
PARTICLE: Part Discovery and Contrastive Learning
for Fine-grained Recognition

Oindrila Saha Subhransu Maji
University of Massachusetts, Amherst

{osaha, smaji}@cs.umass.edu

Abstract

We develop techniques for refining representations for
fine-grained classification and segmentation tasks in a self-
supervised manner. We find that fine-tuning methods based
on instance-discriminative contrastive learning are not as
effective, and posit that recognizing part-specific variations
is crucial for fine-grained categorization. We present an
iterative learning approach that incorporates part-centric
equivariance and invariance objectives. First, pixel repre-
sentations are clustered to discover parts. We analyze the
representations from convolutional and vision transformer
networks that are best suited for this task. Then, a part-
centric learning step aggregates and contrasts represen-
tations of parts within an image. We show that this im-
proves the performance on image classification and part
segmentation tasks across datasets. For example, under
a linear-evaluation scheme, the classification accuracy of
a ResNet50 trained on ImageNet using DetCon [17], a
self-supervised learning approach, improves from 35.4% to
42.0% on the Caltech-UCSD Birds, from 35.5% to 44.1%
on the FGVC Aircraft, and from 29.7% to 37.4% on the
Stanford Cars. We also observe significant gains in few-
shot part segmentation tasks using the proposed technique,
while instance-discriminative learning was not as effective.
Smaller, yet consistent, improvements are also observed for
stronger networks based on transformers.

1. Introduction

Contrastive learning based on instance discrimination

has become a leading self-supervised learning (SSL) tech-

nique for a variety of image understanding tasks (e.g., [6,

13, 15, 19, 41]). Yet, their performance on fine-grained cat-

egorization has been lacking, especially in the few-shot set-

ting [10, 33]. Instances within a category often appear in

a variety of poses which are highly discriminative of in-

stances. Hence instance discrimination tends to learn repre-

sentations predictive of object parts and pose, which how-

ever are a nuisance factor for categorization. Appearance

of parts on the other hand enable fine-grained distinction

and thus part-centric appearance have often been used to

improve fine-grained recognition [3, 22, 34, 40].

green line = +ve samples

average each

cluster

average each

cluster

Cluster features

Step I : Part Discovery

Step II : Part Contrastive Training

Encoder

Momentum

Encoder

Pixel-wise labels

from Step I

Mask

Pooling

Part-wise

Contrast

red line = -ve samples

fk

For k = 1, …, N

fk+1 = fktrained

f1 = Initial network

for image in TrainSet:

fk

Extract pixel features

Figure 1. Self-supervised fine-tuning using part discovery and
contrastive learning (PARTICLE). Given a collection of unla-

beled images, at each iteration we cluster pixels features from an

initial network to obtain part segmentations (§ 3.1), and fine-tune

the network using a contrastive objective between parts (§ 3.2).

Based on these observations we develop an approach for

fine-tuning representations that is especially suited for fine-

grained classification and segmentation tasks (e.g., recog-

nizing species of birds and segmenting their parts). Our

approach shown in Fig. 1 consists of two steps. First, we

discover parts within an image by clustering pixel represen-

tations using an initial network. This is done by clustering

hypercolumn representations of CNNs [7,14], or patch em-

bedding of vision transformers (Step I). We then train the

same network using an objective where we aggregate and

contrast pixel representations across parts within the same

image (Step II). Similar to prior work (e.g., [5,7,17,35]) we

learn invariances and equivariances through data augmenta-

tions. The resulting network is then used to re-estimate part

segmentations and the entire process repeated (see Algo-

rithm 1). Our approach, for part discovery and contrastive

learning (PARTICLE) can be used to adapt representations

to new domains in an entirely self-supervised manner.

We test our approach for fine-tuning ImageNet [27] self-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

167

supervised residual networks (ResNet50) [16] and vision

transformers (ViTs) [11] to fine-grained domains without

labels. We consider two tasks: 1) classification under a

linear evaluation, and 2) part segmentation with a few la-

beled examples. For ResNet50 networks trained with Det-

Con [17], PARTICLE improves the classification accuracy

from 35.4% to 42.0% on Caltech-UCSD birds [39] and

35.5% to 44.1% on FGVC aircrafts [24], closing the gap

over ImageNet supervised variant. On part-segmentation

our approach leads to significant improvements over both

the baseline and supervised ImageNet networks. Sim-

ilar gains are also observed for networks trained using

momentum-contrastive learning (MoCov2 [15]). ViTs, in

particular those trained with DINO [4], are highly effec-

tive, surpassing the supervised ResNet50 ImageNet base-

line, but our approach improves the classification accuracy

from 83.3% to 84.2% on birds, 72.4% to 73.6% on air-

crafts, and 72.7% to 73.9% on cars with larger gains on

the part segmentation. Notably, the same objectives (i.e.,

MoCo, DetCon, or DINO) yield smaller and sometimes no

improvements across the tasks and datasets (Tab. 1) in com-

parison to PARTICLE.

We also systematically evaluate various representations

for part discovery. Parts generated by color and texture fea-

tures are less effective. Hypercolumns are critical to ob-

tain good parts for ResNets, which explains our improve-

ments over related work such as ODIN [18] and PICIE [8]

which are based on clustering final-layer features. On Birds,

we find that parts obtained via ground-truth keypoints and

figure-ground masks also lead to a significantly better cat-

egorization performance, and PARTICLE is similar to this

this oracle. For ViTs we find that last layer “key” features

of patches are effective and hypercolumns are not as criti-

cal, perhaps as resolution is maintained throughout the fea-

ture hierarchy. These differences are highlighted in Tab. 1,

Tab. 2, and Fig. 2. Our approach is also relatively efficient

as it takes only ≈2× the amount of time to train MoCo and

is ≈5× faster than ODIN for ResNet50.

2. Related Work
Fine-grained Recognition using SSL. Cole et al. [10]

show that self-supervised CNNs trained on ImageNet do

not perform well on fine-grained domains compared to their

supervised counterparts in the “low-data” regime. Prior

work [10, 32, 33] has also investigated the role of do-

main shifts on the generalization concluding that high do-

main similarity is critical for good transfer. Our work

aims to mitigate these issues by showing that the per-

formance of ImageNet self-supervised representations can

be improved by fine-tuning the representations using it-

erative part-discovery and contrastive learning on moder-

ately sized datasets (≤ 10k images). Recent work in self-

supervised learning using vision transformers (ViTs) such

as DINO [4] show remarkable results for fine-grained clas-

sification. DINO performs as well as supervised ImageNet

ViT models and much better than supervised ImageNet

ResNet50 models [20]. Our experiments show that PAR-

TICLE still offers improvements, especially on aircrafts

where the domain shift is larger.

Part Discovery Methods. Our approach for part discov-

ery is motivated by work that shows that hypercolumns

extracted from generative [37, 43] or contrastively [7, 28]

trained networks, as well as ViTs [1, 9] lead to excellent

transfer on landmark discovery or part segmentation tasks.

Among techniques for part discovery on fine-grained do-

mains the most related ones include Sanchez et al. [30] who

use a supervised keypoint detector to adapt to the target

domain. Aygun et al. [2] boost landmark correspondence

using an objective that captures finer distances in feature

space. The focus of this line of work has been on part dis-

covery, but our goal is to also evaluate how part discovery

impacts fine-grained classification. Better techniques for

part discovery (e.g., [23, 31, 42], etc.) are complementary

to our approach.

Pixel Contrastive Learning. Several pixel-level SSL ap-

proaches have been proposed for image segmentation or ob-

ject detection tasks. Our approach for part-centric learning

is based on DetCon [17] which learns by clustering pixels

based on color and texture [12]. They show improved de-

tection and semantic segmentation performance compared

to image-level SSL on standard benchmarks. We adopt the

underlying objective due to its computational efficiency, but

instead use pixel representations based on deep networks.

ODIN [18] uses k-means clustering on the last-layer fea-

tures of a discovery network to find object clusters to guide

a contrastive objective of a separate representation network.

The training is based on the student-teacher learning frame-

work of BYOL [13]. Similarly, PiCIE [8] considers global

clustering of pixel level features within a dataset and trains a

network using photometric invariance and geometric equiv-

ariance on the segmentation task. Much of the focus of the

above work has been on tasks on coarse domains (e.g., Im-

ageNet or COCO), while our work considers fine-grained

image classification and part segmentation tasks. Notably,

we find that unlike hypercolumns, the last layer features of

a ResNet often used to discover objects do not contain finer

demarcations that constitute parts of objects in fine-grained

domains (see Fig. 3 for some examples).

3. Method
Problem and Evaluation. We consider the problem of

learning representations on fine-grained domains (e.g.,

Birds or Aircrafts) for image categorization and part seg-

mentation tasks. We consider a setting where the dataset

is moderately sized (e.g., ≤ 10,000 unlabeled images) and

the goal is to adapt a SSL pre-trained representation trained

168

on ImageNet. This represents a practical setting where one

might have access to a large collection of unlabeled images

from a generic domain and a smaller collection of domain-

specific images. For evaluation we consider classification

performance under a linear evaluation scheme (i.e., using

multi-class logistic regression on frozen features), or part

segmentation given a few (≈ 100) labeled examples.

Approach. Given an initial network, our training proce-

dure iterates between a part discovery step and a part-centric

learning step outlined in Algorithm 1 and Fig. 1. In § 3.1 we

outline various methods to obtain parts and compare them

to baselines based on low-level features as well as keypoints

and figure-ground masks when available. The latter serves

as an oracle “upper bound” on the performance of the ap-

proach. In § 3.2 we present the part-level contrastive learn-

ing framework which discriminates features across parts

within the same image under photometric and geometric

transformations.

3.1. Part Discovery Methods

CNNs. Hypercolumn representations of CNNs have been

widely used to extract parts of an object. A deep network of

n layers (or blocks) can be written as Φ(x) = Φ(n) ◦Φ(n−1) ◦
· · ·◦Φ(1)(x). A representation Φ(x) of size H ′ ×W ′ ×K can

be spatially interpolated to input size H×W ×K to produce

a pixel representation ΦI(x) ∈ R
H×W×K . We use bilinear

interpolation and normalize these features using a �2 norm.

The hypercolumn representation of layers l1, l2, . . . , ln is ob-

tained by concatenating interpolated features from corre-

sponding layers i.e.

ΦI(x) = ‖Φ(l1)
I (x)‖2⊕‖Φ(l2)

I (x)‖2⊕·· ·⊕‖Φ(ln)
I (x)‖2

We then use k-means clustering of features within the same
image to generate part segmentation. We choose the lay-

ers based on a visual inspection and keep it fixed across

datasets. Further details are in § 5.1.

ViTs. Unlike CNNs, ViTs maintain constant spatial reso-

lution throughout the feature hierarchy allowing one to ob-

tain relatively high resolution pixel representations from the

last layer. DINO [4] shows that the self-attention of the

“[cls] token” has a strong figure-ground distinction. Last

layer ‘key’ features of DINO have also been used to obtain

part segmentations [1]. Motivated by this and our initial ex-

periments that did not indicate better results using features

across multiple layers, we consider the last layer ‘key’ fea-

tures to extract pixel representations.

Baseline: Color and Texture. We extract parts using a

classical image segmentation algorithm based on pixel color

and texture – Felzenzwalb Huttenlocher [12]. The parame-

ters used to generate segmentations are described in §4.

Algorithm 1 Part Discovery and Contrast Learning

Require: D := {X} � Unlabeled images

Require: f , params={#iters, #clusters} � Initial network, params

1: function PARTDISCOVERY(x, f)

2: FREEZEWEIGHTS(f)

3: h = NORMFEATURES(f (x)) � Forward pass as in § 3.1

4: y = KMEANS(h, #clusters)

5: return y

6: end function

f1 ← f � Initialize network

7: for k← 1 to #iters do
8: Y = {} � Initialize labels

9: for x ∈ X do � On each example individually

10: y = PARTDISCOVERY(x, fk)

11: Y← append(y) � Part labels

12: end for
13: fk+1 ← PARTCONTRAST(X, Y, fk) � Training § 3.2

14: end for

Baseline: Keypoints and Masks. As an oracle baseline

we generate parts clustering based on keypoints or figure-

ground masks. On birds dataset we assign each foreground

pixel to the nearest keypoint (using a Voronoi tessellation)

while all background pixels are assigned a background cat-

egory. For Aircrafts, we consider the figure-ground mask as

a binary segmentation (see Datasets, §4 for details).

Analysis. Fig. 2 visualizes the part clusters obtained using

various techniques and pre-trained models. Hypercolumns

extracted from pre-trained ResNet50 using DetCon pro-

duces slightly better visual results than from MoCo. Previ-

ous work, ODIN and PICIE cluster last-layer features which

are rather coarse and not well aligned with object parts as

shown in Fig. 3. This might explain the relatively weaker

performance of ODIN on our benchmarks compared to our

approach that uses hypercolumns (31.19 vs 34.31 on CUB

classification fine-tuned over MoCo ImageNet - more in

suppl.). Parts using color and texture are often not as ef-

fective, conflating foreground and background. The bottom

row shows the clusters obtained using “side information”,

i.e., keypoints for birds and figure-ground for airplanes.

3.2. Part Contrastive Learning

Given an image x and an encoder f we a obtain a rep-

resentation y = f (x) where y ∈ R
H×W×K for CNNs and

y∈R
(P+1)×K for ViTs where (P+1) is the number of patches

and the [cls] token. We consider the representation be-

fore the last Average Pooling layer in a ResNet50 network

and the last layer output tokens only for the patches in case

of ViT. Given the segmentation of the image x obtained in

the previous step, we downsample it using nearest neigh-

bour interpolation to get s so that we have a mask value

169

Image

Color +

Texture

MoCo

Hypercolumns

Detcon

Hypercolumns

Clustering

using Side

Information

DINO ‘key’

feature

clustering

Figure 2. Visualization of the parts obtained by clustering representations. Clusters based on color and texture representations often

conflate the object with the background. Clustering using hypercolumn features from ResNet50 trained using MoCo or DetCon are more

aligned with semantic parts. For example, parts such as the head, tail, wing and breast in birds are distinct, and align with clusters generated

using ground truth keypoints and figure-ground masks. DINO ViT representations are qualitatively similar. For Aircrafts, the only side

information available is the figure-ground mask. Note that for the purpose of this visualization we manually mask out the clusters in the
background. Refer to Fig. 3 last column to see the background clusters.

After Layer B1 After Layer B2 After Layer B3 After Layer B4After MaxPool Hypercolumn

Figure 3. Clusters features from various layers of a ResNet50.
The shallower layer (left) features are similar to those based on

colour and texture. As we go deeper (from left to right), the parts

are more distinctive (e.g., layer B2 and B3). Layer B4, the layer

before the final average pooling, fails to produce meaningful clus-

ters. Hypercolumns (last column) clusters often result in distinct

parts. This ResNet50 was trained using DetCon on ImageNet.

m associated with each spatial location (i, j) in y. A mask

pooled feature vector for every mask value m can be ob-

tained as:

ym =
∑i, j 1(s[i, j] = m)∗y[i, j]

∑i, j 1(s[i, j] = m)
(1)

Given an image we generate two views x and x′ us-

ing various augmentations (see supplementary). Next using

Equation 1 we can obtain mask pooled features from both

views as ym,y′m′ where m,m′ are mask indices. Now using

a projector MLP g and a predictor MLP q we get:

pm = qθ ◦gθ (ym) p′m′ = gξ (y′m′) (2)

Note that the second view x′ is passed to a momen-

tum encoder fξ , then the mask pooled features are fed to

gξ . These networks are trained using momentum update

whereas qθ ,gθ , fθ are trained using backpropagation. All

the latents are rescaled so they have norm as 1/
√
τ where

τ = 0.1
Next to contrast across masks we use the following loss

function:

L = ∑
m
− log

exp(pm.p′m)
exp(pm.p′m)+∑n exp(pm.p′n)

(3)

where p′n are the negatives i.e. samples from different

masks from same image as well as across examples.

4. Datasets and Evaluation Metrics
Here we describe the datasets we use for the part aware

contrastive training step and for the downstream tasks of

fine-grained classification and few-shot part segmentation.

4.1. Birds

Self-Supervised Training. We use the Caltech-UCSD

birds (CUB) [39] dataset that has 11788 images centered

170

on birds with 5994 for training and 5794 for testing. We use

the training set images for our contrastive learning part. The

CUB dataset provides keypoints, figure-ground masks and

classes as annotations. It has labels for 15 keypoints per-

image. We remove the left/right distinctions and get a total

of 12 keypoints : ‘back’, ‘beak’, ‘belly’, ‘breast’, ‘crown’,

‘forehead’, ‘eye’, ‘leg’, ‘wing’, ‘nape’, ‘tail’, ‘throat’. Each

foreground pixel is assigned a cluster based on the index of

the nearest part, while background pixels are assigned their

own labels. For clustering using color and texture, we use

FH with the scale parameter of 400 and minimum compo-

nent size of 1000 for this dataset, to get an average of 25

clusters per image. For hypercolumns we use k=25 for k-

means clustering.

Classification. We again use the CUB dataset for classi-

fication. It has birds from 200 classes. We use the official

train-test splits for our experiments and report the per-image

accuracy on the test and validation sets.

Few-shot Part Segmentation. We use the PASCUB

dataset for part segmentation with 10 part segments intro-

duced by Saha et al. [29]. We use the training set consisting

of 421 images to train and use the validation (74) and testing

(75) sets of the CUB partition to present results. We report

the mean intersection-over-union (IoU).

4.2. Aircrafts

Self-Supervised Training. We use the OID Aircraft [38]

dataset for pre-training. We use the official training split

containing 3701 images. Since we do not have keypoint

annotations for this dataset, we only use the figure-ground

masks as the side information segmentations. For the color

and texture we use FH with a scale parameter of 1000 and

minimum component size of 1000 and get an average of 30

clusters per image. For clustering using hypercolumns we

use k=25 for k-means clustering.

Classification. For classification we use the FGVC Air-

craft [24] dataset. It contains 10,000 images belonging to

100 classes. We use the official ‘trainval’ set to train and

the ‘test’ set for reporting testing results. They contain

6667 and 3333 images respectively. We report the mean

per-image accuracy on this dataset.

Few-shot Part Segmentation. We use the Aircraft seg-

mentation subset extracted from OID Aircraft in Saha et
al. [29]. It contains 4 partially overlapping parts per im-

age. We use the official 150 images for training and 75 each

for validation and testing. Again, we report the mIoU.

4.3. Cars

Self-Supervised Training. We use the Stanford Cars [21]

dataset which contains 8,144 training images and 8,041 test-

ing images belonging to 196 car classes. We use the same

settings as Aircrafts for obtaining FH segmentations.

Classification. We use Stanford Cars for classification us-

ing the official train test splits and report mean accuracy.

Few-shot Part Segmentation. Here we utilize the Car

Parts dataset [26] which contains 18 segments of cars with

400 images in train set and 100 in test set and report mIoU.

5. Implementation Details and Baselines

5.1. ImageNet pre-trained SSL CNNs

We consider initialization using two choices of Ima-

geNet self-supervised models both based on a ResNet50

architecture for a uniform comparison. One is based on

MoCo and the other is based on DetCon. To obtain part

clusters, every image in the dataset is resized to 224×224

and hypercolumn features are extracted from the first Max-

Pool, BottleNeck Block 1, BottleNeck Block 2 and Bottle-

Neck Block 3 layers. We resample all features to a spatial

resolution of 64×64 and concatenate across channel dimen-

sion. This results in a 64×64×1856 feature vector. We use

sklearn k-means clustering using k=25 and 500 max itera-

tions. We provide an ablation to justify the number of clus-

ters in supplementary. We cluster each image in the dataset

independently. We use the same specifications for hyper-

column extraction and clustering while training iterations

of discovery and contrast.

5.2. ImageNet pre-trained DINO ViT

We also extend our method to vision transformers. We

extract parts from ImageNet pre-trained DINO ViT by clus-

tering the last layer (Layer 11) ‘key’ features using the

method by Amir et al. [1]. We fix the number of parts to

7 for birds and 5 for aircrafts. We use the 8×8 patch ver-

sion of ViT S/8 as it has the largest feature resolution for

parts. For fine-tuning DINO ViT using PARTICLE, we

apply the part contrastive loss over the output patch tokens

of the ViT and add to the DINO student-teacher loss with

equal weights. We use 224×224 input image resulting in

28×28 feature vector at every layer.

5.3. Baselines for Self-Supervised Adaptation

To determine the effect of our training strategy over the

boost coming from simply fine-tuning on a category specific

dataset, we benchmark over some standard baselines. For

each of these baselines we fine-tune over the category spe-

cific dataset (CUB for birds/OID for aircrafts) while learn-

ing using their objective. Below we list the baselines:

MoCo (V2). The Momentum Contrast (MoCo [15]) ap-

proach minimizes a InfoNCE loss [25] over a set of unla-

beled images. MoCo performs instance level contrast by

maintaining a queue of other examples considered negatives

and treating transformations of a single image as positives.

171

DetCon. DetCon uses color and texture features to

generate object segmentations using the Felzenzswalb-

Huttenlocher [12] algorithm. It uses a ResNet-50 based

model to train using pixel contrast based on these object

segmentations. Their loss function is the same as in § 3.1.

ODIN. This method has the same training objective of

DetCon but creates segmentations by clustering the last

layer features of a ‘discovery’ network using K-means in

every iteration. This ‘discovery’ network is initialized ran-

domly and is trained using momentum update from the main

encoder. In Fig. 3 we show that the clusters of the last layer

features of even a pre-trained network is not a good repre-

sentation of object parts. We show a comparison of using

ODIN vs other objectives in the Supplementary Material.

DINO ViT. We use the ViT S/8 network which the Small

ViT using 8×8 patches, trained with DINO [4]. DINO

trains using a student teacher framework where the student

is updated by minimizing the cross-entropy between soft-

max normalized outputs of the student and teacher. The

teacher is updated using momentum. DINO is also an in-

stance level contrastive method.

PiCIE. PiCIE [8] learns unsupervised object segmenta-

tion by clustering the features of the complete dataset using

mini-batch k-means and training using invariance to photo-

metric transformations and equivariance to geometric trans-

formations. For part segmentation, PiCIE does not work

well (see supplementary) because it uses only the last down-

sampled feature space of the encoder which does not have

part information (see Fig. 3) and trying to fit object parts

from all images to a single set of centroids for the whole

dataset results in loss of information.

5.4. Hyper-parameters

Self-Supervised Adaptation. For all baselines and our

method based on CNN we finetune the initialized model

for 600 epochs with a learning rate of 0.005 with a batch

size of 320. We use a SGD optimizer with weight decay of

1.5E-6 and momentum of 0.9. We use a cosine learning rate

decay with 10 epochs for warm up. For momentum updates

we use a decay of 0.996. For all methods, we train using

an image resolution of 224×224. We utilize the augmen-

tations as defined in BYOL [13]. We provide the details in

the Supplementary. For adaptation to DINO ViT, we use a

learning rate of 1E-7 with cosine decay and a weight decay

of 0.4. We train for 100 epochs with a batch size of 64.

Iterative Training. For extracting hypercolumns, we use

the same specification as in § 5.1. We train for 20 epochs

with a learning rate of 0.05. Rest of the hyperparameters

stay the same as in the previous paragraph. For DINO ViT

based models, we use a LR of 1E-8 and train for 60 epochs.

Linear Probing. We initialize a ResNet50 encoder with

the contrastively trained networks as described above and

§ 3. We do the evaluation using the input image of resolu-

tion 224×224. We store the features before the last Average

pooling layer for both train and test sets. We do not use any

data augmentation for this. We then use the Logistic Re-

gression method of sklearn, which we train using L-BFGS

for 1000 maximum iterations. We choose the best model by

evaluating on the validation set. For DINO ViT based mod-

els we average over the class token and patch tokens and

use the same details as above.

Fine-Tuning. We also report results using fine-tuning in

the supplementary where the entire network is trained for

200 epochs with a batch size of 200. We use SGD with a lr

of 0.01 and momentum of 0.9. We train for varying number

of images in the train set – 1, 3, 8, 15, 30 per class. Only

flipping augmentation is used while training, except the low

shot versions (1,3 and 8) where we also add random resized

cropping and color jitter. For reporting scores on test set,

we choose the best checkpoint based on the val set.

Part Segmentation. We add a decoder network consist-

ing of four upsampling layers followed by convolutions to

generate part segmentations from the ResNet50 features.

We use the best pre-training checkpoint for each experiment

obtained in linear probing on validation set. We follow all

the parameters for training/evaluation of Saha et al. [29].

We fine-tune the entire network for part segmentation. Here

we train and test using input images of resolution 256×256

following. We train the network using a cross entropy loss

for PASCUB experiments. For Aircrafts, we treat it as

a pixel-wise multi-label classification task and use binary

cross entropy (BCE) loss. We use Adam optimizer with a

learning rate of 0.0001 for 200 epochs. We use flipping and

color-jitter augmentations while training. We use the mean

IoU metric to report results. During evaluation, we perform

5 fold cross validation to find the best checkpoint using the

validation sets and report the mean of them. For DINO ViT

based models we rearrange the patch ‘key’ features of the

last layer back to a 3D tensor and use 3 layers of upsam-

pling each of which consists of two 3×3 kernel Convs. We

use a learning rate of 1E-5. Other details are same as above.

6. Results
We describe the results of evaluating the baselines and

our method across different settings for fine-grained visual

classification and few-shot part segmentation. In the follow-

ing sections, we present a detailed analysis of various fac-

tors that affect the performance of baselines and our model.

6.1. PARTICLE Improves Performance Consistently

Tab. 1 shows that our method improves performance

across baselines. For each model, we compare PARTI-

172

Caltech-UCSD Birds FGVC Aircrafts OID Aircrafts Stanford Cars Car PartsArchitecture Method Cls Seg Cls Seg Cls Seg
Supervised ImageNet 66.29 47.41 ± 0.88 46.46 54.39 ± 0.52 45.44 53.95 ± 0.71

MoCoV2 (ImageNet) 28.92 46.08 ± 0.55 19.62 51.57 ± 0.98 15.79 51.93 ± 0.37

MoCoV2 fine-tuned 31.17 46.22 ± 0.70 23.99 52.65 ± 0.54 21.23 52.40 ± 0.99

PARTICLE fine-tuned 36.09 47.40 ± 1.06 29.13 54.74 ± 0.47 27.68 53.54 ± 0.81
DetCon (ImageNet) 35.39 47.42 ± 0.92 35.55 53.62 ± 0.67 29.72 53.88 ± 0.75

DetCon fine-tuned 37.15 47.88 ± 1.18 40.74 56.26 ± 0.25 34.55 53.91 ± 0.73

ResNet50

PARTICLE fine-tuned 41.98 50.21 ± 0.85 44.13 58.99 ± 0.61 37.41 55.23 ± 0.50
DINO (ImageNet) 83.36 49.57 ± 1.26 72.37 61.73 ± 0.88 72.74 51.02 ± 0.65

DINO fine-tuned 83.36 49.66 ± 0.98 72.37 61.68 ± 0.71 72.74 51.15 ± 0.88ViT S/8

PARTICLE fine-tuned 84.15 51.40 ± 1.29 73.64 62.71 ± 0.56 73.89 52.75 ± 0.70
Table 1. Performance on downstream tasks. We present the performance boost that our approach offers over various pre-trained SSL

methods with backbone architecture as ResNet-50 or ViT S8. We show results for Birds, Aircrafts and Cars datasets. We significantly boost

classification accuracy for CNN based models. While DINO is already much better than CNN based models for fine-grained classification,

we are still able to improve the performance using our method. The gap in segmentation performance for DINO ViT vs DetCon/MoCo V2

is much less pronounced. Our method contributes steady improvement over all baseline models for segmentation.

CUB FGVC OID
Method Cls Seg Cls Seg
Color+Texture 37.15 47.88 40.74 56.26

Hypercolumns 40.88 49.23 43.99 58.95

Side Information 43.72 50.15 39.03 55.98
Table 2. Effect of part discovery method. We compare the

performance of one iteration of PARTICLE over the ResNet50

model trained using DetCon. Hyercolumns lead to improved re-

sults compared to color and texture, and nearly match the per-

formance obtained by clustering keypoints + figure-ground masks

on birds. On airplanes, side information beyond figure-ground is

lacking, and PARTICLE performs better.

Method Iter 0 Iter 1 Iter 2 Iter 3

MoCo
Cls. 28.92 34.31 36.03 36.09
Seg. 46.08 46.39 47.38 47.40

DetCon
Cls. 35.39 40.88 42.00 41.98

Seg. 47.42 49.23 50.17 50.21
Table 3. Effect of number of iterations. We present the perfor-

mance on CUB dataset over PARTICLE iterations. Iter 0 refers

to the performance of the initial model (either MoCo or DetCon).

The largest boost is observed in the first iteration, while the per-

formance often saturates after two iterations.

CLE to the ImageNet pre-trained SSL model, and when

the model is fine-tuned on the dataset using the objective

of the underlying SSL model. We report the results of the

best iteration to compare the maximum boost that PARTI-

CLE can contribute. However, most of the improvement

is obtained after a single iteration (Tab 3). ResNet50 SSL

models lag behind supervised ImageNet models for clas-

sification tasks. PARTICLE fine-tuning goes a long way

toward bridging this gap. DINO ViT on the other hand

performs exceptionally well on fine-grained classification,

even outperforming the ImageNet supervised CNNs. Yet,

PARTICLE offers consistent improvements. For few-shot

part segmentation, PARTICLE offers significant improve-

ment over all baseline SSL models. We present results on

an additional domain of Cars in the supplementary.

Iter 0

Iter 1

Iter 2

Figure 4. Effect of iterative training on clustering. For the first

bird eg, the first iteration captures the boundary of the wing, head

and belly better. Second iteration introduces a new middle part.

Performance of DINO. ImageNet pre-trained DINO is ex-

ceptionally good in fine-grained classification. It performs

better than ImageNet pre-trained DetCon in classification

tasks, however the difference is not as large for the part seg-

mentation tasks. We believe that this can be attributed to

DINO’s strong figure-ground decomposition and the struc-

ture of it’s feature space that makes it effective for linear

and nearest-neighbor classification [4, 20].

6.2. Effect of Clustering Method
As we described earlier, Fig. 2 shows a qualitative com-

parison of clusters obtained using various representations

described in § 3.1. Tab. 2 shows the quantitative perfor-

mance of various clustering methods on classification and

segmentation tasks. Hypercolumn features from ImageNet

pre-trained DetCon beats the performance of color + tex-

ture features. However, it lags behind the side information

oracle in the case of birds, since the weak supervision of

keypoints and figure-ground mask results in better part dis-

covery. This indicates that better part discovery methods

could lead to improvements in classification tasks.

6.3. Effect of Iterative Training
We vary the number of outer iterations on our model

from zero, i.e., the initialization, to three, which consists of

three iterations of part discovery and representation learn-

173

Figure 5. Effect of initialization and adaption. The left panel

shows the classification performance (Linear evaluation) while the

right panel shows the part segmentation performance on the CUB

dataset. In each panel we show the result of initializing the repre-

sentation network using MoCo and DetCon, and various ways to

obtain part segmentation via clustering.

ing over the entire dataset. Results are shown in Tab. 3.

For both initializations we did not find significant improve-

ments beyond the second iteration on Birds. On Aircrafts

the improvements over iterations were smaller (also see Ta-

ble 1, 1× vs. 3×). Fig. 4 shows how the clustering changes

over iterations. To produce consistent clusters across im-

ages, i.e., to avoid the randomness of k-means, we initial-

ize the successive clustering for k-means using the previous

partition and continue k-means for 500 iterations.

6.4. Effect of Initialization
Fig. 5 compares the effect of initializing weights with ei-

ther MoCo V2 or DetCon ImageNet pre-trained weights.

We compare performance on both classification and seg-

mentation for various clustering techniques. The initial Det-

Con model has a higher performance than MoCo on both

tasks. The boost observed follows the same trend for both

initialization strategies. For Part Segmentation again the

base DetCon ImageNet performs better than MoCo, how-

ever the trend of the boost over base model is not same for

both initializations. Starting with a MoCo initialization the

fine-tuned models do not see an adequate boost, whereas in

the case of DetCon initialization the fine-tuned models see

significant boost over the base DetCon model.

6.5. Comparison to ImageNet supervised CNNs
Tab. 1 shows that our ResNet50 based methods improve

over ImageNet supervised models for few-shot part seg-

mentation all datasets. The ImageNet pre-trained SSL base-

lines are close to ImageNet supervised in the case of Birds,

Cars and slightly worse on Aircrafts. However, using our

methods leads to a significant boost over the pre-trained

SSL methods. This once again suggests that the current

CNN based SSL approaches are quite effective at learn-

ing parts, but are limited in their ability to recognize cat-

egories. The aircrafts dataset has a larger domain gap from

the ImageNet dataset and our CNN based methods achieve

closer performance to ImageNet supervised ResNet50 mod-

els. Our linear evaluation score reaches close to ImageNet

supervised for Aircrafts (∼2 points gap) unlike for Birds

where there is still a gap of about ∼24 points. ImageNet

already has a large number of classes of birds and has been

trained for classification, which gives it a large advantage on

a fine-grained bird classification dataset. The improvement

in part segmentation of our method over ImageNet super-

vised ResNet-50 remains similar for all datasets.

6.6. Efficiency of Various Methods

CNNs. Training MoCo is fastest since it performs image

level contrast. Both DetCon and our method (one iteration)

take the same amount of time which is less than 2× that of

MoCo. Note that we train each baseline and our method for

600 epochs. Since we use relatively small datasets to train,

our approach takes less than 11 hours on 8 2080TI GPUs

for the first iteration. We train the next iterations only for

20 epochs which takes around 20 minutes on the same GPU

setup (total of 40 minutes for 2 extra iterations).

ViTs. For the first iteration, we train for 100 epochs which

takes less than 2 hours on 8 2080TI GPUs. For the next

iteration we train for 60 epochs which takes about an hour

in the same setting.

7. Conclusion
We show that clustering and contrasting parts obtained

through ImageNet self-supervised networks is an effective

way to adapt them on small to moderately sized fine-grained

datasets without any supervision. While we observe signif-

icant improvements on part segmentation tasks, even out-

performing supervised ImageNet ResNets, we also show

consistent improvements over the significantly better ViT

models. On the Airplanes dataset where the domain gap

over ImageNet is larger, our approach leads to larger gains.

The analysis shows that current self-supervised models (in-

cluding our own) are very effective at learning pose and

parts. Moreover, conditioning and contrasting the discov-

ered parts allows the model to learn diverse localized repre-

sentations allowing better generalization to the classifica-

tion tasks. However, a big limitation of the approach is

that it requires a good initial model to discover parts, and

the approach may not generalize to significantly different

domains. Future work will explore if parts extracted from

generic large-scale models lead to better guidance for part

and feature learning, and will aim to characterize the effect

of domain shifts on the effectiveness of transfer. Code has

been released publicly here.

Acknowledgements. The project was funded in part by

NSF grant #1749833 to Subhransu Maji. The experiments

were performed on the University of Massachusetts GPU

cluster funded by the Mass. Technology Collaborative.

174

References
[1] Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel.

Deep vit features as dense visual descriptors. ECCVW What
is Motion For?, 2022. 2, 3, 5

[2] Mehmet Aygün and Oisin Mac Aodha. Demystifying un-

supervised semantic correspondence estimation. In ECCV,

2022. 2

[3] Steve Branson, Grant Van Horn, Serge Belongie, and Pietro

Perona. Bird species categorization using pose normalized

deep convolutional nets. arXiv preprint arXiv:1406.2952,

2014. 1

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-

ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 2, 3, 6, 7

[5] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.

Improved baselines with momentum contrastive learning.

arXiv preprint arXiv:2003.04297, 2020. 1

[6] Xinlei Chen and Kaiming He. Exploring simple siamese rep-

resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

15750–15758, 2021. 1

[7] Zezhou Cheng, Jong-Chyi Su, and Subhransu Maji. On

equivariant and invariant learning of object landmark repre-

sentations. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021. 1, 2

[8] Jang Hyun Cho, Utkarsh Mall, Kavita Bala, and Bharath

Hariharan. PICIE: unsupervised semantic segmentation us-

ing invariance and equivariance in clustering. In CVPR,

2021. 2, 6, 11

[9] Subhabrata Choudhury, Iro Laina, Christian Rupprecht, and

Andrea Vedaldi. Unsupervised part discovery from con-

trastive reconstruction. In Advances in Neural Information
Processing Systems, 2021. 2

[10] Elijah Cole, Xuan Yang, Kimberly Wilber, Oisin

Mac Aodha, and Serge Belongie. When does contrastive

visual representation learning work? In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14755–14764, 2022. 1, 2

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2

[12] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient

graph-based image segmentation. International journal of
computer vision, 59(2):167–181, 2004. 2, 3, 6

[13] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin

Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,

Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-

laghi Azar, et al. Bootstrap your own latent-a new approach

to self-supervised learning. Advances in neural information
processing systems, 33:21271–21284, 2020. 1, 2, 6

[14] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-

tendra Malik. Hypercolumns for object segmentation and

fine-grained localization. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

447–456, 2015. 1

[15] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

9729–9738, 2020. 1, 2, 5

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[17] Olivier J Hénaff, Skanda Koppula, Jean-Baptiste Alayrac,

Aaron Van den Oord, Oriol Vinyals, and João Carreira.

Efficient visual pretraining with contrastive detection. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10086–10096, 2021. 1, 2

[18] Olivier J Hénaff, Skanda Koppula, Evan Shelhamer, Daniel

Zoran, Andrew Jaegle, Andrew Zisserman, João Carreira,

and Relja Arandjelović. Object discovery and representation

networks. arXiv preprint arXiv:2203.08777, 2022. 2

[19] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,

Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua

Bengio. Learning deep representations by mutual informa-

tion estimation and maximization. In ICLR, 2019. 1

[20] Menglin Jia, Bor-Chun Chen, Zuxuan Wu, Claire Cardie,

Serge Belongie, and Ser-Nam Lim. Rethinking near-

est neighbors for visual classification. arXiv preprint
arXiv:2112.08459, 2021. 2, 7

[21] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

Proceedings of the IEEE international conference on com-
puter vision workshops, pages 554–561, 2013. 5

[22] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji.

Bilinear cnn models for fine-grained visual recognition. In

Proceedings of the IEEE international conference on com-
puter vision, pages 1449–1457, 2015. 1

[23] Subhransu Maji. Discovering a lexicon of parts and at-

tributes. In Computer Vision – ECCV 2012. Workshops and
Demonstrations, 2012. 2

[24] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.

Fine-grained visual classification of aircraft. Technical re-

port, 2013. 2, 5

[25] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 5

[26] Kitsuchart Pasupa, Phongsathorn Kittiworapanya, Napasin

Hongngern, and Kuntpong Woraratpanya. Evaluation of

deep learning algorithms for semantic segmentation of car

parts. Complex & Intelligent Systems, pages 1–13, May

2021. 5

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 1

[28] Oindrila Saha, Zezhou Cheng, and Subhransu Maji.

GANORCON: Are Generative Models Useful for Few-shot

175

Segmentation? In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022. 2

[29] Oindrila Saha, Zezhou Cheng, and Subhransu Maji. Improv-

ing few-shot part segmentation using coarse supervision. In

ECCV, 2022. 5, 6

[30] Enrique Sanchez and Georgios Tzimiropoulos. Object land-

mark discovery through unsupervised adaptation. Advances
in Neural Information Processing Systems, 32, 2019. 2

[31] Marcel Simon and Erik Rodner. Neural activation constella-

tions: Unsupervised part model discovery with convolutional

networks. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), December 2015. 2

[32] Jong-Chyi Su, Zezhou Cheng, and Subhransu Maji. A real-

istic evaluation of semi-supervised learning for fine-grained

classification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12966–

12975, 2021. 2

[33] Jong-Chyi Su, Subhransu Maji, and Bharath Hariharan.

When does self-supervision improve few-shot learning? In

European conference on computer vision, 2020. 1, 2

[34] Luming Tang, Davis Wertheimer, and Bharath Hariha-

ran. Revisiting pose-normalization for fine-grained few-shot

recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June

2020. 1

[35] James Thewlis, Samuel Albanie, Hakan Bilen, and Andrea

Vedaldi. Unsupervised learning of landmarks by descriptor

vector exchange. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2019. 1

[36] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Herve Jegou. Training

data-efficient image transformers amp; distillation through

attention. In International Conference on Machine Learning,

volume 139, pages 10347–10357, July 2021. 13

[37] Nontawat Tritrong, Pitchaporn Rewatbowornwong, and Su-

pasorn Suwajanakorn. Repurposing gans for one-shot se-

mantic part segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 4475–4485, 2021. 2

[38] A. Vedaldi, S. Mahendran, S. Tsogkas, S. Maji, B. Girshick,

J. Kannala, E. Rahtu, I. Kokkinos, M. B. Blaschko, D. Weiss,

B. Taskar, K. Simonyan, N. Saphra, and S. Mohamed. Un-

derstanding objects in detail with fine-grained attributes. In

Proceedings of the IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR), 2014. 5

[39] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The Caltech-UCSD Birds-200-

2011 dataset. 2011. 2, 4

[40] Xiu-Shen Wei, Yi-Zhe Song, Oisin Mac Aodha, Jianxin Wu,

Yuxin Peng, Jinhui Tang, Jian Yang, and Serge Belongie.

Fine-grained image analysis with deep learning: A survey.

IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2021. 1

[41] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Un-

supervised feature learning via non-parametric instance dis-

crimination. In CVPR, 2018. 1

[42] Chun-Han Yao, Wei-Chih Hung, Yuanzhen Li, Michael Ru-

binstein, Ming-Hsuan Yang, and Varun Jampani. Lassie:

Learning articulated shapes from sparse image ensemble via

3d part discovery. In Advances in Neural Information Pro-
cessing Systems, 2022. 2

[43] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-

Francois Lafleche, Adela Barriuso, Antonio Torralba, and

Sanja Fidler. Datasetgan: Efficient labeled data factory with

minimal human effort. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 10145–10155, 2021. 2

176

