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Abstract

Geometric structures such as lines and planes are rel-
evant in SLAM, as they improve the map interpretability
and usability for downstream tasks. Planar landmarks add
structural constraints to the map optimization, which could
improve the accuracy of camera pose estimates. However,
does the latter really happen in practice? In this paper, we
thoroughly evaluate the effect of adding planar constraints
in monocular SLAM, both in simulated and real scenes. Our
experiments show that, in practical use cases, the benefit of
adding such planar constraint shows benefits for scene es-
timation but limited effect in the camera pose estimation.

1. Introduction
Simultaneous Localisation and Mapping (SLAM) com-

prises a wide array of methods for robotic navigation in

unknown environments, which have experienced signifi-

cant progress along many relevant directions in the last

decades [3]. Specifically, in visual SLAM, there have been

substantial efforts to move from methods that only use point

landmarks [19, 9] to higher level scene representations that

can be formed by lines [24, 20, 10], planes [29, 1] or ob-

jects [4, 27, 14]. Such higher level representations make

the resulting maps interpretable by humans and usable for

high-level robot tasks like fetching objects.

The usual strategy for adding such high-level elements is

to gather all of them in a single state vector and to optimize

them jointly. This has been shown to improve the estima-

tion of the SLAM state in several cases, e.g., [22, 2]. In

monocular SLAM, the addition of line features to the state

vector has also been shown to improve the accuracy of the

camera trajectory [20, 10]. However, the effect in the state

of adding planar features has not been sufficiently studied.

In this paper, we focus on the specific case of adding

planes to the joint optimization in monocular SLAM. We

build on our previous work [1], from which we use the state

definition and measurement models. The main contribution

of this paper is an analysis of the impact of adding planar

constraints on the state accuracy. Such an analysis is done

both in simulation and in real scenes. Our experiments sug-

gest that the effect of adding planar constraints on camera

pose estimation is limited. This is even more evident in

practical situations. Specifically, we observed only slight

improvements in the estimations of camera poses in sev-

eral simulation setups, in which errors associated to plane

extraction and matching are non-existent and we can syn-

thetically assign noise levels and points to the correspond-

ing planes. These and other effects present in real scenes

might have in fact even a larger influence on the estimation

errors than the benefit planes add. Generally, the joint opti-

mization of planes with the rest of the state does not bring a

significant advantage. This is in line with our experiments

in real scenes.

The remainder of the paper is structured as follows: In

Section 2 the related work on SLAM systems using planes

is discussed. The formulation for joint optimization of

points, planes and camera poses used in this analysis is in-

troduced in Section 3. Section 4 details our experimental

setup as well as the results. We summarize our conclusions

in Section 5.

2. Related work

2.1. RGB-D Plane SLAM

With RGB-D cameras, it is possible to measure planes

directly. Based on this, Kaess [15] introduces a minimal

representation of planes for SLAM suitable for optimization

with incremental solvers. Similar to quaternions, a plane in

homogeneous representation can be normalised to lie on the

unit sphere S3 and be updated in the tangent space. This re-

sulted in a mapping system using only planes as landmarks.

Hosseinzadeh et al. [13] included this minimal formu-

lation in their RGB-D SLAM system which uses points,

planes and objects (represented as quaternions) in the map.

The distance of points to their corresponding plane is min-

imized. Additionally, they include constraints between

planes based on the Manhattan assumption and a tangen-
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tial constraint between objects and planes. They are able to

show substantial improvement compared to RGB-D ORB-

SLAM2 [19].

Zhou et al. [30] focus on the least-squares problem a

SLAM system with planar landmarks needs to solve. They

point out the challenges for a plane-to-plane cost and pro-

pose an efficient algorithm for a distance-based point-to-

plane factor.

2.2. Monocular Plane SLAM

In contrast to 3D data, a single monocular image does

not generally contain the geometric information to observe

the parameters of a plane. However, several monocular

SLAM systems incorporating multi-view planes have been

proposed.

Wu and Beltrame [26] propose a visual odometry system

using planes, extracted by a deep network, and only photo-

metric error terms. It improves over the baseline without

planes. Rosinol et al. [21] introduce a monocular visual-

inertial 3D mesh generator, which makes use of planarity

constraints among mesh triangles. However, they only con-

sider horizontal and vertical planes. Yang et al. [29] es-

timate wall and floor planes from wall-floor boundaries,

which they detect using a CNN and edge detection. The

plane landmarks improve the robustness of their SLAM sys-

tem in scenes with little texture. While this is an important

use case for adding planes, the authors do not evaluate their

system in general scenes. As a follow-up, [28] adds objects

and modifies the plane detection. Pixelwise semantic seg-

mentation is used to find initial wall-ground boundaries and

the detections are refined using a CRF. Wall-ground bound-

ary lines of planes are used to measure planes in 2D images

and therefore only wall planes (no ground) are used. While

the system can improve over the baseline in many evaluated

sequences, the normal direction of the planes is fixed to be

parallel to the Manhatten world axis directions.

Hosseinzadeh et al. propose a monocular SLAM sys-

tem using points, planes and objects [14]. The planes are

extracted by a neural network which makes it possible to

generate plane measurements from monocular images di-

rectly. The distance between points and their associated

plane is minimized. Objects are represented as quadrics.

The system makes use of the Manhattan world assump-

tion to add constraints which reward parallel or orthogonal

planes. They can show a slight improvement of trajectory

accuracy using planes but report only one run per sequence.

In [1], a monocular SLAM system is presented, that in con-

trast to most other works enforces points associated with

planes to lie exactly inside this plane. This system is capa-

ble of representing general planes.

Some methods decouple estimation of planes and map

state. Concha and Civera [6, 7] use triangulated planes to

complete sparse and semi-dense monocular maps, but do

not optimize the planes jointly with the map states. Shu et

al. [23] use a CNN to detect planes in a multi-plane SLAM

system decoupled from local bundle adjustment. The sys-

tem can be used in monocular and RGB-D settings. Plane

detections are further refined using a graph-cut RANSAC

approach which also enforces spatial consistency for both

inliers and outliers. In [16] Li et al. decouple rotation

and translation estimation to achieve low drift in a monoc-

ular SLAM system. Lines and planar areas are used dur-

ing the rotation estimation leveraging the Manhattan world

assumption. Translation estimation is based on points and

lines.

2.3. Plane SLAM with Manhattan World

Many works using planes for localization and map-

ping are based on the Manhattan World assumption [8].

[21, 29, 28], among others, impose this assumption in the

plane discovery phase by allowing planes only in Manhat-

tan directions. Other works such as [14] add the Manhattan

assumptions explicitly as additional constraints to the op-

timization problem. Using such constrains makes sense in

man-made environments and improves the quality of SLAM

systems [5]. However, in this work we are solely looking

into the benefits of adding planar constraints to the optimi-

sation problem of the SLAM back-end. In our experiments,

we have isolated the problem to study the benefits of using

planar constraints and investigate in which circumstances

they will improve the mapping and localization accuracy.

We choose to use the pipeline proposed in [1] as it is free

from assumptions like Manhattan World that may affect our

study and considers general planes oriented in arbitrary di-

rections.

We found the experiments in the literature to be limited

for the following reasons: They report the influence of pla-

nar constraints in SLAM accuracy only under certain as-

sumptions (e.g. Manhattan world), the reported influence of

planar constraints in SLAM is not independent of the qual-

ity of plane discovery method, and a fair comparison of such

methods is not possible, as different assumptions, datasets,

and baselines are used. To study the impact of general pla-

nar landmarks, in this work we employ both synthetic and

real sequences, set the state of the art point-feature based

SLAM system [19] as the baseline and report to what extent

a SLAM system can benefit from integrating planar land-

marks.

3. SLAM with Points and Planes

This section introduces the formulation for optimizing

points and planes in monocular SLAM system used for dur-

ing the experiments. We follow our formulation previously

presented in [1] and we use it with minimal modifications.
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Figure 1: Factor graph of the optimization, figure taken

from [1]. Vertices for 3D points are in green, camera poses

in purple, planes in orange and in-plane points in grey with

colored outline. Ternary factors connect camera poses, in-

plane points and planes. Factors and edges leading to them

are colored according to the in-plane point they are con-

nected with. Figure best viewed in color.
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where C = {ci | i = 1, . . . ,m ; ci ∈ SE(3)} repre-

sents the poses of a set of keyframes, P = {P j | j =
1, . . . , n ;P i ∈ R

3} are regular 3D points that do not be-

long to planes, K = {πk | k = 1, . . . , p ;πk ∈ P
3} are a set

of 3D planes in the scene, and Y = {yk
l | k = 1, . . . , p ; l =

1, . . . , nk ;yk
l ∈ R

2} are in-plane points, expressed in the

local reference system of the 3D plane. The tracking state

xt ∈ SE(3) contains the camera pose in the current time

step t.

3.2. Plane Representation

A plane in homogeneous representation is given as

π = (π1, π2, π3, π4)
� ∈ P

3. Its normal vector n =
(nx, ny, nz)

� and the distance to the origin d are as fol-

lows:

n =
(π1, π2, π3)

�√
π2
1 + π2

2 + π2
3

d =
−π4√

π2
1 + π2

2 + π2
3

(2)

In order to optimize the parameters of a plane, it is best

to use a minimal representation. This can be achieved by

optimizing in the tangent space of S3 as proposed in [15].

Normalizing the homogeneous plane coordinates gives

us π′ = π/‖π‖ ∈ S3. A quaternion q can also be nor-

malised to a unit quaternion q′ ∈ S3 = {q ∈ R
4 : ‖q‖ =

1} which is frequently used to represent and optimize rota-

tions. Both representations cover the same space and there-

fore, they can be optimized in the same tangent space of S3

using the exponential and log mapping derived by Grassia

in [11]:

q(s+1) = exp(ω)q(s), exp(ω) =

(
1
2sinc(

1
2‖ω‖)ω

cos( 12‖ω‖)
)

(3)

where s is an iteration step of the optimization and ω ∈ R
3

represents an incremental update of the plane.

3.3. In-plane point representation

In-plane points yk
l ∈ R

2 are represented in the local

coordinate frame of the plane. Their position relative to

the plane origin Ow
k is represented as a linear combina-

tion of two arbitrary orthogonal in-plane vectors, v0 and

v1. For convenience, the origin of plane πk is defined as

Ow
k = −dn�.

As v0 · n = 0 and we define it of unit length ‖v0‖ = 1,

arbitrarily setting the y-component to zero provides the nec-

essary constraints to obtain it. The original formulation for

v0 in [1], however, had undesired properties during incre-

mental updates of the plane parameters. Specifically, the

sign for x-component of v0 depended on the sign of the x-

component of the plane normal n. As a result, small updates

in the plane parameters inducing a sign change might result

in an abrupt change of the vectors v0 and v1. This sign

change can be prevented by a more stable formulation for

v0:

v0 =
( −nz√

nz
2+nx

2 0 nx√
nz

2+nx
2

)�
(4)

As v1 is perpendicular to both v0 and n, it can be deter-

mined as v1 = v0 × n. Finally, we can convert a 3D point

in the world coordinate system P j ∈ R
3 into the in-plane

point yk
l in the reference plane of plane πk by projecting it

onto the plane along the normal direction.

yk
l =

[
(P j −Ow

k ) · v0

(P j −Ow
k ) · v1

]
(5)

3.4. Bundle Adjustment using Point and Plane Con-
straints

Our measurements Z =
{z1,1, . . . , zi,j , . . . , zik,jk,k, . . .} are the image ob-

servations of regular points (zi,j) and in-plane points

(zik,jk,k). The cost to minimize is the sum of a function of

the reprojection errors of all points in all images.

C =
∑
i,j

ρh(e
T
i,jΩ

−1
i,j ei,j) +

∑
i,k,l

ρh(e
T
i,k,lΩ

−1
i,k,lei,k,l) (6)
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We use the Huber cost function ρh and Ωi,j stands for

the covariance matrix for the keypoint. The projection equa-

tion is similar for 3D points and in-plane points. For 3D

points, the keypoint zi,j in the image of camera ci is asso-

ciated with point P j and compared to its reprojected posi-

tion.

ei,j = zi,j − proj(RiP j + ti) (7)

where Ri stands for the rotation matrix that transforms

points in the world frame to the camera frame, and ti for

the translation vector from the optical center of the cam-

era to the world frame in the local camera frame. proj(·) :
R

3 → Ω projects a point in the camera frame to the image

domain Ω.

An in-plane point yk
l in a plane πk can be converted to

the world coordinate system Y w
k,l at any time using

Y w
k,l =

[
v0 v1

] · yk
l +Ow

k (8)

Afterwards, the point can be projected into the camera

frame to calculate the error to the associated keypoint.

ei,k,l = zi,k,l − proj(RiY
w
k,l(πk,y

k
l ) + ti) (9)

Fig. 1 shows the resulting factor graph visualising the

optimization described by the equations above. All points

in the same plane are indirectly connected with each other

via the shared plane parameters.

4. Experimental Results
When investigating planes as landmarks in visual

SLAM, the high complexity of the pipeline makes it dif-

ficult to isolate and properly analyze certain effects. Addi-

tionally, when working on real data, many recordings are

required to cover different scenes and trajectories and 3D

scene ground truth is hard to obtain. While this can be eas-

ily achieved using data from simulation, there is usually a

gap with real data. Therefore, we conduct two types of ex-

periments.

In the first set of experiments, bundle adjustment with

planar constraints is examined in isolation using simulated

configurations, thus, making it possible to directly con-

trol spatial configuration and number of planes, trajectory

shape, point density and more. We omit the problem of

plane extraction here and focus on the accuracy improve-

ment due to the new type of constraints. These experiments

are presented in section 4.1. We complement this simula-

tions with a second set of experiments using the full pipeline

on real sequences. They are presented in section 4.2 and fo-

cus on the potential benefits of planes in real applications.

Real sequences are taken from the TUM RGB-D dataset

[25]. Our implementation of the SLAM pipeline and opti-

mization is based on [19, 1]. For trajectory alignment and

computation of the Absolute Pose Error (APE), we use EVO

[12].

4.1. Simulation Results

The simulation experiments focus on investigating the

effects of planar constraints on the estimates accuracy after

full bundle adjustment. We use the APE as a measure of tra-

jectory accuracy and mean 3D point error as a measure of

scene accuracy. These experiments do not cover plane dis-

covery, the effects of outliers or incorrect association. Start-

ing with the simplest case, we look into the effect of a single

plane with different trajectories. This setup is also close to

the experiments on real sequences with one dominant plane

reported in [1]. Additionally, we conduct experiments with

different numbers of planes and scene points to investigate

the benefits of planar constraints depending on these envi-

ronmental factors.

Experimental setup. We define a number of different

camera trajectories with increasing complexity: a simple

spline, a circular trajectory, and short and long curvy tra-

jectories imitating the motion of a handheld camera. Top

and side view of the scene are shown in the first row of Fig.

2 and 3. The camera poses are sampled from these trajec-

tories and the 3D points are either inside a given 3D vol-

ume or lying on a plane. Data association is given. Points

sampled from a plane might be associated with that plane

or not, depending on the experiment. We compare levels

of 0%, 50% and 100% of in-plane points. We apply zero-

mean Gaussian noise to all point observations, with varying

standard deviations (0.5, 1.0 or 1.5 pixel). This informa-

tion is also passed to the optimization, replacing the noise

parameters usually corresponding to different levels of the

feature pyramid. The optimization seeds for the points po-

sitions and camera translations are perturbed with respect to

the ground truth.

Single-plane experiments. We first evaluate four dif-

ferent trajectories in a scene with 3D points and one plane.

We show the distribution of errors over 15 runs. Boxplots

of the errors are shown in the bottom row of Fig. 2 and 3.

The mean values are also reported in Table 1. In the table,

we also report the relative change between 0% and 100%

in-plane points for APE and 3D point errors. For 3D point

errors, we report the mean taking into account all points

(both in-plane and regular ones), only regular points or only

in-plane points respectively.

In single-plane experiments, the changes in mean APE

for different ratios of in-plane points are minimal. Absolute

improvements are in sub-millimeter range, the largest rela-

tive improvement below 4%. In comparison, the variation

between runs due to noise visible in the boxplots is much

larger. In contrast, the mean 3D point error decreases sig-

nificantly for 50% and 100% of in-plane points compared to

having no plane. The average improvement reaches some
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Table 1: RMSE of APE and mean 3D point errors for different rates of in-plane points. Mean taken over 15 runs. Lower is

better. Additional column with relative change from baseline (*) to 100% in-plane points (†).

rmse APE (cm) mean 3D point error (cm)

sequence 0% 50% 100% rel. 0% 50% 100% rel.

(*) (†) change (*,†) all (*) all regular in-plane all(†) regular in-plane change (*,†)
spline 0.94 0.93 0.93 -1.4% 3.79 3.38 3.64 2.8 2.99 3.45 2.65 -21.1%

circle 0.78 0.77 0.75 -3.6% 1.26 1.09 1.24 0.71 0.97 1.236 0.71 -23.0%

handheld 0.85 0.85 0.84 -0.9% 1.14 1.02 1.23 0.52 0.843 2.37 0.51 -26.6%

handheld long 0.79 0.79 0.79 -0.7% 1.97 1.49 2.0 0.45 1.26 2.32 0.39 -36.1%

handheld - 2 planes 0.68 0.67 0.65 -4.0% 4.42 2.87 3.54 1.75 1.93 2.88 1.59 -56.3%

handheld - 5 planes 2.87 1.73 1.57 -45.3% 8.54 6.23 7.02 4.92 4.63 5.42 4.33 -45.8%

(a) top and side view of simple spline trajectory (b) top and side view of circle trajectory
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(c) Boxplots showing the distribution of APE and 3D point errors over 15 runs.

Figure 2: Scene and error boxplots for single-plane setups and short trajectories. Red scene points are optimized as in-plane

points, here at 50% setting.

(a) top and side view of short handheld trajectory (b) top and side view of long handheld trajectory
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(c) Boxplots showing the distribution of APE and 3D point errors over 15 runs.

Figure 3: Scene and error boxplots for single-plane setups and large trajectories. Red scene points are optimized as in-plane

points, here at 50% setting.

millimeters, which means relative improvements of more than 20%. When comparing the mean values of all, reg-

2225



(a) Generated scene and cameras.
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(b) Boxplots showing the distribution of errors over 15 runs.

Figure 4: Scene and error boxplots for multi-plane setups. Red scene points are optimized as in-plane points, here at 50%

setting.
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Figure 5: Error boxplots for the multi-plane case

ular and in-plane points, it becomes clear that this effect is

mainly due to the reduced 3D point errors of in-plane points.

Our results suggests that planar constraints have a large ef-

fect on the 3D scene accuracy, but a negligible one on the

trajectory accuracy.

Multi-plane experiments. To explore the effect of pla-

nar constraints with multiple planes in the scene, we take the

short handheld trajectory and add more planes. The camera

orientation is changed for scenes with different numbers of

planes to make sure the cameras also observe the new parts

of the scene. Fig. 4 shows the results for 15 runs for two

and five planes. The mean values are reported in Table 1.

The trajectory errors decrease in less than a millimeter in

the experiment with two planes, but more than a centimeter

in the experiment with five planes. This corresponds to a

reduction in error of 4% or 45% respectively when compar-

ing having no in-plane points with the case of all possible

in-plane points. The point error is reduced by 45% or more

in both cases. So while the improvement in 3D point er-

ror is still the more dominant effect, in the 5-plane scene,

the trajectory is also estimated more accurately using pla-

nar constraints.

We studied the 5-plane case in more detail by using pla-

nar constraints for different numbers of planes while keep-

ing the same scene and the trajectory. We run experiments

for all possible combinations of planes, that is, one experi-

ment for the no-plane and the five-plane cases, then five ex-

periments for the 1-plane and 4-plane cases, and ten exper-

iments for all combinations of two planes and three planes.

As before, we perform 15 runs per setting and report the

results grouped by number of planes in Fig. 5. Our results

show an improvement of the trajectory accuracy with an in-

creasing number of planes and a high number of in-plane

points. However, scenes such as these ones, with a high

number of large planes and sufficient texture to extract lo-

cal features, are unlikely to be found in practice. The point

errors decrease significantly as we add planar constraints

for more planes in the scene. There is also an advantage of

100% in-plane points compared to 50%, which grows with

the number of planes.

Variations in the number of scene points. We con-

ducted experiments with different numbers of 3D points to

see if the effect of planes is larger in scenes with fewer con-

straints. We use all previous scene setups and trajectories

but generate different numbers of 3D points while keeping

the same ratio of points belonging to planes. The results for

three of such trajectories are shown in Fig. 6. The three

2226



250 500 750 1000 1250
No. of points in scene

0.005

0.010

0.015

0.020

rm
se

A
P
E
(m

)

handheld long

0%

50%

100%

500 1000 1500 2000
No. of points in scene

0.0050

0.0075

0.0100

0.0125

rm
se

A
P
E
(m

)

handheld 2p

0%

50%

100%

1000 1500 2000 2500
No. of points in scene

0.02

0.04

rm
se

A
P
E
(m

)

handheld 5p

0%

10%

25%

50%

100%
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(b) Point errors curves for different point densities.

Figure 6: Errors depending on point densities. Dashed vertical line marks point density value shown in individual plots of

each sequence in Fig. 3 and 4. Best viewed digitally.

simpler trajectories yield results qualitatively very similar

to the handheld long trajectory, so we show this one as an

example for all one-plane setups. For trajectory errors, the

general trend is the same for all scenes. With a higher num-

ber of points in the scene the errors decrease, which is ex-

pected due to the higher number of constraints. However,

there is no obvious effect on the differences between opti-

mization with and without planar constraints. Having points

generated more densely does not seem to have a direct ef-

fect on their effectiveness. The same is true for 3D point er-

rors. The error generally decreases with more points in the

scene and, similarly to previous experiments, the improve-

ment for points is larger than for the trajectory. Again, there

is no trend showing a stronger or weaker improvement when

comparing optimization with and without planes depending

on the number of points in the scene.

Summing up, our results indicate limited improvement

of trajectory accuracy and clearly reduced estimation errors

of the 3D points lying on the planes In realistic scenarios—

where the number of planes is limited and the ratios of in-

plane points is lower due to the lower number of tracked

features— we expect improvement of camera pose accu-

racy to be further reduced compared to experiments in sim-

ulation.

4.2. Real-Image Results with a Full SLAM Pipeline

For experiments on real sequences, the formulation for

planes and in-plane points was integrated into the monoc-

(a) Plane detections with RANSAC

(b) Plane detections with PlaneRCNN[17]

Figure 7: Plane detection methods failing on TUM dataset

[25].

ular pipeline of the state-of-the-art ORB-SLAM2 [19] as

proposed in [1]. For details on how different parts of the

pipeline were modified, please refer to the original paper.

We conduct experiments with multiple planes, and look into

different methods for plane discovery.
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Figure 8: Maps and RMSE boxplots of experiments with

multiple planes.

Specifically, for plane detection, we considered multi-

ple methods. RANSAC or multimodel RANSAC can be

used to find a plane hypothesis with a maximum number

of inliers from a point cloud. However, the 3D point cloud

constructed by the SLAM system does not sample struc-

tures homogeneously but depending on salient image re-

gions where features can be matched. Therefore, RANSAC

can easily lead to incorrect plane detections which do not

correspond to real planar structures. Additionally, multi-

model RANSAC needs careful parameter tuning, often se-

quence specific [18]. Neural networks such as PlaneRCNN

[17] can also detect planar areas in 2D images. It is possible

to estimate a plane hypothesis from all points falling inside

the area of a mask. However, using them in images with sig-

nificant domain change with respect to the training set leads

to problems like over-segmentation. An example of failure

cases for both RANSAC and PlaneRCNN segmentation is

shown in Fig. 7.

For our experiments, we provide masks for individual

planes derived from a reconstruction of the scene using

RGB-D data and the ground truth trajectory instead of fine-

tuning the network to our dataset. These was the most ac-

curate plane discovery we could provide to make the ex-

periment most competitive with the simulation and its per-

fect plane discovery. These masks come in a format pro-

vided by neural networks for plane segmentation like Plan-

eRCNN [17] but additionally provide a unique id for plane

instances over the complete sequence. The resulting masks

are used to segment sub-point-clouds corresponding to one

plane each. We use single model RANSAC to find a plane

hypothesis from this, combining the advances of both meth-

ods.

We report results on two sequences of the TUM

dataset[25] with and without final global bundle adjustment.

Maps and error boxplots are shown in Fig. 8. The recon-

struction shows multiple visually correct planes inserted in

the scene for both sequences. However, when comparing

against the baseline, the trajectory errors and the variation

between runs increase. By adding a final Global Bundle

Adjustment (GBA), this effect is reduced. However, and

in agreement with our simulation results, the trajectory er-

rors remain similar to those of ORB-SLAM2 without pla-

nar constraints. Again, planar constraints offer a high-level

representation of the scene but without a noticeable effect

on the estimation of the camera poses.

5. Conclusions

In this paper we provided extensive evaluations of

monocular mapping using planes on both synthetic data and

real sequences. We find that planar constraints have a sig-

nificant effect on the accuracy of the 3D structure estima-

tion, specifically on the points lying on the plane. How-

ever, the effect in the camera trajectory accuracy is negligi-

ble. The same conclusion holds in our experiments in real

scenes, where the benefits of planar constraints on the cam-

era trajectory accuracy are again insignificant. Finally, we

would like to remark that we do not want to diminish the

value of planes as a high level representation that might be

useful for certain applications. However, our findings sug-

gest that the usual approach of jointly estimating the plane

parameters along with the rest of state does not provide sig-

nificant benefits for pose estimation in monocular setups

and plane estimation could be decoupled with computation

benefits.
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Marı́a Martı́nez Montiel. Impact of landmark parametriza-

tion on monocular ekf-slam with points and lines. Interna-
tional Journal of Computer Vision, 97(3):339–368, 2012.

[25] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-

mers. A benchmark for the evaluation of RGB-d SLAM sys-

tems. In Proc. of the International Conference on Intelligent
Robot Systems (IROS), pages 573–580, 2012.

[26] Fang Wu and Giovanni Beltrame. Direct sparse odome-

try with planes. IEEE Robotics and Automation Letters,

7(1):557–564, 2022.

[27] Shichao Yang and Sebastian Scherer. CubeSLAM: Monocu-

lar 3-d object SLAM. IEEE Transactions on Robotics, pages

1–14, 2019.

2229



[28] Shichao Yang and Sebastian Scherer. Monocular object and

plane SLAM in structured environments. IEEE Robotics and
Automation Letters, 4(4):3145–3152, 2019.

[29] Shichao Yang, Yu Song, Michael Kaess, and Sebastian

Scherer. Pop-up SLAM: Semantic monocular plane SLAM

for low-texture environments. In 2016 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS),
pages 1222–1229. IEEE, 2016.

[30] Lipu Zhou, Daniel Koppel, Hul Ju, Frank Steinbruecker, and

Michael Kaess. An efficient planar bundle adjustment algo-

rithm. In 2020 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pages 136–145. IEEE, 2020.

2230


