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1. Introduction

This text supplements the main manuscript of the work
titled “RV-VAE: Integrating Random Variable Algebra into
Variational Autoencoders”. The main aim of this material
is:

• to clarify the usage of algebra for Random Variables
(RVs) on ANN operations,

• to present experiments and empirical evidence that
support the assumption according to which in com-
monly used scenarios, non-linear activation units typi-
cally process normally distributed data, and,

• to present more qualitative results obtained from the
proposed approach.

2. Random Variable Algebra on ANN Opera-
tions

As stated in the main manuscript, all ANN operations
can be adapted for the case of RV input using the rules of
random variable algebra. In order to comprehend how the
rules apply to our case, we must clarify that for every ANN
operation, the input to the operation is a RV, while the pa-
rameters (weights and biases) are scalars. That is the reason
why in Section 3 of the main manuscript, all modifications
consider the case of a RV operand and a scalar. Moreover,
due to the way these operations are defined, each RV is only
summed with other RVs (never multiplied). This observa-
tion lays a solid basis for proving the assumption we make
regarding normal data distribution.

2.1. Convolutional/transposed convolutional opera-
tions

Convolutional operations can be viewed as a special case
of general linear operations, where some of the elements of
AAA are forced to be zero. Therefore, the derivation is very

similar to the case presented in Section 3.1 of the main
manuscript. The convolutional operation is defined as:

yyy = xxx ∗AAA+ bbb, (1)

where again xxx is the input vector of RVs, AAA the matrix (ker-
nel) of learnable weights, and bbb the learnable bias vector.
The expected value of output yyy is:

E[yyy] = E[xxx ∗AAA+ bbb] = E[xxx] ∗AAA+ bbb (2)

and the variance is:

var[yyy] = var[xxx ∗AAA+ bbb] = var[xxx] ∗ (AAA⊙AAA). (3)

A similar procedure is followed to obtain the expected value
and variance of the transposed convolution. Since the oper-
ation is essentially the same, and only the (shape of the)
kernel is changed between the two operations, the expected
value and variance are the same as in the convolution oper-
ation.

3. Normally Distributed Data Assumption
In order to calculate the expected value and variance for

the case of ReLU activation function, we made the assump-
tion that all input data to the activation function is normally
distributed. This assumption is supported by the following
empirical evidence.

We conducted a series of experiments in order to evalu-
ate the distribution of data after some ANN operations. This
data is provided as input to a non-linear activation func-
tion. As discussed in Sec. 2, all the above operations in-
volve linear combinations of different operand types. More
specifically, the operands are of type: Uniform, Normal,
and Scalar. Therefore, we only need to show that summa-
tions of different operand types result in Normal-like distri-
butions.

Table 1 shows the histograms of sums for different com-
binations of X and Y operands for different quantities of



Operand Y = Uniform Y = Normal Y = Scalar

X = Uniform

X = Normal symmetric plot

X = Scalar symmetric plot symmetric plot

Table 1: Histograms of summations for combination of different operands, where n is the number of operands.

Figure 1: The histogram of 4 output pixels after a convolution operation. The histogram was obtained by repeating the same
process for 10, 000 times. The input pixels were sampled each time from U(0, 1).

operands. The histograms show the density of 10, 000 sam-
pled values, where each sample is the sum of n operands.
For every type of operand, if an RV X is of type Uni-
form then X ∼ U(−1, 1), if X is of type Normal then
X ∼ N (0, 1), if X is of type Scalar then X ∼ N (1, 0),
therefore for each sample each operand is drawn/sampled

from its respective distribution. As we can observe, in most
cases the resulting histograms take a Gaussian form even for
a few operands. If all operands are of scalar type, we no-
tice that, as expected, the output distribution is a Dirac delta
function. We can describe this distribution in a Gaussian-
like form as N (m, 0) where m is the output scalar. In the



case of uniform plus scalar operands, we can observe that
the output distribution is similar to an Irwin-Hall distribu-
tion, which is the case of uniform plus uniform. There-
fore, for a large number of operands (specifically n > 2)
the output yields a Gaussian-like distribution (third ”green”
histograms of Table 1).

More empirical results are reported in Fig. 1. For an in-
put noise image where (the value of) each pixel is sampled
from U(0, 1), we show the histogram of the output pixel
values (4 pixels) after a convolution operation, repeated
for 10, 000 times. Even though the input is uniformly dis-
tributed, the output pixel values follow a Gaussian-like dis-
tribution.

Figure 2 depicts the same operation as above but per-
formed in a single RV convolution. For an equivalent in-
put RV matrix, we show the plot of 4 Normal distributions
created after a single RV convolution operation. We can ob-
serve that the distributions created are nearly identical to the
histograms of Fig. 1.

4. More Qualitative Results
4.1. Image reconstructions

In the following Figs. 3 to 8 we present some more
image reconstruction results for different architectures and
datasets.

4.2. Image generations

In Figs. 9,10 we present some more image generation
results for different architectures and datasets.



Figure 2: The plot of 4 Normal distributions created from the 4 output pixels after a single RV-convolution operation. The
means and variances of those 4 Normal distributions are the respective means and variances of the output pixels’. The input
values were RVs with expected value and variance E[U(0, 1)] and var[U(0, 1)] respectively.

Figure 3: Reconstructions of CelebA real images (first row) using original VAE architecture (second row) and the proposed
RV-VAE version (third row).

Figure 4: Reconstructions of CIFAR-10 real images (first row) using original VAE architecture (second row) and the proposed
RV-VAE version (third row).



Figure 5: Reconstructions of CelebA real images (first row) using original β-TCVAE architecture (second row) and the
corresponding proposed RV-aware version (RV-β-TCVAE version, third row).

Figure 6: Reconstructions of CIFAR-10 real images (first row) using original β-TCVAE architecture (second row) and the
corresponding proposed RV-aware version (RV-β-TCVAE version, third row).

Figure 7: Reconstructions of CIFAR-10 real images (first row) using original Soft-Intro-VAE architecture (second row) and
the corresponding proposed RV-aware version (RV-Soft-Intro-VAE version, third row).



Figure 8: Reconstructions of CelebA-HQ real images (first rows) using original Soft-Intro-VAE architecture (second rows)
and the corresponding proposed RV-aware version (RV-Soft-Intro-VAE version, third rows).

(a) VAE (b) RV-VAE

Figure 9: Image generations on CelebA with (a) VAE and (b) the corresponding proposed RV-aware version (RV-VAE).



(a) Soft-Intro-VAE

(b) RV-Soft-Intro-VAE

Figure 10: Image generations on CelebA-HQ with (a) Soft-Intro-VAE and (b) the corresponding proposed RV-aware version
(RV-Soft-Intro-VAE).


