From these activations, we obtain five empirical proba-

bility density functions (PDF) per neuron (Atop, Abottom,

Aleft, Aright, Acentre). By comparing every border PDF

against Acentre we obtain four Kolgomorov-Smirnov test

(KS), which measure how distinct padding activations are

for a given neuron. At this point its important to notice

the sample size difference between border and center acti-

vations. Atop, Abottom, Aleft, Aright all include the same

number of values, N . Acentre on the other hand includes

(N − 2)2 activations, which grow quadratically w.r.t. N as-

2Only the first/last row/column of the input guarantees the receptive

field of the kernel covers the entire padded area, regardless of kernel size.
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Figure 3. Atop, Abottom, Aleft, Aright and Acentre PDFs for two

convolutional neurons of the ResNet50. Legend shows KS value

of centre against every border region. Top plot: Neuron 51 from

layer conv 1, an edge detector. Bottom plot: Neuron 101 from

layer conv2 2, a regular neuron.

suming a stride of one.

There is another difference between border and central

activations. While border regions are entirely composed

by edge data (the one defined by padding), central areas

are partly so. While Atop, Abottom, Aleft and Aright con-

tain only edge activations, Acentre contains a majority of

non-edge activations and a few data-driven edge activations.

This skews the centre PDF w.r.t. the border ones, and turns

the KS statistic into a measure of how distinctively are edge

activations. A sort of padding-like edge detector. No-

tice this method can not find edge detectors which are not

straight vertical or horizontal. Figure 3 shows an example of

border and centre PDFs for two neurons, together with the

corresponding KS values while using the two-sided KS,

where the null hypothesis is that the two distributions are

identical.

Computing the KS values for all neurons in a model

shows the overall activation divergence between centre

and border locations. The KS distributions shown in

Figure 4 indicate most neurons have low KS values re-

gardless of layer depth, with a mean KS between 0.1

and 0.3 on all cases. In other words, most convo-

lutional neurons have no discriminative power between

activations in a padded border and the centre. No-

Figure 4. Stacked distribution of KS distances for the first

and last four convolutional 3x3 layers of the ResNet50.

Notice each neuron contributes with four values to

each plot, KS(Atop, Acentre), KS(Abottom, Acentre),
KS(Aleft, Acentre) and KS(Aright, Acentre).

tice each neuron contributes with 4 values to each plot

of Figure 4 (KS(Atop, Acentre), KS(Abottom, Acentre),
KS(Aleft, Acentre) and KS(Aright, Acentre)), which

causes more KS values to be close to zero (e.g. a vertical

edge detector will most often generate low KS values for

the top and bottom PDFs). Overall, results that indicate po-

tential edge detector and PAN neurons (those with high KS

values) are a minority found in most layers, regardless of

depth.

3.2. Finding PANs

A KS test between the complete Acentre and a border

PDF cannot properly discriminate between PANs and the

rest of edge detectors, as the presence of non-edge activa-

tions in Acentre dominates its PDF. To discriminate PANs

from regular edge detectors using the KS test, we need a

distribution of Acentre PDF which is comparable to border

PDFs, that is, one which contains only edge activations. To

that end, we define a simple hypothesis: the centre region

of an input (of size (N − 1)2) will include at least as many

edges as a padded border (of size N ). Notice this hypoth-

esis, as well as the PDF reliability, grows weaker with the

reduced input sizes typical of deeper layers.

Leveraging this hypothesis we define an heuristic: we

truncate Acentre by keeping only the k highest (A+
centre)

and k lowest (A−centre) values of Acentre, where k is the

number of values in a padded border. We keep both the

highest and lowest, since a PAN may detect padding by ac-

tivating particularly strongly or weakly on it. For A+
centre

we use the KS-test with the less hypothesis (KS+), i.e.:

A+
centre distribution is less than that of a margin (top, down,

left or right), and for A−centre, we use the greater hypothesis

(KS−), i.e. as before but comparing with A−centre instead.

The effect of using the truncated centre PDF, is shown in

Figure 5. The plot shows a neuron with negative activations

for the top border, with the rest of activations being closer
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Depth 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 All

2*ResNet 0 4 3 0 0 10 1 3 0 16 1 1 1 1 2 30 8 - - - 81

0% 6% 4% 0% 0% 7% 0% 2% 0% 6% 0% 0% 0% 0% 0% 5% 1% - - - 2.0%

2*MobileNet 0 5 1 5 0 3 2 1 5 6 3 11 6 9 46 35 - - - - 138

0% 31% 1% 6% 0% 2% 1% 0% 2% 3% 1% 2% 0% 1% 4% 3% - - - - 2.7%

2*GoogLeNet 0 8 2 1 0 0 0 8 1 7 0 2 1 1 0 12 10 5 0 0 58

0% 4% 1% 3% 0% 0% 0% 16% 0% 10% 0% 3% 0% 1% 0% 9% 3% 3% 0% 0% 1.7%
Table 1. Number of PANs found in different model, layer-wise. First row is absolute number of PANs, second row is percentage of PANs

relative to layer size (rounded down). In bold, top three values per model on either category. Only 2D convolutional layers with kernels

3x3 or larger considered. Computed using θ = 0.5

Figure 5. Histogram of neuron activations on the border regions,

the center (purple) and the center truncated on the minus side

(brown). Legend shows to Kolmogorov-Smirnov test. KS cor-

responds to border vs center. KS− corresponds to border vs trun-

cated center. Model: ResNet50. Layer: Conv3 2. Neuron idx: 46.

to zero. The computed KS(Atop, Acentre) is 0.53. These

results indicate this neuron is a vertical edge detector. How-

ever, when compared with the truncated A−centre, the same

Atop is no longer distinctive (KS−(Atop, A
−
centre) = 0.0),

which indicates this neuron is not a PAN.

Given these insights, we label as PANs neurons which

hold (1) a high KS(Atop|bottom|left|right, Acentre) and,

(2) a high KS+(Atop|bottom|left|right, A
+
centre) or a high

KS−(Atop|bottom|left|right, A
−
centre). We set a threshold

θ = 0.5 in the rest of the paper. θ can be modified to

reduce or increase the requirements needed for PAN de-

tection. The distributions of PANs identified using this

methodology with θ = 0.5 is shown in Table 1.

On the models considered and with θ = 0.5, PANs rep-

resent roughly 2% of all convolutional filters, and can be

found at different depths. This may be caused by the explicit

information about the presence of padding being lost or in-

tegrated (thus mixing with other activations) into other neu-

rons after going through several layers. The disappearance

of explicit padding information, however, does not preclude

the information being used by the model, but it can mo-

tivate the model to periodically re-locate explicit padding

so that the next few layers can more easily use that infor-

mation. Later layers seem to include a remarkable amount

of PANs, likely influenced by the large number of neurons

found there. This could be influenced by the reduced relia-

bility of the KS method when applied on inputs with small

width and height, but it could also indicate padding location

plays an important role on the final prediction.

Overall, applying the methodology to thousands of fil-

ters yields hundreds of edge detectors and dozens of PANs

per model. By slightly weakening the restrictions required

to be labelled as a PAN their number can be easily doubled

(e.g. ResNet includes 193 PANs when using θ = 0.4).

3.3. PAN exploration

Let us analyse neurons identified as PANs by the previ-

ously proposed method. For each neuron we look at their

histogram of activations for the centre (complete and trun-

cated PDF) and border regions. We also show these same

plots, when inference is made replacing the zero padding

policy by a reflect padding policy. Finally, we show activa-

tion maps for a couple of samples to understand its spatial

response.

The top plot of Figure 6 shows a PAN, with distinc-

tively low activation values on all four borders, even when

compared against the lowest values produced within the

larger central area (i.e. A+
centre, in pink). With θ = 0.5,

the PAN is detected as TBLR. An inspection of the ac-

tivations produced by the kernel on two inputs (bottom

plot of Figure 6) shows how this PAN has a preference

for the bottom and top padding, which is consistent with

KS+(Aleft|right, A
+
centre) < KS+(Atop|bottom, A+

centre)
(as shown in the top plot). Notice Aleft and Aright have

a bimodal distribution, peaking both at -10 and at -4. This

is caused by particularly strong activations on corner posi-

tions, which are high even within Atop and Abottom. This

neuron, beyond being padding aware, is also corner aware, a

behavior found on other neurons (e.g. conv1 0, 17; conv3 1,

212; conv4 1, 296; conv4 2, 447). When the padding is

changed from zero to reflect, as shown in the middle plot of

Figure 6, the neuron no longer detects padding. The distri-

butions of activation values for border regions become in-

distinguishable from the distribution in the centre.
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Figure 6. Top plot: Activation histogram of a PAN, where

all four borders have high KS. Includes distributions for bor-

der regions, and central locations (complete and truncated).

Legend shows KS confidence w.r.t. truncated distribution (i.e.

KS+(Aborder, A
+
centre)). Middle plot: Same as top, using

padding reflect. Bottom plots: Activation heatmap on an input

with zero and reflect padding. Model: ResNet50. Layer: Conv3 1.

Neuron idx: 41.

Another representative neuron is shown in Figure 7. In

this case the PAN activates distinctively high on the left

and right padding. Since Aleft is significantly higher than

Aright, this may be primarily a L PAN that also detects the

right border by complement. This is in fact a behaviour

compatible with the kernel shown at the centre of Figure 1.

For the top and bottom padding locations, this neuron’s ac-

tivations are indistinguishable from those on central loca-

tions. The long tail of the top and bottom distributions

speaks of potential corner detection capabilities. All this is

illustrated by the bottom plot of Figure 7, which shows ac-

tivations on two inputs. Notice some edges are detected in

centre locations, but not as strongly as on the left and right

padding. The middle plot of Figure 7 shows the same ac-

tivations when zero padding is replaced by reflect padding.

When this is the case, the neuron no longer detects padding,

Figure 7. Top plot: Activation histogram of a PAN, where the

left and right borders have high KS. Includes distributions for

border regions, and central locations (complete and truncated).

Legend shows KS confidence w.r.t. truncated distribution (i.e.

KS+(Aborder, A
+
centre)). Middle plot: Same as top, using

padding reflect. Bottom plots: Activation heatmap on an input

with zero and reflect padding. Model: ResNet50. Layer: Conv2 1.

Neuron idx: 67

with Aleft and Aright becoming aligned with the rest of

distributions.

The last neuron discussed here is the downstream
PAN of Figure 8. Following the proposed methodol-

ogy, this neuron is detected as a potential edge detec-

tor (KS(Atop, Acentre) = 0.66), but not as a PAN

(KS+(Atop, Acentre) = 0.0) (see top plot). Its spatial ac-

tivations on two different inputs (bottom plots of Figure 8)

indicate this is no regular edge detector. It activates distinc-

tively on the second highest row of the input, as if it was

detecting the top padding from afar. This explains the bi-

modal behaviour of this neuron in the top plot, where the

truncated +centre distribution (which includes most of the

second row) peaks both at around two (activations of the

second highest row) and zero (activations on the rest of cen-
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Figure 8. Top plot: Activation histogram of a neuron which is an

edge detector candidate and a potential downstream PAN, not de-

tected as PAN. Includes distributions for border regions, and cen-

tral locations (complete and truncated). Legend shows KS confi-

dence w.r.t. truncated distribution (i.e. KS+(Aborder, A
+
centre)).

Notice the truncated centre distribution on the high side (pink) is

bimodal, with one peak around zero and one around two. Middle

plot: Same as top, using padding reflect instead of zero. Bimodal

distribution disappears. Bottom plots: Activation heatmap on an

input with zero and reflect padding. Model: ResNet50. Layer:

Conv3 2. Neuron idx: 158

tre). Since the kernel of this neuron is 3x3, it cannot di-

rectly detect the padding from this location (i.e. on the sec-

ond highest row activations, the kernel is located entirely

on the unpadded input). This neuron gets the information

about image border location from a previous layer, and turns

off (see middle plot of Figure 8) when static padding is re-

moved.

3.4. Nascent PAN types

Through the analysis defined in the previous sections we

have characterised and identified several types of nascent

PANs, those that directly detect padding in the input.

Nascent PANs frequently have a multi-modal behaviour, de-

tecting two or more padding edges. This multi-border de-

tection can be generic (i.e. several borders detected indistin-

guishably), or it can be distinct for different border types.

The neuron shown in Figure 6, for example, can discrim-

inate between horizontal borders (top and bottom), verti-

cal borders (left and right) and the rest of the input. But

it cannot discriminate among horizontal borders (between

top and bottom padding), or among vertical ones (left and

right padding). On the other hand, the neuron shown in Fig-

ure 7 can discriminate between left and right padding. This

later behaviour is consequence of the asymmetrical kernels

PANs may have, exemplified in the kernels of Figure 1.

We identify 14 possible types of nascent PANs based on

which padding borders they detect (i.e. T, B, L, R, TB, TL,

TR, BL, BR, LR, TBL, TBR, BLR and TBLR). We study the

distribution of nascent PAN types with the proposed method

in Table 2. Single border detectors (i.e. T, B, L, R) are the

most frequent types, representing about 75% of all identi-

fied PANs. The rest are mostly PANs which can detect com-

plementary borders (i.e. TB, LR), or all four borders (i.e.

TBLR). Complementary borders detecting PANs are likely

to be mirrored variations of the kernel shown in the mid-

dle of Figure 1, while the four borders PAN may be asym-

metrical versions of the bottom Laplacian of Gaussian filter

shown in Figure 2.

4. Performance and Bias
Once we have established the existence and pervasive-

ness of PANs in models trained with zero padding, let us

now assess the role these neurons play in model behaviour.

To do so, we study their influence in the network output us-

ing four versions of the same pre-trained ResNet50, without

fine-tuning:

• The original model, using the default zero-padding.

• The reflect model, where the padding of all convolu-

tional neurons has been changed to PyTorch’s reflect.

• The PAN-reflect model, where the padding of the neu-

rons identified as PANs by the previous methodol-

ogy (for ResNet50, 2.0% of convolutional neurons, 81

overall) has been changed to reflect. The rest of neu-

rons preserve zero-padding.

• The RAND-reflect model, where the padding of ran-

domly sampled non-PANs has been changed to reflect

and the rest preserve zero-padding. The random sub-

set has the same size (2.0% of neurons) and follows

the same layer distribution as PAN-reflect. This is the

control set.

We use the quantitative differences in the outputs of these

models to study the impact padding has towards specific
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PAN type T B L R TB TL TR BL BR LR TBL TBR TLR BLR TBLR
ResNet 10 32 8 10 8 1 0 0 3 4 1 0 0 0 4

MobileNet 47 90 9 6 9 5 0 1 3 8 0 0 1 1 13

GoogLeNet 7 24 4 2 7 1 0 0 1 7 0 0 1 1 3
Table 2. Distribution of PAN types identified on different models, with θ = 0.5.

classes (i.e. the amount of padding bias). Then, we study the

influence of PANs in the context of particular data samples.

4.1. Bias influence

To verify to which extend PANs add relative location

bias to the model, we compare the soft-max outputs of orig-
inal with those of PAN-reflect. To be precise, we compute

the odds of the prediction probability for each class. As-

suming samples to be i.i.d., this can be computed as

the quotient of the sum of soft-max outputs for all images i
in the dataset:

Odds(c) =
P (c|MPan−reflect)

P (c|Moriginal)
=

∑
i MPan−reflect(i)[c]∑

i Moriginal(i)[c]

And analogously for RAND-reflect. For PAN-reflect,
odds above 1 for a class c indicate a higher confidence in

the prediction of c in the absence of PANs. This can also be

interpreted as padding being used as evidence against that

class. Conversely, values below 1 would imply padding is

being used as evidence toward the class.

Figure 9 presents the logarithm of the odds per class,

computed on the ILSVRC validation set for both PAN-
reflect and RAND-reflect. All classes are affected, a few

severely so. Table 3 lists all classes whose odds change by

more than 7%. We choose a threshold instead of the top-K

to illustrate how the odds change in an asymmetrical man-

ner: there are more classes which use padding as evidence

toward the class (odds < 1) than those that use it against.

Remarkably, classes for which padding is used as evidence

against it seem to be mostly fine-grained types (mainly an-

imal species and dogs, with the exception of sliding door),

which hints at the relevance of padding for overfitting. Con-

versely, there are no animals among the classes that use

padding as positive evidence. Using a 5% threshold yields

consistent results: out of the 111 classes with negative log

odds, the only animal is the English Foxhound, whereas for

the 99 classes with positive log odds, there are only five

classes which are not fine-grained animals.

To verify if findings are related with the relevance of

padding or with the noise added by the data distribution,

let us consider the results while using RAND-reflect (or-

ange in Figures 9 and 10). In this case, the distribution of

PANs’ odds is characteristically different from that of ran-

dom, similarly-sampled neuron sets. While PANs seem to

affect most classes to a large degree, either positively or

Figure 9. Ordered change in log-odds, for PAN-reflect and RAND-
reflect w.r.t. original model. Vertical axis is the amount of change.

±0.05 log-odds corresponds to 5% difference in odds.

negatively, the random set effect on classes is very lim-

ited. Only a few classes are affected, with the most com-

mon result being no output change. These results indicate

PANs strongly and homogeneously alter most classes’ prior,

whereas an equally sized random subset of neurons does

not.

Repeating this experiment with model reflect changes

the input distribution of 100% of convolutional layers,

whereas the previous two experiments (with PAN-reflect
and RAND-reflect) changed only 2% of neurons. As a re-

sult, the reflect odds suffer more extreme changes than ei-

ther one of the above. No tendency around which classes

receive positive and which negative log odds was found. In

this particular experiment, we believe the larger odds vari-

ance has to do with noise added to the distributions, rather

than due to some intrinsic quality of how padding is used.

4.2. Sample influence

The previous section shows a clear influence of padding

in the overall performance and behaviour of the model.

However, the class-scale at which analysis is made means

that the effect of PANs on single predictions is aggregated

in the mean for each class. To analyse this facet, we look

for the individual samples with the largest change in the

network’s output. We compute this change as the Manhat-

tan distance between the logits of the original and the PAN-
reflect model.

Significantly, the 30 images with the biggest padding in-

fluence are all incorrectly classified by both the original and
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Figure 10. Class histogram of log odds change w.r.t. original

model, computed for both PAN-reflect and RAND-reflect. Notice

how the former has both a wider range and a bimodal distribution.

Class Odds Class Odds

drum 0.91 cheetah 1.10

muzzle 0.91 Norfolk Terrier 1.09

packet 0.91 sliding door 1.09

sunscreen 0.92 Irish Water Spaniel 1.08

barrette 0.92 box turtle 1.08

tandem bicycle 0.92 Dobermann 1.08

candle 0.92 Flat-Coated Retriever 1.08

tent 0.92 Alaskan Malamute 1.08

tray 0.92 gossamer-winged butterfly 1.07

comic book 0.93 West Highland White Terrier 1.07

Windsor tie 0.93 Greater Swiss Mountain Dog 1.07

tile roof 0.93 guenon 1.07

backpack 0.93

overskirt 0.93

buckle 0.93

lab coat 0.93

shoal 0.93

paper knife 0.93

whistle 0.93

ice pop 0.93

stethoscope 0.93

barbell 0.93

lakeshore 0.93

megalith 0.93

scarf 0.93
Table 3. Classes with odds beyond 7% computed between the

PAN-reflect and the original model. Classes with odds above one,

increase their confidence in the absence of PAN information, are

less frequent and are mostly composed of animals. For odds below

1, we check 1
odds(c)

> 1.07.

the PAN-reflect models, the predicted class remaining the

same. Analysing the top 5,000 most affected images (10%

of the whole dataset), we find that the number of disagree-

ments between models is remarkably low (67 images). The

limited impact PANs have on samples which are not part of

the model training set, could also be the result of padding in-

formation being used for overfitting particularly hard train-

ing samples.

When repeating the experiment on RAND-reflect, these

effects disappear. The sample with the 5000th highest di-

vergence with the PAN-reflect has around 4 distance units,

whereas for RAND-reflect with this distance happens on the

13th sample. This alone shows PAN-reflect affects with

more strength to orders of magnitude more samples than

RAND-reflect. Of those 13 samples, 12 of them are incor-

rectly predicted as tench, which indicates the preference of

these randomly chosen 2% of neurons for this class.

5. Discussion
The use of static padding in convolutional layers pro-

vides the model with a stable signal of a perceptual edge.

That much was known from previous works [1, 2, 14, 17].

This paper reveals the extent of this inductive spatial bias,

identifying a set of neurons specialized in locating and ex-

ploiting it (what we call PANs), which account for at least

1.5%-3% of all deep CNNs convolutional filters. Consid-

ering PANs are likely to be inheritable (as long as the fine-

tuned model keeps zero padding) and the fact that PANs

were found on popular pre-training sources, one can assume

PANs are a widespread phenomenon.

Experiments indicate padding information is used to

change the prior of most classes. PANs seem to be used as

evidence against fine-grained classes (i.e. animals), and sel-

dom as evidence for them. For the ILSVRC task we derive

two different hypothesis for explaining this. Either samples

from fine-grained class are generally better framed, which

keeps the padding away from the patterns most relevant for

the class, resulting in a spatial bias that can be leveraged; or

padding is used as a reference to identify arbitrary patterns

in particularly hard samples, helping overfit on examples

from the long tail [5]. Testing both these hypothesis remains

future work as it requires its own experimental setup.

The desirability of PANs in a model depends on the ap-

plication, and its definition of un/desirable bias. On tasks

with fixed framing (e.g. fundus retina images [26], static

cctv feed [4] etc.) PANs may provide a useful location ref-

erence allowing a better contextualisation and structuring

of the input. On tasks which entail frame freedom (e.g. ob-

jects in the wild, variances among devices) PANs learn an

arbitrary bias, which may contribute to overfitting and lack

of generalisation [1, 2, 17]. For these reasons, we recom-

mend practitioners to choose padding carefully, using dy-

namic padding (such as reflect) by default but accounting

for the removal of PAN information. It remains to be seen

how the presence of PANs affect in downstream tasks dif-

ferent to classification, such as training or fine-tuning for

object detection, or whether fine-tuning in a new task re-

moves or adds more PANs.

Even when PANs are useful, their current design is not
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efficient. A lot of parameters (PAN kernels) and com-

putation are wasted on recognizing a constant. For those

cases where PANs are indeed desirable, one may find more

efficient and rich versions of them, at least in three dif-

ferent ways: (1) by implementing a sparse computation

which skips padding products, (2) by using models with

pre-initialised PAN kernels spread along the model, and (3)

by adding the complementary axis information to padding

(row height in vertical padding and vice-versa) for complete

spatial reference.

Finally, let us consider a safety vulnerability PANs en-

tail. Given their characteristic pattern, PANs are easy to

fool and trigger. Adding a one-row/column of zeros any-

where in the input will cause PANs to fire, out of the mani-

fold and into unpredictability. This can be easily mitigated,

for example, by doing data augmentation during training

with random rows/columns of padding in the input. This is

strongly suggested for models deployed on critical domains.
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Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Van-

derPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,

Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
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Hervé Audren, Irvin Probst, Jörg P. Dietrich, Jacob Sil-

terra, James T Webber, Janko Slavič, Joel Nothman, Jo-
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