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Abstract

The recent progress in developing pre-trained models,
trained on large-scale datasets, has highlighted the need
for robust protocols to effectively adapt them to domain-
specific data, especially when there is a limited amount of
available data. Data augmentations can play a critical role
in enabling data-efficient fine-tuning of pre-trained object
detection models. Choosing the right augmentation pol-
icy for a given dataset is challenging and relies on knowl-
edge about task-relevant invariances. In this work, we fo-
cus on an understudied aspect of this problem – can bound-
ing box annotations be used to design more effective aug-
mentation policies? Through InterAug, we make a crit-
ical finding that, we can leverage the annotations to infer
the effective context for each object in a scene, as opposed
to manipulating the entire scene or only within the pre-
specified bounding boxes. Using a rigorous empirical study
with multiple benchmarks and architectures, we demon-
strate the efficacy of InterAug in improving robustness
and handling data scarcity. Finally, InterAug can be
used with any off-the-shelf policy, does not require any mod-
ification to the architecture, and significantly outperforms
existing protocols. Our codes can be found at https:
//github.com/kowshikthopalli/InterAug.

1. Introduction

Augmentation design has emerged as a crucial approach

to enable robust and data-efficient training of deep models

in a variety of computer vision tasks. While a large class
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of image manipulation strategies can be utilized for syn-

thesizing augmentations [19], e.g., horizontal/vertical flips,

changes in brightness or mixup [25], the key focus has been

on designing effective augmentation policies. Examples

policies include Cutmix [20] that adds a randomly cropped

portion of one image onto another, Augmix [11] that utilizes

a composition of multiple pre-specified augmentations and

more recently, TrivialAug [17] that randomly selects both

the type and severity from pre-specified sets of augmenta-

tions and severity levels. Despite their widespread adoption,

AutoAugment [26, 5] techniques that automatically learn

dataset-specific augmentation policies are known to pro-

duce superior performance. However, their computational

complexity, reliance on large datasets and lack of transfer-

ability (from one dataset to another) make them a less pre-

ferred choice in practical, data-constrained applications.

In this paper, we explore the problem of designing

dataset-agnostic augmentation policies for data-efficient

training of object detectors. A common aspect in all ex-

isting off-the-shelf policies is that they do not exploit the

bounding box (bbox) annotations typically available in ob-

ject detection datasets. In general, bbox annotations are dif-

ferent from pixel-level labels used in classical instance seg-

mentation tasks, in that they do not accurately represent the

object boundaries and often contain some amount of back-

ground pixels. Consequently, by enabling invariance to the

local context captured by bbox annotations, one must be

able to enrich the object detectors and even potentially im-

prove their robustness under real-world distribution shifts.

A straightforward approach towards that is to naı̈vely ex-

tend any augmentation policy (e.g., TrivialAug) by manip-

ulating the regions only within the bounding boxes. How-

ever, we find that this approach leads to consistently poorer

performance when compared to a standard implementation

of that policy. This observation can be (at least partly) at-

tributed to the inconsistent nature of bbox labels, i.e., the

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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amount of context captured for each bbox can vary based

on factors such as the proximity between objects, the num-

ber of objects present, and most importantly the annota-

tor’s judgement. As a result, restricting augmentations only

within the bounding boxes can lead to inconsistent decision

rules even for the same object.

In order to circumvent this, we present InterAug, a

simple modification applicable to any pre-existing augmen-

tation policy. This involves expanding the bounding box

of each object to determine its “effective context” (EC),

and subsequently applying the chosen image manipulation

within the estimated context. Through the consistent use

of expanded local context and the systematic elimination

of undesirable leakage from other objects, this simple ap-

proach enables targeted image manipulation while being

cognizant of other co-occurring objects within the scene.

Findings. In our study, we rigorously evaluated the per-

formance of InterAug using a suite of commonly adopted

benchmarks and model architectures (F-RCNN, RetinaNet,

DETR). Motivated by its simplicity and efficacy, we used

TrivialAug, a state-of-the-art tuning-free augmentation pol-

icy, to implement all our variants (image-level, bbox-level,

and InterAug). We make the following findings:

• Robustness under real-world shifts (Section 4.1).
Following the recent DetectBench [22], we consid-

ered three sets of splits from the Berkeley Deep Drive

dataset, namely weather, scene and time, in order to

evaluate the impact of augmentation policies on detec-

tor robustness. Across all architectures, we observe

consistent gains (≈ 7.8% average in mAP@0.5) over

the bbox-level policy as well as the de facto standard of

image-level augmentations (≈ 3.9% average). Further,

studying metrics from the recent TIDE framework [2],

a toolbox for fine-grained error analysis reveals the im-

portance of considering the effective semantic context;

• Performance in data-constrained settings (Sec-
tion 4.2). Our experiments with the standard Pas-

cal VOC benchmark reveal that, at low training sizes

(10% − 20%), there is no apparent performance gap

between bbox- and image-level augmentation poli-

cies. Interestingly, via selective context manipu-

lation, InterAug provides particularly impressive

gains (2.6% in F-RCNN and 3.1% in RetinaNet) in

such data-constrained settings;

Overall, InterAug provides an efficient augmentation

policy for object detector training, that is effective with any

dataset, model architecture or training sample size.

2. Proposed Approach
In conventional object recognition models, only object

labels are available and hence image-level manipulations

are appropriate for implementing augmentation policies.

However, when detecting multiple objects in a scene, the

augmentations must be designed to promote invariance to

changes in the local context, and bounding box annotations

can be useful. To test this hypothesis, we first naı̈vely ex-

tend TrivialAug [17] by restricting the (randomly) chosen

image manipulation only within the bounding boxes. We re-

fer to this as bbox-level augmentation policy, as opposed to

the conventional image-level policy. We find that, in practi-

cal data-constrained settings, a bbox-level policy underper-

forms (measured using mAP@0.5 and False Positives (%)

in Figure 1) in comparison to the image-level policy. This

somewhat surprising result motivated us to take a deeper

look into the design of an effective augmentation policy

with bbox annotations.

We begin by hypothesizing that the inconsistent nature

of bounding box labels can be one of the reasons for this

behavior. Unlike pixel-level object labels, the context cap-

tured in bbox annotations can vary due to factors like object

proximity, the number of objects present, and, most impor-

tantly, the annotator’s judgment. Consequently, by confin-

ing augmentations solely within the bounding boxes, incon-

sistent decision rules may arise even for the same object in

different scenes. To address this challenge, we introduce a

simple protocol InterAug that can be implemented us-

ing any off-the-shelf augmentation policy. As illustrated

in Figure 1, with no additional modification to the train-

ing pipeline, InterAug leads to significantly improved

detectors (> 3% gain in mAP@0.5). We next describe

InterAug and its implementation details.

Setup. We denote a scene as I ∈ R
H×W×C , where

H,W,C represent the height, width and number of chan-

nels of the image. Without loss of generality, we assume

that the image contains n objects {O1,O2, · · · ,On} with

corresponding bounding boxes {B1,B2, · · · ,Bn}. Each Bj

is expressed using the top-left and bottom-right spatial co-

ordinates Bj =
{
(x1j , y

1
j ), (x

2
j , y

2
j )
}

. Finally, we denote the

object detector as PΘ parameterized by Θ.

2.1. InterAug: Augmentation Policy Design

Our approach’s fundamental idea revolves around

achieving invariance to variations in an object’s local con-

text and addressing the inconsistency in bbox labels. To ac-

complish this, we emphasize the significance of considering

the semantic context (background) while ensuring that in-

formation from co-occurring objects in a scene does not in-

fluence the process, thereby avoiding any unintended leak-

age. For a given object Oi with bounding box Bi, we first

select another object Oj (with Bj) to infer the effective con-

text (EC). Note that, the choice of Oj is random in every it-
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Figure 1: Proposed Work. Naı̈vely extending existing augmentation policies (e.g., TrivialAug) to incorporate bounding

box information leads to poorer detection performance (results showed for Pascal VOC, when only 10% data is used for

training). Hence, we introduce InterAug , which infers the effective context to expand the given bbox annotation and

restricts image manipulation only within this context. InterAug is applicable to any architecture, augmentation policy and

leads to improved and more robust object detectors.

Algorithm 1: InterAug with TrivialAug

Input: Image I, bounding boxes {B1,B2, · · · ,Bn},

List of augmentations A and strengths M
Output: Augmented Image

1. For any object Oi with bounding box annotation

Bi, randomly select another bounding box

annotation Bj

2. Construct effective context S(i,j) as described in

Section 2.1

3. Sample aug ∈ A and strength m ∈ M
4. Perform augmentation aug

(
S(i,j),m

)

eration and hence the inferred EC for an object Oi can vary

between iterations.

More specifically, we first construct the union box Bu
(i,j)

as follows:

Bu
(i,j) =

{(
min(x1i , x

1
j ),min(y1i , y

1
j )
)
,(

max(x2i , x
2
j ),max(y2i , y

2
j )
)}

Now, to identify the effective context for Oi, we compute

residual between the union box and the bounding box Bj

i.e., S(i,j) = Bu
(i,j)−Bj . Since the EC’s for the same object

can focus on different aspects of the background in a scene,

we encourage the detectors to avoid shortcut decision rules.

Implementation. Algorithm 1 summarizes the proposed

augmentation policy. We begin by noting that, image-level

and bounding box-level (or shortly bbox-level) policies are

special cases of our approach, wherein the former consid-

ers the entire image to be the effective context and the lat-

��	�
���� ��	�
����

Figure 2: Convergence. An illustration of the train-

ing convergence observed with naı̈ve bbox-level policy

and InterAugusing the Faster-RCNN model. Here, we

consider two different training settings for Pascal VOC,

wherein the training size was fixed at 10% and 20% of the

full train data. Interestingly, InterAug demonstrates im-

proved convergence characteristics. As we will show in the

results, this also reflects in the superior generalization and

robustness performance.

ter uses only the bounding-box annotations. The effective

context S(i,j) identified by InterAug will be piece-wise

rectangular and hence we first split it into its constituent

rectangular regions and then apply the pre-specified aug-

mentation within each of those regions. Please refer to

Figure 1 for an illustration. While InterAug can be im-

plemented with any off-the-shelf policy, we opt for Triv-

ialAug [17], a tuning-free augmentation policy, that in-

volves randomly selecting from a pre-specified set of im-

age transformations A and list of augmentation strengths
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Evaluation Models Datasets Section

Robustness under real-world shifts Faster-RCNN, RetinaNet,DETR BDD-Weather, BDD-Scene, BDD-Time sec 4.1

Performance of InterAug in data-constrained settings Faster-RCNN, RetinaNet Pascal VOC sec 4.2

Table 1: List of experiments considered in our empirical study.

M. In all our experiments, we fixed A ={vertical/ horizon-

tal flips, crop, solarize, emboss, enhance color, sharpness,

contrast, posterize, blur, add noise, add clouds}, and we

randomly pick the corresponding intensity ranges specified

in M ={[0.5,1.0],[1.0,1.5], [0.2,1.0], [0.5,2.0], [0.5,3.0],

[0.5, 2.0], [0.5,1.5],[1,4],[0,15],[1,2], [0.5,1]}. To improve

the training process, InterAug also considers the EC

to be the entire union region Bu
(i,j) or the residual region

Bu
(i,j) −Bi −Bj where both bounding boxes are subtracted

from the union. More specifically, our implementation uses

all the three ways of modeling the effective context (one of

them randomly chosen in every minibatch during training)

and perform synthetic augmentations within this context.

Convergence Analysis. In Figure 2, we present an illus-

tration of the training convergence observed using the naı̈ve

bbox-level policy and our proposed method. For this re-

sult, we conducted experiments with two distinct training

settings on the Pascal VOC benchmark, where the training

size was set to 10% and 20% of the full train data. Inter-

estingly, InterAug exhibits a consistently better conver-

gence compared to the naı̈ve augmentation policy. As we

will demonstrate in the results (Section 3), this improve-

ment translates into superior generalization and robustness

performance.

3. Experiments
Setup. We conduct a number of experiments to assess the

performance of InterAug in different scenarios, includ-

ing real-world distribution shifts and in data-constrained

settings. These evaluations are carried out using widely

recognized object detection benchmarks, namely Berkeley

Deep Drive (BDD) and Pascal VOC datasets. The details

of these experiments, including the model architectures em-

ployed and the datasets utilized, can be found in Table1. We

will now provide a description of the dataset setup for each

of these experiments.

(i) To evaluate the robustness of InterAug against real-

world distribution shifts, we utilize DetectBench [22], a re-

cently introduced benchmark specifically designed to as-

sess the out-of-distribution (OOD) robustness of object

detectors. DetectBench constructs three distinct BDD-

OOD benchmarks: BDD-Weather, BDD-Scene, and BDD-

Time, by leveraging the attribute annotations available in

the large-scale autonomous driving dataset, Berkeley Deep

Drive (BDD). For instance, the BDD-Weather benchmark

aims to assess the OOD performance of object detection

models under varying weather conditions. The training

set consists of 52, 699 images labeled with weather at-

tributes corresponding to “clear” and “overcast”, while the

model evaluation is performed on a more challenging set of

17, 888 images containing novel weather attributes “foggy”,

“cloudy”, “rainy” and “snowy”. Similarly, the BDD-

Scene and BDD-Time benchmarks have non-overlapping

attributes related to “scene” and “time of day” respectively,

with training and test sizes of 69, 506 and 9, 943 for BDD-

Scene, and 47, 791 and 31, 900 for BDD-Time. All three

benchmarks are comprised of 10 object categories.

(ii) To evaluate the performance of InterAug under lim-

ited training sample size settings, we utilized the standard

Pascal VOC object detection benchmark of scenes compris-

ing different combinations of 20 distinct objects. Following

standard practice, we first combined Pascal VOC 2007 and

Pascal VOC 2012 train-validation sets resulting in a training

dataset of 16, 550 images. From this combined dataset, we

randomly sub-selected 10% and 20% of data for training

the detectors. Training object detectors with such limited

data is known to be challenging and data augmentations are

expected to help. In each case, we report the performance

on the same held-out, full Pascal 2007 test set consisting of

4952 samples.

Model Architecture. To systematically benchmark the im-

pact of different augmentation strategies on fine-tuning ob-

ject detectors with extremely limited data, we performed

experiments with three popular object detection architec-

tures: (i) Faster-RCNN [18], a two-stage detector based

on Resnet-50 along with an FPN [13] backbone; (ii) Reti-

naNet [14], a single-stage detector based on Resnet50 and

FPN; and (iii) DETR [3] a transformer-based object detec-

tor based on Resnet50 backbone. All there architectures

were pre-trained on the MS-COCO [15] benchmark.

Experimental Implementation. We implemented

InterAug using the imgaug library [12] 2 and incor-

porated it into the popular Detectron2 object detection

framework [23] for Faster-RCNN and RetinaNet, and into

HuggingFace [21] library for DETR. Although we present

results using all three architectures for the BDD-OOD

benchmarks, we report performance only for the Faster-

RCNN and RetinaNet architectures due to the limited

training sizes in the data-efficiency experiments. In all

2https://github.com/aleju/imgaug

256



Model: F-RCNN Model: RetinaNet Model: DETR
OOD Setting Aug. Policy

AP50 FP FN AP50 FP FN AP50 FP FN

Image-level 36.36 3.83 54.58 45.69 20.25 22.71 22.82 10.22 57.13

Bbox-level 29.51 5.63 61.52 42.47 20.6 23.86 21.71 9.73 58.68Scene

InterAug 39.5 2.87 51.62 48.27 19.08 21.62 30.34 7.56 52.22

Image-level 37.36 3.83 52.55 44.23 18.14 24.85 27.42 9.58 53.12

Bbox-level 31.15 3.31 58.62 41.37 18.53 26.27 26.84 10.49 52.79Weather

InterAug 40.73 3.2 51.6 47.03 17.27 22.49 32.19 8.22 49.71

Image-level 29.16 5.7 52.19 38.4 23.42 21.78 24.51 14.13 51.42

Bbox-level 21.63 5.6 65.29 31.9 24.28 22.28 23.71 12.64 53.77Time

InterAug 32.16 2.83 51.9 40.56 22.85 19.2 30.32 10.92 48.88

Figure 3: Robustness. Performance obtained by training with different augmentation policies on three real-world shifts from

DetectBench [22]. We conduct experiments with three different model architectures (Faster-RCNN, RetinaNet and DETR)

and report mAP@0.5 along with false positives and false negatives. We observe that InterAug consistently produces more

robust detectors across all model architectures. Finally, we also show qualitative results obtained using Faster-RCNN.
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our experiments, we initialized the networks with weights

from a model pre-trained on the COCO benchmark, and

performed fine-tuning for 10K iterations with batch size 8
(2 NVIDIA TESLA V100s).

Baselines. For comparison, we consider the two widely-

adopted augmentation policies, namely image-level and

bbox-level, evaluated under the same experiment setup. In

the former baseline, we randomly sample from the pre-

specified augmentation and strength sets, and apply it to the

whole image. In the latter approach, we only augment the

region within the bounding box of an object (provided in the

ground truth annotations). As described earlier, both these

baselines can be viewed as special cases of our method, and

the performance variation across these choices clearly ev-

idences the need to achieve invariance to the context cap-

tured by the bounding box (bbox) annotations and explor-

ing the optimal effective context (EC) for applying image

manipulations.

Metrics. In addition to the commonly employed Average

Precision score (mAP@0.5 score aggregated from 3 inde-

pendent trials.), we also consider an additional suite of met-

rics to perform fine-grained error characterization. To this

end, we follow the recent work by Bolya et al. [2] and

study the following error components 3: (i) classification

error (Cls. Error): instances where the model correctly lo-

calized an object but incorrectly classified it; (ii) localiza-

tion error (Loc. Error): instances where the model correctly

identifies the class of an object, but the predicted bound-

ing box is incorrect; (iii) CE Error: instances where the

models makes incorrect predictions for both the bounding

box and the class label; (iv) background error (Bck. Error):

instances where the model incorrectly identifies the back-

ground or an area without an object as containing an object;

(v) missed: instances where the model fails to identify an

object that is present in the scene; (vi) false positives (FP);

and (vii) false negatives (FN).

4. Results
4.1. InterAug consistently produces superior per-

formance across different distribution shifts

In Figure 3, we present detailed performance results

of the three architectures, Faster-RCNN, RetinaNet, and

DETR, across various BDD-OOD benchmarks. We make

a number of interesting observations. Firstly, we find that

that InterAug provides significant improvements over

the bbox-level baseline across all three distribution shifts,

with average boosts of 10.1%, 6.7%, and 6.9% for Faster-

RCNN, RetinaNet, and DETR, respectively. Next, across

the different architectures InterAug produces gains on

average 3.2%, 2.5%, and 6.03% compared to the image-

level augmentation policy. Furthermore, InterAug not

3https://github.com/dbolya/tide/

only produces significantly lesser false positives thus im-

proving AP, but also achieves fewer false negatives.

These improvements can be directly attributed to the ef-

ficacy of our proposed augmentation policy which enables

the detectors to leverage the effective context of the ob-

ject while avoiding shortcut decision rules. Finally, we also

include qualitative examples obtained using Faster-RCNN,

and we notice that InterAug produces a better-calibrated

model compared to the other two methods. This is demon-

strated by the reduced amount of false positives and halluci-

nations (detecting objects that are not present in the scene),

which was the case in image-level and bbox-level policies.

4.2. InterAug is effective under limited training
data sizes

In Figure 4, we present detailed results of Faster-RCNN

and RetinaNet models trained on 10% and 20% of the Pas-

cal VOC training data, utilizing the three augmentation poli-

cies. As expected, we notice a monotonous increase in per-

formance in all cases, as the amount of training data in-

creases. Strikingly, InterAug provides non-trivial per-

formance improvements compared to the two other base-

lines. For example, when trained using only 10% of the

available data, both Faster-RCNN and RetinaNet improve

upon the bbox-level baseline by 3.47% and 3.14% and pro-

duces gains of 2.6% and 3.1% over the best-performing

image-level policy respectively. From the fine-grained

analysis, we notice that the proposed augmentation policy

shows particularly strong performance in reducing local-

ization and background errors, the two main contributors

to the false positives. In the 20% case, RetinaNet trained

with InterAug achieves an 1.5% improvement in local-

ization error over Image-level and 1.2% improvement in

background error over bbox-level augmentation policy. In-

terestingly, the image-level policy is reasonably effective at

reducing false positives, it tends to produce higher false

negatives. In contrast, bbox-level conservatively reduces

the number of false negatives at the cost of much higher

false positive rates. In comparison, InterAug is the best

performing across both error types.

5. Related Work
Data augmentation is routinely used when training deep

models for computer vision [19], due to its utility in improv-

ing generalization and reducing overfitting. By leveraging

synthetic data obtained via pre-defined manipulations, e.g.

geometric transformations or corruptions [10, 23], one can

build models that generalize better to unseen test data, even

under distribution shifts. State-of-the-art techniques go be-

yond conventional image manipulations, and adopt inter-

polation techniques such as Mixup [25] and CutMix [20],

or compositional strategies such as AugMix [11], Triv-

ialAug [17], AugMax, ALT [9] etc.
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Model Train Size Aug. Policy AP50 Cls. Error Loc. Error CE Error Bck. Error Missed FP FN

Image-level 72.62 2.34 7.13 1.27 3.84 5.11 17.12 10.87

Bbox-level 71.73 2.43 6.77 1.35 4.73 4.35 18.47 10.1710%

InterAug 75.2 2.85 6.29 0.92 2.41 7.09 12.55 13.34

Image-level 75.3 2.05 6.5 1.13 4.11 4.13 16.23 8.91

Bbox-level 74.14 2.09 6.53 1.22 4.65 3.98 17.48 8.73

F-RCNN

20%

InterAug 77.71 2.32 5.52 0.86 2.94 5.7 12.25 10.81

Image-level 75.35 3.06 4.36 0.97 4.15 1.24 21.02 4.84

Bbox-level 75.73 2.95 3.84 0.91 4.7 0.96 21.54 3.7910%

InterAug 78.49 2.49 4.0 0.87 3.63 1.01 18.83 3.69

Image-level 77.22 2.28 4.21 1.04 4.19 1.04 19.79 3.88

Bbox-level 77.01 2.09 4.34 0.99 4.5 0.81 20.8 3.02

RetinaNet

20%

InterAug 80.28 2.02 3.72 0.88 3.32 0.98 17.61 2.93

Figure 4: Data-efficient Training. We report the data-constrained detector performance obtained using two different archi-

tectures (Faster RCNN, RetinaNet) and three different augmentation policies on the Pascal VOC benchmark. In both cases,

we report the average mAP@0.5 scores, when trained with 10% and 20% of the training data. Furthermore, we show the

fine-grained evaluation using TIDE metrics. We find that InterAug achieves significant improvements over the baselines.

Finally, we provide example detections for the RetinaNet model trained using different augmentation policies.

In practice, augmentation design typically requires

dataset-specific tuning and may rely on knowledge about

the task-relevant invariances. In order to simplify this pro-

cess, AutoAugment strategies [6], which pose augmentation

design for a given dataset as a search problem, and learn

an optimal policy through reinforcement learning, have also

been proposed. In practice, they can be computationally ex-

pensive and can even be impractical when the design space

becomes large. Interestingly, a recent study [17] showed

that, in object recognition models, an augmentation policy

drawn in random can achieve similar performance as that of

AutoAugment methods.

In addition to geometric or color space transformations,

mixing and copy-paste style augmentations, which copy an

object from one image and paste in another image, have

gained popularity for object detection tasks [7, 8]. More re-

cently, AutoAugment techniques specifically designed for

object detection have emerged [26, 5]. In [5], Chen et
al. proposed an auto augment approach to exploit the rel-

ative size of objects in a given frame and advocated for

bounding box-level augmentations, which many off-the-

shelf policies do not leverage. However, in our experiments,

we observed that a naı̈ve adoption of bbox-level augmenta-

tions yields consistently poor results compared to the stan-

dard image-level policy. We hypothesize that, the inconsis-

tent nature of bounding box labels can be one of the rea-

sons for this behavior. Annotating a large number of exam-

ples for object detection tasks is expensive and error-prone.

While multiple annotators are often required to obtain high

quality annotations in many real-world applications practi-

tioners routinely collect data from less expensive data re-

sources, including social media/crowd-sourcing platforms,

or use fewer annotators to save costs. This often results in

imprecise bounding box labels. To address this challenge

of noisy labels, recent works [24, 4, 16, 1] have developed

sophisticated training methods that typically require large

amounts of data, computationally expensive optimization

strategies and multiple additional objectives. In contrast

InterAug works out of the box, without requiring any

modifications to the training loop or the model architecture,

and provides significantly robust detectors.
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6. Conclusion

We introduced a new augmentation policy for train-

ing object detectors, referred to as InterAug. Impor-

tantly, InterAug is simple to implement and can be uti-

lized with any off-the-shelf augmentation policy. In our

study, we implemented InterAug with TrivialAug, orig-

inally designed for object recognition, for object detec-

tion. InterAug considers the effective context of an ob-

ject and achieves invariance to the local context. Our ex-

periments on two popular benchmarks demonstrated that

InterAug consistently produces robust object detectors,

outperforming current practices, and leading to improved

generalization in limited training data settings. On closer

look, the models trained with InterAug reduce the num-

ber of false positives without compromising on the false

negatives. In summary, our work clearly emphasizes the

benefits of utilizing bounding box annotations in augmenta-

tion policies, for producing reliable and data-efficient object

detectors.
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