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Abstract

Underwater images are degraded due to the absorption
and scattering of light inside the water. The underwater
degradation causes the loss of information in terms of tex-
ture, style, color, and minute detail of edges and hence the
degraded images are not useful in many higher-order ap-
plications. Several deep learning techniques are explored
by researchers across the globe for the same. Further, deep
learning networks learn the distribution of degraded train-
ing samples and fail when there is a deviation due to a
change in water type. This paper proposes an encoder-
decoder network that preserves the image content, texture,
and style while maintaining overall global similarity by
capturing the inherent distribution of the training samples.
To overcome the deviation due to a change in water type, a
classifier network is induced in the latent space of encoder-
decoder architecture. The classifier loss and adversarial
loss in the classifier network ensure the learning across do-
mains and avoid setting priors on captured distribution.
Hence, the proposed model is robust against the change
of water type and can be deployed in real-life without re-
training. To train the model, we use attenuation coefficients
of underwater environments at different depths to recreate
5430 paired underwater images from the Underwater Image
Enhancement Benchmark (UIEB) dataset with six distinct
types of water. Our proposed model enhanced the degraded
images among different degradation levels due to depth and
water type variations. The proposed model is evaluated on
UIEB and EUVP benchmark databases. The performance
of the proposed model is verified against twenty-two state-
of-the-art methods in terms of underwater reference and no-
reference image quality assessment metrics.

1. Introduction
In the last few years, underwater surveillance has gained

a lot of attention due to various applications including, un-

derwater object tracking [1], underwater pipeline fault de-

tection [2], autonomous underwater vehicle navigation [3],

etc. It is observed that most underwater surveillance tech-

niques are highly affected by poor-quality underwater im-

ages. Underwater images are distorted in terms of color,

brightness, and contrast due to suspended particles and un-

derwater intrinsic properties while the light travel inside the

water. The reflected light travels from the object to the cam-

era in water, suffering from two phenomena: absorption and

scattering. Jaffe-McGlamery [4] models the total light per-

ceived by the camera as the sum of the three components:

direct, forward-scattered, and backward-scattered.

The state-of-the-art techniques focus on restoring the

clearer image by altering the contrast and brightness levels

based on histogram-based methods [5, 6, 7, 6] or channel-

based priors-based methods [8, 9, 10]. However, such meth-

ods are not reliable in real-life scenarios and fail to char-

acterize the scene complexities due to underwater dynam-

ics. Recently, deep learning-based techniques [11, 12, 13]

are gaining popularity due to their inherent capabilities of

extracting deep features and compensating for the level of

degradation to produce an enhanced image. However, these

methods rely heavily on the training set distribution to as-

sess the level of degradation and produce an enhanced im-

age. Again, the water condition is not the same at every

place due to the change in temperature, weather, viscosity,

etc. Further, around the coast, the water is muddy, and in

the oceanic environment presence of saline water changes

the refractive index of the medium and hence the level of

degradation. The deviation in environmental conditions and

change in water type leads to a distribution shift between

the training and the testing sets. Hence, the state-of-the-art

(SOTA) methods cannot address the underwater dynamics

and the variation in degradation levels based on different

water types.

In this paper, we attempt to address the challenge of un-

derwater dynamics by designing an adversarial learning-

based end-to-end encoder-decoder architecture to enhance

the underwater images. We proposed the reconstruction loss

for preserving the video scene’s minute details in encoder-

decoder architecture to produce an enhanced image. Re-

construction loss enhances the image by maintaining global
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similarity and considering the content of the image. Also

preserves the overall style and texture. However, it has been

observed the decoder devises a prior water type based on

the features extracted by the encoder and enhances the im-

age accordingly. Hence, different levels of degradation in

image frames when they are captured at varied depths and

water types are not considered using encoder-decoder archi-

tectures. To mitigate this issue, we proposed a CNN-based

classifier network in latent space. The intuition behind de-

signing the classifier is to deploy the domain adversarial

learning by capturing the distribution of video scenes using

classifier focal loss and adversarial loss. During the train-

ing, the encoder-decoder model is not converged entirely

to incorporate the change in water type using a classifier

convolutional network. When the encoder-decoder model

reaches a pre-decided threshold, the classifier network is in-

troduced at latent space to make the model agnostic to han-

dle the variation in water type. Hence, the proposed model

does not require re-training to capture the variation in the

scene and uses domain adversarial learning to produce en-

hanced images. The number of classes in the training set

depicting different types of water need not be the same.

Hence, we propose to use focal loss on the classifier net-

work to avoid setting any prior on a specific class. The shift

in distribution is captured by adversarial loss to obtain an

enhanced image without any assumption of the amount of

degradation in the input image.

Further, the state-of-the-art underwater image datasets

are not capable to characterize different water types and

hence are unable to model different distributions. We pro-

posed a strategy to recreate a new synthetic underwater

dataset derived from the Underwater Image Enhancement

Benchmark (UIEB) dataset [14] with different attenuation

levels and varied depths. The dataset has been expanded to

5340 images, representing six distinct types of water.

The main contribution of this paper are listed below;

• We proposed adversarial learning of the underwa-

ter image domain, resulting in improved visually en-

hanced underwater images across different levels of

degradation across varied attenuation levels and depth.

• The proposed architecture induces a focal loss in the

classifier to label the correct water type based on ex-

tracted features in the latent space.

• We proposed to induce adversarial loss on the classi-

fier to generalize a pre-trained model and capture the

deviation in distribution due to variation in water type.

• We introduce the recreation of a new synthetic under-

water dataset derived from the Underwater Image En-

hancement Benchmark (UIEB) dataset [14], consisting

of 890 underwater reference images. The dataset has

been expanded to 5340 images, representing six dis-

tinct types of water.

The rest of the paper is organized as follows. Section 2

depicts the state-of-the-art techniques in underwater image

enhancement. The proposed method is provided in detail in

Section 3. Section 4 contains the model to create the syn-

thetic dataset. The experimental setup along with the visual

and quantitative analysis of results are discussed in Section

5. Finally, Section 6 concludes the proposed work along

with discussions regarding the future scope of the work.

2. Related Work
Enhancing the quality of the underwater images is one of

the essential tasks for improving the interpretability and in-

creasing the overall information of the captured scene. The

state-of-the-art technique for underwater image enhance-

ment can be divided into two sub-categories: conventional

and deep learning-based.

2.1. Conventional methods

The conventional methods aim to enhance the image to

bring out the obscured details from the underwater images

by altering the distribution of intensities or stretching the

contrast by pixel level transform to get an enhanced image.

The methods like color correction, contrast enhancement,

color prior, and noise reduction techniques are applied to

the degraded image to get an enhanced image. The con-

ventional underwater image enhancement methods can be

categorized into two sub-categories: contrast enhancement

and channel prior.

2.1.1 Contrast Enhancement based Techniques

The contrast enhancement schemes use the application of

single-valued and monotonically increasing functions in

mapping the pixel level or spatial domain processing for im-

proving the contrast of an image. In a high-contrast image,

the variation of pixel intensities belonging to foreground or

background is quite significant resulting in the preservation

of information. Agalan et al. [5] proposed a method of

contrast enhancement based on the properties of logarith-

mic transform coefficient histograms. The said method ap-

plies the transformation map in terms of logarithmic scale to

the original image. The lower intensities are expanded, and

higher intensities are compressed. Further, researchers in

[15, 16] relied on logarithmic transform histogram match-

ing to obtain an enhanced image. However, these methods

fail to address the loss of color information in the local re-

gions of an image. Further, the contrast enhancement factor

is used to adjust the pixel values, improving the color and

contrast of the image. The histogram equalization methods
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Figure 1: Architecture of proposed model. The left-hand side is the encoder part and the right-hand side is the decoder part.

A classifier is built to generalize the loss depicted in the bottom part between the encoder and decoder.

[6, 17] help in contrast adjustment, yet they fail to incorpo-

rate the surrounding dynamics.

2.1.2 Channel Prior based Techniques

Channel prior techniques aim to assess the degradation of

underwater images and enhance their quality based on pre-

defined priors set on intensity distribution theories. One

such theory is dark channel prior which assumes at least

one channel has a very low intensity for a haze-free image.

Methods like [8, 9, 18, 19, 20, 9] focus on using the dark

channel prior for enhancing the underwater images. How-

ever, the distortion happens most across the red channel, so

setting a prior on the red channel is a more obvious choice.

Researchers [21, 22, 23, 24] focused on enhancing the un-

derwater images assuming the red channel must have the

lowest intensity. The variational models enhances the im-

age by estimating reflectance and illumination in a retinex

decomposition. The authors in [10, 25, 26] used hyper-

Laplacian reflectance priors to increase the quality of the

image. However, it is observed that, in real-life scenarios,

setting a prior is not always feasible. Recently, deep learn-

ing methods have performed better in underwater image en-

hancement as they learn the distribution of the underwater

dynamism at a deeper level to retrieve an enhanced image.

2.2. Deep learning-based methods

Deep learning-based methods for enhancing underwa-

ter images primarily rely on deep convolutional neural net-

works based deep features analysis to improve the image

quality. These techniques use large datasets of underwa-

ter images to train the network to learn the underlying pat-

terns and relationships between the input and output images.

Compared to conventional methods, deep learning-based

methods have been shown to produce high-quality under-

water images with improved contrast, brightness, and color

saturation. Deep convolutional neural networks estimate

the degradation among pixel intensities and retrieve an en-

hanced image. A lot of state-of-the-art methods [27, 28, 23]

focus on deep convolutional network-based image enhance-

ment techniques to bring out the obscured details from the

degraded images. One such work was reported by Wang

et al. [29], where the CNN-based color correction scheme

for underwater images is proposed. Recently, generative

adversarial networks gained popularity due to their ability

to produce an enhanced image based on the distribution

of target classes. Methods like [30, 31, 32, 33, 34] use

GAN to enhance the degraded underwater images. Chen

et al. [11] propose a twin adversarial contrastive learning-

based underwater image enhancement model. However, it

may be observed that most of the discussed models are not

deployable in real-life scenarios as they failed in the sce-

nario where there is a significant change in the distribution

of the testing set from the training set. Uplavikar et al.
[13] proposed a method for underwater image enhancement

across different domains. The method uses a synthetic in-

door dataset to mimic the underwater enhancement. Hence,

the said method doesn’t cover underwater dynamics.

3. Proposed Method

In this paper, we propose an end-to-end encoder-decoder

architecture for removing the degradation in underwater im-

ages. The complete architecture of the proposed model is
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Figure 2: An example set of synthetic images from our dataset comprising six classes. First column contains the clear images

and column two to seven contains degraded images regenerated using Table 1. The first and second row contains the sample

images, and the third row depicts the variation in intensity distribution at different levels of degradation.

shown in Figure 1. The main idea of the proposed model

is to enhance the model’s generalization ability for produc-

ing distortion-free images irrespective of the variation in the

distribution of testing samples from the training samples.

The model comprises an encoder (E), a decoder (D), and a

water-type classifier (N). The encoder-decoder network is

a convolutional neural network designed to generate clear

image by compensating any degradation. We introduce a

classifier (N) to classify the water type from the latent vec-

tor (Z) projected at the end of the encoder. The objective

of this endeavor is not solely to train the model and gener-

ate an improved image but rather to instill the model with

an understanding of the intrinsic characteristics of underwa-

ter images. Hence, we proposed to explore the capabilities

of domain adversarial learning using a combination of clas-

sifier and adversarial loss to train the encoder to be more

agnostic of different water types. Adding these loss terms

ensures the regularization of features represented as latent

vectors (Z) for capturing the general data distribution.

3.1. Proposed Network Architecture

The proposed network comprises an end-to-end architec-

ture with the encoder-decoder network to get an enhanced

image. Herewith we propose a classifier network for do-

main adversarial learning-induced in between the encoder-

decoder network. Figure 1 represents the same.

3.1.1 Encoder-Decoder Network

The input image is fed to an encoder (E) to generate a latent

vector (Z). There are four blocks each in the encoder and

the decoder part. The encoder block combines the convolu-

tion layer, batch normalization followed by ReLU to extract

the features, and max pooling to down-sample the feature

map. The decoder part uses bilinear up-sampling followed

by convolution and batch normalization. The nonlinearity

is added to the network using the ReLU activation function.

The output from the last layer of the decoder is given to

a non-linear activation unit (tanh) to produce a distortion-

free image.

3.1.2 Classifier Network

We propose an induction of the classifier network in the ar-

chitecture to prevent the latent space vector to have a prior

about the water type based on the extracted features. The

classifier network consists of the convolutional neural net-

work followed by batch normalization and ReLU. The fea-

ture map is flattened after pooling to construct a fully con-

nected layer. The water type is defined over the categories

defined over the number of classes in the dataset.

3.1.3 Domain Adversarial Learning

It may be observed in SOTA that, while the deployment of

deep learning models, the system’s performance degrades

due to the shift in the distribution of source and target im-

ages. In underwater imaging, this shift can be observed

with the deviation in the water type or variation in under-

water environment conditions from training. Hence in this

work, we proposed a combination of classifier and adver-

sarial loss together to address the said issue. The proposed

encoder-decoder architecture is used to extract the features

representing the source domain. In the classifier network,

we proposed to induce the classifier loss to predict the wa-

ter type accurately by minimizing the maximum mean di-

vergence between the encoder and the classifier. Hence, a

label can be assigned even if the distribution varies between

the source and the target class. Further, we propose adver-

sarial learning which trains the encoder to produce domain

invariant features such that the source and target water type

is indistinguishable by the decoder. Hence, applying do-

main adversarial learning with the combination of classifier

and adversarial loss ensures the generalization ability of the

proposed model.
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3.2. Loss Functions

We proposed a combination of three loss functions:

the reconstruction loss (LR), the classifier loss (LN ), and

the adversarial loss (LA) [35] in the proposed network.

These losses are deployed to generate clearer images and

to train our encoder to be more agnostic of different water

types. Further, we proposed the reconstruction loss at

the end of the decoder and updates the weights of both

the encoder and decoder. It ensures that the generated

images are clear and that important information is retained

during the encoding and decoding process. During training,

first the encoder-decoder model is converged using only

reconstruction loss till an accuracy of 90% is achieved.

Then, to make the model free from any prior on dataset,

a combination of classifiers loss and adversarial loss is

induced in classifier network. These two losses ensure the

optimization of the classifier network and encoder. Hence,

the model will be able to generate clear images while

predicting the water type over a more general distribution.

Classifier loss predicts the water type of the latent vector,

which helps the decoder generate a clear image. This loss

function is used to guide the decoder to generate images

that are consistent with the water type indicated by the

latent vector. Further, the distribution function of the target

may deviate from the present one. To design a system

free from any prior set of the extracted features in latent

space, an adversarial loss is used to generate a clear image

irrespective of water type. These losses are described as

follows:

3.2.1 Reconstruction Loss

The underwater images are blurred resulting in a reduction

of local and global information. Moreover, the enhanced

image obtained from the decoder loses information during

projecting back from latent space to image space. Hence,

we introduced the reconstruction loss in the network by con-

sidering three parameters: global similarity, image content,

and local texture and style information to get an enhanced

image.

• Global similarity: The global similarity loss function

helps in enforcing a similarity between the generated

output and the target consistent with the L1 metric

[36, 37]. Minimizing the L1 loss encourages the model

to produce a globally consistent output with the target

image and it is less susceptible to the effects of blurri-

ness.

L1 =

N∑

i=1

|Y −D(Z)|, (1)

where, N is the number of pixels, X is a distorted im-

age, Y is the ground truth image, and latent vector

Z = E(X), E refers to the encoder and D refers to

the Decoder of the model.

• Image content: A content loss is added to ensure that

the enhanced image has similar content as the ground

truth image. This loss is defined using a pre-trained

convolutional neural network as in [38, 39], Image

content loss is Euclidean distance between feature rep-

resentations of the enhanced and target images.

Lcon =
1

CjHjWJ
||ψj(D(Z))− ψj(Y )||, (2)

where, ψj() is a feature map obtained from jth layer

of the convolutional neural network, Cj , Hj and Wj

denotes the number, height, and width of the feature

map, X is the distorted image, Y is the ground truth

image, and latent vector Z = E(X), E refers to the

encoder and D refers to the Decoder of the model.

• Local texture and style: The mean squared error

(MSE) loss is utilized to capture high-frequency infor-

mation that pertains to local texture and style. This en-

ables the encoder to generate an enhanced image while

retaining texture and style. The MSE can be given as,

Lloc =
1

N

N∑

i=1

|D(Z)i − Yi|2. (3)

where N is the number of pixels.

The reconstruction loss is formulated to guide the gener-

ator (G) in learning and improving the image quality such

that the generated enhanced image is close to the ground

truth image defined as,

LR = Lloc + λ1L1 + λcLcon. (4)

where λ1 and λc are hyper-parameters defined as 0.7 and

0.3, empirically.

3.2.2 Classifier Loss

We proposed the use of classification loss in terms of a focal

loss [40] to capture the distribution of type of water and is

utilized to update the classifier (N). The focal loss is widely

used in object detection to address the class imbalance prob-

lem. During training, random sampling leads to creating an

imbalance in the number of samples used for training from

each class. A focus is given on the examples that the model

is finding difficult to classify. The loss is defined as follows,

LN = −(1− pt)
γ ∗ log(pt). (5)
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where pt is the probability of the classification in the cor-

rect class, and γ is the tunable parameter defining the focus

given to a particular class.

3.2.3 Adversarial loss

To generate the enhanced images independent of any partic-

ular water type adversarial loss is used. The adversarial loss

(LA) is the negative entropy of the predicted distribution of

the water type produced by the classifier for the latent vector

(Z).

LA(X) =
M∑

c=1

N(Z)clogN(Z)c. (6)

where Z = E(X), and M is the number of classes. The la-

tent vector Z is fed to the water-type classifier N to capture

the deviation between the distribution of source and target

domains.

4. Recreation of the Dataset
The underwater images are degraded due to the absorp-

tion and scattering of light. According to the underwater im-

age formation model, the captured image can be expressed

as shown in eq 7

Uλ(z) = Iλ(x) ∗Kλ(z) +Bλ(1−Kλ(z)). (7)

where Uλ(z) is the captured underwater image, Iλ(x) is

the clear latent image, Bλ is the homogeneous background

light, and Kλ(z) is the medium energy ratio. The under-

water degradation level is different at varied depths and in

different water types. The degradation coefficients are also

not the same at different water conditions like oceanic and

coastal depths. The attenuation coefficient (Kd(z, λ)) de-

pends on the energy of the light beam (E) and is given as,

Kλ(z) = 10−βλd(z) = −Eλ(z, d(z))

Eλ(z, 0)
. (8)

Here, βλ is the medium attenuation coefficient, and dis-

tance d(z) is the distance from scene point z to the cam-

era. The value of attenuation differs at different depths (z)

and for different wavelengths (λ) [44]. The transition be-

tween attenuation coefficient Kλ for different channels is

not straightforward and differs in all three (R, G, B) chan-

nels [45]. Addressing and retaining information across dif-

ferent water types becomes challenging using mathemat-

ical modeling. In this paper, we designed an encoder-

decoder-based architecture to incorporate the difference in

degradation in different water bodies with respect to depth.

The SOTA methods capture the distribution of the train-

ing set. In real-life scenarios, the testing set distribution

deviates from the training set due to various environmen-

tal conditions like changes in weather, temperature, and

lighting conditions. The domain adversarial learning han-

dles the change in distribution without re-training the en-

tire network. The SOTA methods require fine-tuning or re-

training in order to incorporate the deviation of testing dis-

tribution from training distribution. However, most of the

existing benchmark datasets are consistent as they do not

have enough images from different water types. Hence, it

needs a dataset that can address the scarcity of proper data

required from different water types at different levels. To

address the same, we propose to recreate the UIEB database

with different water types.

Table 1: Classes description and attenuation coefficients of

the synthetic dataset

Class in Channel

our dataset red green blue
1 0.81 0.96 0.98

2 0.75 0.89 0.89

3 0.75 0.89 0.88

4 0.67 0.73 0.67

5 0.62 0.61 0.50

6 0.55 0.46 0.29

To recreate the synthetic dataset, we degraded the val-

ues in R, G, and B color channels of the images present in

the UIEB dataset in order to create views in different wa-

ter types. As the condition deviates the attenuation among

the channels differs. An empirical study was performed by

Jerlov [46] to study the attenuation at different depths and

weather conditions. Along similar lines, we defined atten-

uation coefficients and defined six classes in our proposed

model to recreate the EUVP dataset. The change in water

type directly impacts the turbidity of the water. Classes: one

to four represent oceanic water conditions and classes five

and six represent the coastal water conditions.

In the proposed, underwater recreation model we have

used attenuation across each type in R, G B channels of the

underwater image as given in Table 1. The medium atten-

uation is varied between a range of {0.8,1} and a depth of

0.5m to 15m is considered. These values are put in equa-

tions 7 and 8 to get channel-wise attenuation and create

degraded images. Applying the degradation coefficient on

the samples of the UIEB dataset, we have created a dataset

comprised of six classes. The description is given in Ta-

ble: 1 and the sample images are shown in Figure 2. The

proposed scheme recreates 5340 paired images of six wa-

ter types, out of which 4500 paired images are utilized for

training, 500 paired for validation, and 340 for testing pur-

poses.

5. Experiments and Results
This section describes the parameter settings in the pro-

posed architecture and training approach, followed by the
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Figure 3: Visual analysis of the proposed method and PSNR values. column (a) contains the clear images, column (b)

contains the degraded images in our dataset, column (c)-(e) contains the visual results of FUnIE-GAN[41], Semi-UIR [42],

Underwater Ranker [43], (f) contains the visual results of our proposed method

Figure 4: Ablation study is performed with different water types and five state-of-the-art methods: FUnIE-GAN[41], U-Net

Adv [13], Semi-UIR [42], UWCNN [47] , Underwater Ranker[43], and our proposed method

analysis of results in both qualitative and quantitative ways.

The proposed method is tested against twenty-two state-of-

the-art methods in terms of reference and no-reference un-

derwater image quality metrics.

5.1. Parameter Setting and Training

The proposed method is trained on Intel(R) Core(TM)

i5−10500 CPU, 3.10 GHz processor with 32GB RAM, and

NVIDIA Quadro P1000 GPU. For the training process, the

synthesized dataset images are resized to a fixed dimension

of 256 × 256. The model is trained with a learning rate of

0.0001 and a batch size of 4 in the PyTorch framework. Our

approach first focuses on training the encoder and decoder

to reach a threshold of 0.9 to ensure that the encoder pro-

duces a latent vector Z that contains meaningful features.

Upon achieving this, we introduce the water-type classifier

(N) and train it to a sufficient level so that it can guide the

model towards adversarial learning of the encoder. The aim

is to produce the latent vectors Z that are agnostic of the

water type present and allow the model to produce an en-

hanced image that is independent of the water type.

5.2. Visual Analysis of the Results

The performance of the proposed scheme is verified with

the regenerated data over UIEB for the visual analysis of

the results. Figure 3 contains visual results on the proposed

synthetic dataset on three state-of-the-art methods: FUnIE-

GAN[41], Semi-UIR [42], Underwater Ranker [43] and our
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Table 2: Quantitative result of Image Enhancement on

UIEB dataset in terms of SSIM, PSNR, UIQM, UCIQE.

Red denoted best and blue denotes second best

Methods SSIM PSNR UIQM UCIQE
IBLA[48] 0.805 17.925 1.383 0.586

ULAP [49] 0.745 15.855 1.427 0.597

SMBL [50] 0.801 16.681 1.319 0.593

UWGAN [51] 0.756 14.121 1.205 0.502

UWCNN [47] 0.65 13.177 1.202 0.469

FUnIE-GAN [41] 0.689 16.759 2.894 0.547

UColor [52] 0.873 21.888 1.187 0.556

MFEF [53] 0.910 23.352 1.333 0.602

UCM [54] 0.78 17.441 2.695 0.571

UDCP [55] 0.493 11.007 1.748 0.581

UGAN [56] 0.698 16.338 2.49 0.564

UAGAN [57] 0.773 18.093 2.957 0.599

Proposed 0.936 25.581 3.214 0.666

Table 3: Quantitative Result of Image Enhancement on

EUVP dataset in terms of UIQM score. Red denotes best

and Blue denotes second best.

Model UIQM Score ↑ Std Deviation ↓
Res-WGAN[30] 2.46 0.67

Res-GAN[31] 2.62 0.89

LS-GAN[32] 2.59 0.52

Pix2Pix[58] 2.76 0.39

UGAN-P [33] 2.77 0.34

Cycle GAN[34] 2.62 0.67

FUnIE GAN[41] 2.81 0.65

Proposed 3.18 0.22

proposed method. It is clear from the figure that state-of-

the-art methods fail to preserve the contrast of the image.

The enhanced images produced by our proposed method

look quite close to ground-truth images.

5.3. Quantitative Analysis of Results

The proposed method is evaluated quantitatively by

using four metrics: Structural Similarity Index Measure

(SSIM) [59], Peak Signal to Noise Ratio (PSNR) [60], Uni-

versal Image Quality Index (UIQM) [61], and Universal

Color Image Quality Evaluator (UCIQE) [62].

Table 2 contains the quantitative analysis of the pro-

posed scheme against twelve SOTA close competitive tech-

niques: IBLA [48], ULAP [49], SMBL [50], UWGAN [51],

UWCNN [47], FUnIE-GAN [41], Ucolor [52], MFEF [53],

UCM [54], UDCP [55], UGAN [56], UAGAN [57] in terms

of SSIM, PSNR, UIQM, and UCIQE with a test set of 340

images recreated on UIEB dataset. Our proposed model

performed best compared to SOTA architectures in terms of

SSIM, PSNR, UIQM, and UCIQE. Further, we evaluated

the performance of our model on the EUVP dataset with

seven state-of-the-art methods. Table 3 contains the result

in terms of UIQM measure and standard deviation of the

same. it may be concluded from the said table that, our pro-

posed architecture outperformed the state-of-the-art meth-

ods.

6. Ablation studies

An ablation study is performed to test the effectiveness

of the proposed model in terms of loss functions used and

the introduction of the water-type classifier. An ablation

study is performed using various combinations of loss func-

tions used in the proposed scheme and is shown in Table 4.

R represents reconstruction loss, C is classifier loss, and A

is the adversarial loss. Combining R, C, and A produces en-

hanced images while preserving details across various do-

mains. Hence, the proposed method uses a combination

of all three losses. Further, the test images from the pro-

posed six water types are evaluated against five state-of-the-

art methods, and results in terms of SSIM, PSNR, UIQM,

and UCIQE are presented in Fig 4. The highest variance

compared to water type is observed in structural similarity.

Hence, a change in degradation level directly impacts the

preservation of minute details in the image. It is clear that

our proposed model preserves the minute details while gen-

erating visually appealing images and compensating for the

underwater degradations.

Table 4: Ablation study is performed with combinations of

different R, C, and A values. R stands for Reconstruction

loss, C stands for classifier loss, and A stands for adversarial

loss.

Losses→ R C A R C A R C A

Metric ↓ � � � � � � �
SSIM 0.9103 0.951 0.9359

PSNR 21.224 26.60 25.628

UIQM 3.3142 3.209 3.2157

UCIQE 0.6556 0.6650 0.6668

7. Conclusion and Future Work

In this paper, we introduced a novel domain adversarial

network to learn the features across different water types.

The proposed architecture consists of the encoder-decoder

network to remove the distortion from the degraded under-

water images. Further, a classifier network is deployed to

generalize over distribution among varied data types. A

synthetic dataset of six classes is designed according to the

different attenuation constants. We corroborated our find-

ings against twenty-two SOTA architectures. Our proposed

method gave a state-of-the-art performance in terms of ref-

erence and no-reference image quality assessment metrics.

Further, our proposed model preserves the minute details

without introducing any ghosts. In the future, we would

like to test the model for low-light underwater environment

conditions.
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