
Supplementary Material

Radu A. Cosma∗, Lukas Knobel*, Putri van der Linden, David M. Knigge, Erik J. Bekkers
University of Amsterdam

{radu.cosma,lukas.knobel}@student.uva.nl

A. Superpixel segmentation

Figure 1. An image of a fish from ImageNet-1k and the visual
representation of its graph after using the Image-to-Graph transfor-
mation. The superpixel mean colour is used as the colour for each
superpixel. The approximations of the contours are illustrated with
random colours.

*Joint first authors

B. Implementation details

B.1. Segmentation efficiency

SLIC [1] is more efficient than Felzenszwalb and Hut-
tenlocher’s method [3] in the general case and has linear
complexity in the number of pixels, provided a small region
size independent of the image size is given as hyperparam-
eter. Felzenszwalb requires the construction of a graph of
pixels, where each pixel is connected through edges to ad-
jacent ones. In addition, the method relies on these edges
being sorted by their weights, which are determined by the
Euclidean distances between the pixels’ colour values. Such
a sort has complexity O(n log n), where n is the number of
edges. However, if considering images where each colour
channel is an integer in the range [0, 255], a common way to
store images, and sorting the squares of the edge weights,
which are integers between 0 and 3 ∗ 2552 = 195075, a
counting sort can be used, which has complexity O(n). Al-
though this approach still does not make the Felzenszwalb
algorithm linear in complexity, it significantly improves
performance and makes it competitive with SLIC. In our
experiments, Felzenszwalb implemented in this way was
faster than SLIC.

B.2. Data loading and batching

An important reason for the efficiency of our method is
the use of a customised storage format and retrieval proce-
dure. For both training and testing data separately, all im-
ages are compressed into three files. One contains the data
in dense format describing only the necessary data required
to construct the superpixel data and edges between them in
an efficient way. Another contains the offsets at which each
image starts, and the last consists of image statistics such as
mean and standard deviation of the mean colours of all su-
perpixels, which might be used for normalisation. This stor-
age format, for the parameters used in the paper for Felzen-
szwalb, made the ImageNet-1k dataset three times smaller
than the original version, approximately 39 Gigabytes in-
stead of 136 Gigabytes for the training set. This allows us
to keep both the training and testing datasets in memory,
where the content of each of the files is stored in one tensor.

1



Given this representation, we can, given a tensor of indices,
construct a batch of image graphs in a vectorised fashion
without iterating over the individual samples. The shape
contours are also batched together, ensuring the efficiency
of the end-to-end training approach. Our implementation
can be found in the source code that is provided as part of
the Supplementary Material.

C. Alternative shape encoding approaches

This section presents three alternatives to encode shape
information. All of them performed worse in preliminary
experiments and were therefore discarded in favour of the
end-to-end approach used in the paper.

C.1. Shape curvature measure

One simple approach for enriching the image graph with
shape information is to use one scalar that denotes the cur-
vature of a shape. At each point on the polygon, the max-
imum of the interior and exterior angle, normalised to be
between [0, 1], is used. Taking the mean of these angles re-
sults in a scalar value indicating the shape’s curvature (see
Figure 2).

Figure 2. Visualisation showing the calculation of the curvature
measure.

C.2. Densified shape representation

Another method is to sample a fixed number of equidis-
tant points on the superpixel contour. The points are rep-
resented using polar coordinates, with normalised radians,
with respect to the centroid of the patch (see Figure 3). This
results in a fixed size feature vector that can be incorporated
into the main graph.

Figure 3. Visualisation showing the densified shape representa-
tion.

C.3. Graph autoencoder

Instead of training a shape encoder, like the local GNN,
end-to-end with the global GNN on the image classifica-
tion task, we can also pretrain the shape encoder on a proxy
task. For this, we employ an autoencoder-like setup where
the graph is encoded into a fixed size vector using a GNN
(see Figure 4). Since the nodes are connected to exactly
two other nodes on a contour, we can subsequently use an
LSTM [5] decoder to predict the next node given the pre-
vious prediction. The first input is a special beginning of
graph token and the initial hidden state is the latent feature
vector. We employ teacher forcing during training to speed
up convergence.

Figure 4. Visualisation showing the autoencoder setup.

While an LSTM assumes a sequential ordering and a
starting point, assumptions that do not hold for a graph, it
does allow for decoding the feature vector into a node se-
quence of variable length. This setup enables us to encode
shapes with a variable number of corners into a fixed size
representation using a GNN.

The nodes encode the polar coordinates (with normalised
radians) with respect to the centroid of the patch and the
edges of the graph encode the distance between the nodes.
The output that the decoder needs to predict is the ordered
sequence of node features. The starting point is arbitrary,
but the polygon approximation method does generate nodes
in a counter-clockwise fashion starting from the top right of
the shape, which can thus be consistently interpreted by the
LSTM. The loss used is Mean Squared Error (MSE). More
complex approaches are possible, but for a problem of this
small size we consider MSE to be sufficient.

The encoder consists of a GCN layer [6] that operates on
the patch graph. After applying the ReLU activation func-
tion, sum-pooling is used to obtain a fixed length feature
representation of the shape. Finally, a linear layer maps this
vector to the latent representation.

The decoder uses an LSTM layer whose initial hidden
state is set to the latent vector. At each step, its output is
passed through a linear layer which predicts the polar co-
ordinates. To ensure that the outputs match the target do-
mains, we use the ReLU activation function for the dis-
tances and the sine function for the normalised radians to
encode their periodic nature.

Figures 5 and 6 show illustrations of superpixels based
on images in the CIFAR-10 test set (left) and their recon-
structions by the autoencoder (right). It can be seen that,
while graphs violate the assumptions made by the LSTM,



the autoencoder is able to decently reconstruct most shapes.
However, one main disadvantage of this method compared
to the end-to-end approach employed in the paper is that
separately training the shape-encoding GNN drastically in-
creases the total training time.

(a) Many SLIC patches have a simple square-like shape which
is well reconstructed.

(b) Some SLIC patches have a slightly more complex shape.
However, the autoencoder is still able to roughly reconstruct
the shape.

Figure 5. Illustrations of SLIC superpixels (left) and their recon-
structions by an autoencoder (right).

D. Further ablation details

This section presents more details about the ablation
study performed in the paper. All results are based on the
CIFAR-10 dataset.

D.1. Dynamic edge construction

ablation accuracy median time
per epoch

ShapeGNN 80.44% 19.4s
DynamicEdgeConv 74.8% 355.5s

Table 1. Test accuracy after replacing EdgeConv with Dynam-
icEdgeConv [10], which dynamically constructs edges.

Table 1 shows the accuracy obtained by replacing
the EdgeConv layer in ShapeGNN with DynamicEdge-
Conv [10]. By doing that, the original adjacency matrix
is ignored. Instead, the graph is interpreted as a point
cloud where each DynamicEdgeConv layer dynamically
constructs edges using the K-Nearest Neighbour algorithm
(KNN) based on the node features. This setup results in
a much slower training, with an epoch taking more than
18 times as long, while the accuracy decreases by approxi-
mately 5.6%.

(a) Easier Felzenszwalb patches are well reconstructed.

(b) In general, Felzenszwalb superpixels can be much more
complex than the ones based on SLIC. Although the general
shape of the patch is captured reasonably well, some larger
errors occur (see top of the shape).

(c) For even more complex Felzenszwalb superpixels, the
patch and its reconstruction only share basic similarities, such
as the three corners in the top left, right and bottom left. Be-
tween these corners, the two shapes deviate drastically.

Figure 6. Illustrations of Felzenszwalb superpixels (left) and their
reconstructions by an autoencoder (right).

D.2. Superpixel position

ablation accuracy median time
per epoch

ShapeGNN 80.44% 19.4s
no position information 71.3% 18.9s

Table 2. Test accuracy after removing the centroid position infor-
mation.

Table 2 shows that removing the information about the
centroid coordinates leads to a drop in accuracy by 9.1%.
This indicates that superpixel positions are crucial for the
task of image classification.



ablation accuracy median time
per epoch

ShapeGNN 80.44% 19.4s
no 79.0% 18.6sresidual connections

concatenation for 79.0% 21.2sresidual connections

Table 3. Test accuracies for different residual connection abla-
tions.

D.3. Residual connections

A new aspect of our proposed architecture is the use of
residual connections using addition. The results of varying
the type of residual connection, denoted ∗ in the paper, are
shown in Table 3. When we use concatenation for residual
connections, similar to [7], the number of nodes for the next
layer increases accordingly. It can be seen that using addi-
tion in residual connections performs 1.4% better than no
connections and concatenation which interestingly perform
the same. This is despite the fact that due to the increased
dimensionality, the concatenation variant has 540k more pa-
rameters. This indicates an advantage of using residual con-
nections with addition instead of the other alternatives.

D.4. Pooling methods

ablation accuracy median time
per epoch

ShapeGNN 80.44% 19.4s
mean pooling 79.6% 19.5s
max pooling 78.8% 19.5s
sum pooling 79.7% 19.0s

Table 4. Test accuracies for different pooling ablations.

Attention pooling is another architectural change we in-
troduce. Table 4 shows the results for the corresponding
ablations. Attention pooling improves upon its alternatives
by 0.7%-1.6%. While the difference in performance is rel-
atively small compared to the mean or sum pooling, this
result might suggest the benefit of node-wise weights in at-
tention pooling.

D.5. Model capacity

We further explore the influence of model capacity on
performance by varying the number of linear layers and In-
teractionBlocks in the local and global GNN in addition
to the dimensionality of the shape encoding. The results
are shown in Table 5. Decreasing the number of parame-
ters of the global GNN to less than a third of the vanilla
ShapeGNN, reduces the performance by only 0.5% while

ablation accuracy median time
per epoch

ShapeGNN 80.44% 19.4s
dg−hidden = 150 79.9% 14.2s
dg−hidden = 450

80.7% 50.7snumg−blocks = 2
numg−layers = 2
dl−hidden = 32

79.9% 16.3snuml−blocks = 1
numl−layers = 1
dl−hidden = 128

80.2% 31.8snuml−blocks = 3
numl−layers = 3

dlatent = 1 79.2% 19.6s
dlatent = 10 80.3% 19.2s

Table 5. Test accuracies for ShapeGNN variants with different
capacities.

running approximately 1.6 times faster. Increasing the ca-
pacity of the global GNN to 3.5M parameters surpasses
ShapeGNN in terms of accuracy by 0.3%. Considering that
the runtime more than doubled, the small gains in perfor-
mance are negligible. This might indicate that the image
graph does not capture enough valuable information which
could be exploited by a more complex model. Although
this paper increased the amount of information encoded in
the image graph, future work could try to further enrich the
image representation.

When changing the capacity of the local GNN, both in-
creasing and decreasing the number of parameters does not
improve the performance. This indicates that a small local
GNN is not sufficient to extract discriminative shape fea-
tures while a higher capacity increases the risk of overfitting
to shapes. This explanation is supported by the ablations
varying the amount of information passed between the lo-
cal and global GNN by changing dlatent.

E. Used software

The following software, that provides implementations
of some of the discussed algorithms, was used alongside
the code provided in the Supplementary Material:

1. OpenCV 4.5.3 [2], used for the contour finding algo-
rithm [9] and SLIC implementation [1].

2. Pytorch 1.12 [8], used for the neural network-focused
modules composing the models.

3. Pytorch Geometric [4], used for the graph convolu-
tions.



References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien

Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic superpix-
els compared to state-of-the-art superpixel methods. IEEE
transactions on pattern analysis and machine intelligence,
34(11):2274–2282, 2012. 1, 4

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 4

[3] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient
graph-based image segmentation. International journal of
computer vision, 59(2):167–181, 2004. 1

[4] Matthias Fey and Jan Eric Lenssen. Fast Graph Representa-
tion Learning with PyTorch Geometric, 5 2019. 4

[5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 2

[6] Thomas N. Kipf and Max Welling. Semi-supervised clas-
sification with graph convolutional networks. In J. In-
ternational Conference on Learning Representations (ICLR
2017), 2016. 2

[7] Vu Le Linh and Chan-Hyun Youn. Dynamic graph neural
network for super-pixel image classification. In 2021 In-
ternational Conference on Information and Communication
Technology Convergence (ICTC), pages 1095–1099. IEEE,
2021. 4

[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché
Buc, E. Fox, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019. 4

[9] Satoshi Suzuki et al. Topological structural analysis of dig-
itized binary images by border following. Computer vision,
graphics, and image processing, 30(1):32–46, 1985. 4

[10] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 3


	. Superpixel segmentation
	. Implementation details
	. Segmentation efficiency
	. Data loading and batching

	. Alternative shape encoding approaches
	. Shape curvature measure
	. Densified shape representation
	. Graph autoencoder

	. Further ablation details
	. Dynamic edge construction
	. Superpixel position
	. Residual connections
	. Pooling methods
	. Model capacity

	. Used software

