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Abstract

The development of computer vision algorithms for Un-
manned Aerial Vehicles (UAVs) imagery heavily relies on
the availability of annotated high-resolution aerial data.
However, the scarcity of large-scale real datasets with
pixel-level annotations poses a significant challenge to
researchers as the limited number of images in existing
datasets hinders the effectiveness of deep learning models
that require a large amount of training data. In this pa-
per, we propose a multimodal synthetic dataset containing
both images and 3D data taken at multiple flying heights
to address these limitations. In addition to object-level an-
notations, the provided data also include pixel-level label-
ing in 28 classes, enabling exploration of the potential ad-
vantages in tasks like semantic segmentation. In total, our
dataset contains 72k labeled samples that allow for effec-
tive training of deep architectures showing promising re-
sults in synthetic-to-real adaptation. The dataset will be
made publicly available to support the development of novel
computer vision methods targeting UAV applications.

1. Introduction
Unmanned aerial vehicles (UAVs) have revolutionized

various applications, including surveillance [1, 2], moni-

toring [3, 4], agriculture [5], and mapping [6]. In par-

ticular, UAVs have shown great potential in urban scene

analysis, enabling tasks such as traffic control [3], popu-

lation assessment [7, 1], urban greenery maintenance [8],

and road marking extraction [9]. Despite the availability of

UAV datasets for detection, tracking, and behavior analy-

sis, there remains a lack of comprehensive datasets specif-

ically designed for densely-annotated tasks such as seman-

tic segmentation. The existing UAV semantic segmenta-

tion datasets [10, 11, 12, 13], have limitations in terms of

size, scene variation, sampling rate, and class labeling set.

Moreover, most of them do not account for the multiple

possible operating altitudes and camera angles. To address

Figure 1: SynDrone is a comprehensive dataset aggre-

gating multi-sensor, multi-location, and multi-altitude data

with different task-specific labeling.

these limitations, we present a new synthetic drone dataset,

called SynDrone1, which contains significantly larger im-

age sets that capture scenes with a broader variability and

increased complexity. In addition to traditional remote sens-

ing images, UAVs equipped with Light Detection and Rang-

ing (LiDAR) and depth cameras have emerged as power-

ful tools for high-precision positioning systems [9]. These

UAVs can dynamically explore uncharted territories, cap-

turing both 3D scans and aerial images in real-time. This ca-

pability enables the development of advanced vision tasks,

such as height map generation and 3D scene understanding,

1The code used for analyses and generation of the dataset, and links for

its download are available at https://github.com/LTTM/Syndrone.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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which can contribute to the accurate analysis and interpre-

tation of the surrounding environment. To this extent, to-

gether with standard RGB images SynDrone includes co-

registered depth maps and LiDAR data, providing the capa-

bility for multi-modal analysis as well as supporting other

tasks such as depth estimation, navigation, and 3D recon-

struction. Moreover, SynDrone also enables other vision

tasks such as object detection and instance tracking. The

dataset includes bounding box annotations and object iden-

tifiers, making it suitable for multi-tasking approaches.

In summary, we introduce several contributions:

1. We propose SynDrone, a synthetic large-scale multi-

modal dataset providing drone imagery with a high-

sampling rate at variable altitudes and view angles.

2. We provide registered color, depth, and LiDAR data

allowing the development of multi-modal schemes.

3. We provide ground truth data for multiple tasks, in-

cluding bounding boxes, object class labels, and se-

mantic segmentation labeling, hence the dataset is suit-

able for object detection and tracking but also for more

advanced pixel-level recognition applications.

4. We showcase benchmark results with different mod-

els and evaluate the suitability of the data for transfer

learning by testing the trained models on real-world

datasets.

2. Related Work
In this section, we provide a comprehensive overview of

existing methods and datasets focusing on drone imagery

in image-level tasks within urban scenarios. A summary of

the datasets for object-level tasks can be found in Table 1,

while in Table 2 is reported the equivalent for pixel-level

tasks. Notice that we focus on works targeting drone-level

applications (i.e. with a flying altitude below 100m), there

is also a wide body of research tackling satellite or high-

altitude flying data that represents a different field.

2.1. Vision in UAV urban scenarios

Drone technology has witnessed significant advance-

ments in recent years, revolutionizing urban planning and

management. The intersection of urban scene analysis

tasks and computer vision encompasses various subdo-

mains, including detection [14, 15, 16], trajectory predic-

tion [17, 18, 19, 20], depth estimation [21, 22, 23], and

semantic segmentation [24, 25, 26, 27]. Furthermore, the

availability of data has garnered significant interest from

the community, leading to the exploration of various learn-

ing frameworks such as Continual Learning [28], Cross-

Domain Learning [29, 30], Few-shot Learning [31, 32] and

Multi-modal Learning [33]. Ultimately, in response to the

limitations and challenges associated with UAVs and their

operations, researchers have directed their efforts towards

addressing critical issues, e.g. adversarial attacks [34, 35],

and to the development of lightweight architectures [36].

2.2. Object-level UAV datasets for urban scenarios

Object-level drone datasets have a fundamental signif-

icance in advancing research and development in various

computer vision tasks. These datasets provide annotated

images and videos captured from unmanned aerial vehicles

(UAVs), enabling the training and evaluation of algorithms

for object detection, tracking, and other related applications.

We summarize several notable object-level drone datasets

specifically designed for urban scenarios, highlighting their

key contributions. Refer to Table 1 for details.

Campus [7] is a large-scale dataset designed for multi-

object tracking, activity understanding, and trajectory fore-

casting within the Stanford University campus. The images

were captured using a top-down camera mounted on a mul-

tirotor drone hovering at a high altitude.

DBT70 [37] consists of 70 video sequences captured

from various sources, including drones and YouTube. The

dataset contains manually annotated bounding boxes for

pedestrians and vehicles.

UAV123 [42] is a benchmark dataset for UAV tracking

tasks, consisting of 100+ video sequences. It encompasses

data from professional-grade and consumer-grade UAVs as

well as simulator-generated data.

VisDrone [38] is a large-scale benchmark dataset con-

taining a significant number of images with the correspond-

ing annotations. The dataset has been expanded and up-

dated over time to include more data and improve its cov-

erage. It covers various environmental conditions, such as

different weather conditions (e.g., sunny, cloudy, rainy), dif-

ferent altitudes, and camera viewpoints.

Anti-UAV [43] includes videos of different UAV types

flying in various lighting conditions (day and night), light

modes (infrared and visible), and diverse backgrounds. It

aims to ensure the diversity of data for tracking purposes.

UAVDT [39] contains 100 video sequences captured

from a UAV platform in urban areas, including scenes such

as highways and T-junctions. The dataset offers annotations

for tracking tasks, including object-bounding boxes.

MDOT [41] is designed for multi-drone single-object

tracking. It includes video clips captured by two or three

drones simultaneously tracking the same target at different

daytime.

AU-AIR [40] comprises of images captured by a multi-

rotor drone flying at low altitudes in an urban scenario. It

includes bounding boxes for instances of people and vehi-

cles. Moreover, while target IDs are unavailable, the dataset

provides image-level metadata, including drone speed, lati-

tude, and longitude.
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Name Year Task S/R MM # classes # images # sequences Frequency [Hz] Height [m] Size [px] View Angle

Campus [7] 2016 MOT R � - 930K 100+ - 80 1400x1904 90

DBT70 [37] 2017 SOT R � - - 70 - - 1280×720 variable

VisDrone-Img [38] 2018 DET R � 10 10209 - - - 2000x1500 variable

VisDrone-Vid [38] 2018 DET R � 10 40k 96 - - 3840x2160 variable

VisDrone-SOT [38] 2018 SOT R � - 139.3k 167 - - - variable

VisDrone-MOT [38] 2018 MOT R � - 108.3k 96 - - 3840x2160 variable

UAVDT [39] 2018 DET, SOT, MOT R � 3 ∼ 80k (37.2k + 40.7k) 100 30 10-70+ 1080×540 front/side/bird

AU-AIR [40] 2020 DET R � 8 32823 8 5 5-30 1920x1080 45 to 90

MDOT [41] 2020 SOT R � 9 259793 155 - 20-100 1280×720 -

UAV123 [42] 2020 SOT S+R � - 112578 123 30 to 96 5-25 1280×720 to 3840x2160 -

Anti-UAV [43] 2021 SOT R � 1 318 318 25 - - -

HIT-UAV [44] 2023 DET R � 4 2898 - 7 60-130 640×512 30 to 90

Table 1: Object-level UAV datasets. S/R = Synthetic/Real, MM = MultiModal. DET = DETection, SOT = Single Object

Tracking, MOT = Multiple Object Tracking. - = not applicable or not explicit in the paper.

Name Year MM BB # classes # images # sequences Frequency [Hz] Height [m] Size [px] View Angle

Aeroscapes [10] 2018 � � 11 3269 141 - 5-50 1280x720 variable

ICG Drone [45] 2018 � � 20 400 - 1 5-30 6000x4000 90

UDD [12] 2018 � � 4 301 - - 60-100 4096x2160 or 4000x3000 variable

UAVid [11] 2020 � � 8 270 30 0.2 50 4096x2160 or 3840x2160 45

SynDrone (Ours) 2023 � � 28 (60+12)k 24 25 20, 50, 80 1080×1920 30, 60, 90

Table 2: Pixel-level UAV datasets. BB = Bounding Boxes. - = not explicit in the paper.

HIT-UAV [44] is a high-altitude infrared thermal dataset

for object detection on UAVs. It contains infrared ther-

mal images extracted from hundreds of videos captured in

various scenarios such as schools, parking lots, and play-

grounds. The dataset enables the evaluation of object detec-

tion algorithms specifically designed for thermal imaging.

2.3. Pixel-level UAV datasets

Pixel-level UAV datasets with semantic segmentation an-

notations play a crucial role in developing and evaluating

algorithms for various applications, including autonomous

navigation, scene understanding, and 3D reconstruction. In

this section, we overview several pixel-level UAV datasets,

highlighting their strengths and limitations (see Table 2).

Aeroscapes [10] The Aeroscapes dataset stands out by

its focus on capturing urban scenes using drones, which en-

ables the collection of more diverse and informative data

compared to traditional car-mounted cameras. The dataset

includes 11 classes and comprises 141 video sequences,

with images having a resolution of 1280x720 pixels.

ICG Drone [45] provides a collection of high-resolution

imagery captured from a bird’s eye view, facilitating a se-

mantic understanding of residential and green urban scenes.

It includes more than 20 houses captured at low altitudes.

The dataset offers pixel-accurate annotations for 22 classes,

covering a wide range of residential area objects and struc-

tures (a notable shortage is the lack of road class). Addition-

ally, it provides valuable supplementary data such as fish-

eye stereo images, thermal images, ground control points,

and 3D ground truth.

UAVid [11] distinguishes itself by providing video se-

quences captured by small UAVs in various locations. This

dataset offers labeled images at a lower frame rate (0.2

FPS) and unlabeled images at a higher frame rate (20 FPS).

With 30 video sequences comprising a total of 300 la-

beled images, UAVid offers the opportunity to explore self-

supervised learning approaches for semantic segmentation

and 3D reconstruction.

Urban Drone Dataset (UDD) [12] specializes in aiding

3D reconstruction tasks using an improved Structure From

Motion (SFM) method. With images captured at altitudes

between mid and high altitudes, UDD provides a variety of

urban scenes from four different cities in China. The dataset

offers annotations for 4 semantic classes.

Most real-world datasets lack an adequate quantity of

images or only focus on short sequences (see Table 2), mak-

ing it challenging to train a network capable of generalizing

well to different data. The majority have a low sampling

rate because annotating each frame is prohibitively expen-

sive. This limitation hampers the potential for leveraging

video semantic segmentation. Additionally, many datasets

have a restricted range of classes or do not specifically em-

phasize driving-related categories. For this reason, despite

having a wide range of classes, the ICG Drone dataset,

which notably does not include the road class, has restricted

applicability to driving or monitoring scenarios.

Ultimately, while other existing methods for generating

large-scale synthetic aerial data [13] have been proposed,

they lack the capability of simulating relevant dynamic ele-

ments such as vehicles and pedestrians.

3. The SynDrone Dataset
In this section, we detail the construction and contents

of the proposed SynDrone dataset. It is a multimodal

synthetic dataset, developed for the task of drone imagery

understanding at both object and pixel-level in urban set-

2212



Figure 2: Class distribution in logarithmic scale. Flat bars for the training set, dashed for the test set. Names at the top refer

to the coarse grouping, see Table 8 for details.

tings. The dataset contains 72k frames captured from drone

views, which are grouped into 8 sequences and further split

into 60k images for training and 12k images for testing.

The data is densely labeled into 28 semantic classes, with

object-level labeling as bounding boxes for the moving ob-

jects (vehicles and pedestrians). The data were collected

using a modified version of the CARLA simulator [46, 47]

(see Section 3.1) at a frequency of 25 Hz and at different

heights of 20, 50, and 80 meters above the ground. The

images have a resolution of 1920 × 1080 pixels and are

captured from different viewing angles of 30, 60, and 90

degrees. Further detail on the camera sensors and the ac-

quired trajectories are in Section 3.2. The class distribution

is shown in Figure 2.

3.1. The CARLA simulator

We decided to employ the CARLA simulator [46], which

has been previously used to generate synthetic data in the

autonomous driving context [48, 47]. Built upon Unreal

Engine 4 (UE4), CARLA offers high-quality rendering,

realistic physics powered by NVIDIA PhysX, and basic

Non-Player Character (NPC) logic. We employ a modified

CARLA 0.9.12 version [47] that provides a diverse range

of carefully designed UE4 models, encompassing static ob-

jects (e.g., buildings, vegetation, traffic signs) and dynamic

objects (e.g., vehicles, pedestrians). These models share a

common scale and realistic sizes. The original version in-

cludes a blueprint library with 24 car models, 6 truck mod-

els, 4 motorbike models, and 3 bike models, each customiz-

able in terms of colors. Additionally, it features 41 pedes-

trian models of various ethnicities, builds, and attired in a

wide array of clothes. Furthermore, CARLA offers 8 metic-

ulously crafted towns (Town01-07 and Town10HD), incor-

porating over 40 building models. Each town possesses

unique features and landmarks, providing 8 simulation en-

vironments with distinct visual characteristics. CARLA fa-

cilitates data retrieval from the simulated world through var-

ious sensors. These sensors can be precisely positioned, ro-

tated, and attached to parent actors, enabling them to fol-

low rigid or spring-arm-like movements. Sensor data can

be collected at each simulation step. When using multiple

high-resolution sensors, a synchronous mode ensures that

the GPU completes rendering and delivers the data to the

client before the subsequent simulation step, guaranteeing a

consistent sensor acquisition rate across all sensors. In the

modified version, the semantic class set has been extended

to ensure compatibility with existing benchmark datasets

for autonomous driving [49, 50]. To allow such extension

[47] introduced multiple new vehicle models, such as trains,

trams, buses, and trucks.

3.2. Acquisition setup

We adopted a camera sensor setup that leverages the

capabilities of the CARLA simulator while ensuring data

diversity. The acquisition pipeline involves equipping the

UAV with multiple co-registered sensors:

RGB camera: It has a resolution of 1920x1080 and en-

ables post-processing effects such as vignette, grain jitter,

bloom, auto exposure, lens flare, and depth of field. The

vertical Field of View (FoV) is fixed at 90◦, while the view-

ing direction varies based on the selected flying height, with

values of 30◦, 60◦, and 90◦ degrees w.r.t the horizontal axis

for altitudes of 20, 50, and 80 meters, respectively. The

color images are saved in JPEG format.

Depth camera: The depth camera has the same FoV and

resolution as the RGB one. It has a 1km maximum range.

Depth images are saved in PNG with the format of [51].

Lidar sensor: It is a 64-channel sensor with a 360◦ FoV,

operating at bird view (−89◦ to −49◦ w.r.t. the horizontal)

and collecting ∼100k points for each acquisition. The Lidar

data is provided for the height of 80m and has a maximum

range of 100m. This results in a field of view at road level of
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Town01 Town02 Town03 Town04

Town05 Town06 Town07 Town10HD

Figure 3: Trajectories of the drones exploring the 8 different towns. Start (Pink) to Yellow (End).

74◦, i.e., 60m of distance from the position perpendicular to

the drone. The remaining channels aid in the identification

of tall objects (such as buildings or trees). The horizontal

resolution is 0.230◦ and the vertical 0.625◦.

The Unreal Engine utilized in SynDrone incorporates

a physics engine, specifically based on NVIDIA PhysX,

which simulates the movement of vehicles, pedestrians, and

sensors. This enables the generation of realistic trajecto-

ries and motion blur effects due to drone movements. The

velocity vector of the drone is taken into account to calcu-

late the motion blur accurately, providing a more realistic

visual representation. The sensor undergoes rotations at a

frequency of 25 Hz, which matches the frequency of the

cameras used in the dataset. Consequently, each color/depth

image has a corresponding full 360◦ lidar scan.

3.3. Data specifications

The data were acquired by simulating the flight of a

drone across the 8 virtual towns. Figure 3 shows the tra-

jectory followed inside each of the towns. Each trajectory

has a length of about 2-3km which corresponds to a 2 min-

utes flight (∼ 20m/s). Sensor data is recorded at 25 fps,

for a total of 3000 frames for each sensor. To extract test-

ing sequences with a class distribution as close as possible

to the training data, while still avoiding too close frames

in the train and test sets, we opted to extract 5 equispaced

sub-sequences of 100 samples (4 seconds each, 20 seconds

in total) from each of the rendered trajectories. This corre-

sponds to a total of 8 ∗ 3 ∗ 500 = 12k test samples.

In order to simulate drone trajectories for road surveil-

lance, SynDrone has been designed to mimic real-world

scenarios where drones are deployed for applications like

monitoring road traffic volume or detecting accidents. In

such cases, the drone’s viewpoint can vary as it adjusts its

altitude to capture different perspectives. For this reason, to

enhance the dataset’s robustness and generalization capa-

bilities, SynDrone records data from various heights and

view angles. Moreover, we provide ground truth (GT) an-

notations in both the form of pixel-level semantic maps and

3D bounding boxes with unique identifiers (IDs) for all ac-

tors in the scene, including vehicles and pedestrians, at each

temporal instant. These annotations enable researchers to

perform comprehensive analyses of both semantic segmen-

tation and 2D or 3D object detection methods, enhancing

the development of advanced algorithms and systems for

UAV-based vision applications.

4. Benchmark and Experiments

We start by reporting some benchmark results of vari-

ous architectures on our dataset. For consistency and repro-

ducibility, all of the models used the official implementation

by the torchvision library2.

In particular, we employ the widely used Deeplab-V3
[52] network with both the ResNet50 and MobileNetV2

backbones for the Semantic Segmentation task. The choice

of the two backbones follows the idea of having both a

highly-performing backbone for server-side computation

and a lightweight one that could be used onboard. For the

Object Detection task we used FasterRCNN [53] and Reti-
naNet [16]. The overall performance and computational

cost in terms of MACs (Multiply-Add Cumulation) of the

architectures are reported in Table 5. The models were

trained for 60k iterations with a batch size of 2. The learn-

2Pytorch segmentation models available here and the object detection

ones here. Accessed 10-July-2023.
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Train

Test
All 20m 50m 80m

All 61.1 63.0 60.6 56.2

20m 48.4 65.1 46.0 28.1

50m 50.7 41.3 61.4 52.5

80m 42.9 25.8 51.8 57.9

Table 3: mean Intersection over Union (mIoU) in the se-

mantic segmentation task with data at different altitudes.

Train

Test
all t01 t02 t03 t04 t05 t06 t07 t10

all 61.1 48 44 58.2 47.1 52.7 41.7 43.1 44

t01 21.2 55.8 27.9 16.1 20.3 17.4 15.8 22 6.7

t02 16.8 25.4 57.5 12 13.2 12.8 10.8 12.6 7.2

t03 28.3 15.6 19.9 64.3 23.4 26.3 24.1 15 15

t04 24.5 17 15.3 21.2 54.7 24.8 23 18.3 11.4

t05 25.2 14.2 14.6 25.7 22.8 58 25.3 13.8 10.5

t06 16 10.5 9.6 15.1 20.2 17 48.7 12.9 8.5

t07 18 15.3 12.6 12.5 20.8 16.3 19.6 53.1 4.3

t10 21.6 12.3 13.9 16.6 14.2 17.2 15.8 8 53.3

Table 4: mIoU for the semantic segmentation task across

different towns (t=town).

ing rate was set to 2.5e-4, and a cosine annealing scheduler

with a linear warmup for 2000 steps was employed. The se-

mantic segmentation task considers 28 classes, while object

detection includes 8 classes, that consist of the the moving

objects (i.e., the vehicles and pedestrians). For the object

detection task, the rider and motorcycle classes are com-

bined to form the class motorcyclist, while the classes rider

and bicycle are merged into the class bicyclist.

Evaluation at different flying altitudes

We performed four different trainings on the model, one

for each of the three flying altitudes (20m, 50m, and 80m)

and one considering all heights together. In Table 3, we

provide a comprehensive overview of the model’s perfor-

mance at different test altitudes. As expected, the model

trained on the entire dataset demonstrates the highest over-

all accuracy when testing on data at all altitudes (61.1%),

suggesting that incorporating various heights during train-

ing facilitates improved performance across different alti-

tudes. Moreover, the data in the table highlights that al-

titudes closer to each other exhibit similar performances

(with the best performances when training and testing at

the same altitude), while the model’s generalization tends

to decrease as the difference in altitude between training

and testing data increases. Furthermore, it can be noticed

that the training at the lowest altitude displays a significant

drop in accuracy when tested at the highest altitude, achiev-

ing a mere 28.1%. As expected, since at higher altitudes

the objects appear smaller and thus harder to be recognized,

Model Backbone GMAC [54]

@(1080x1920)
mIoU mAP@50 mAP@75

DeepLabV3 [52]
MNv3 78.9 61.1 - -

RN50 1297.22 72.0 - -

Faster R-CNN [53] MNv3 8.35 - 31.1 15.7

RetinaNet [16] RN50 207.94 - 36.2 30.4

Table 5: Comparison of different models over Seman-

tic Segmentation and Object Detection tasks. We also

report the computational complexity in terms of MACs.

Note for the reader: FLOPs � 2∗MACs, RN50=ResNet50,

MNv3=MobileNetV3 Large.

Data GMAC[54]

@(1080x1920)
mIoU

RGB

78.9

61.1

D 59.1

RGB+D (early) 60.7

RGB+D (late) 161.05 64.2

Table 6: Comparison of the training over different modali-

ties.

the model seems to struggle to effectively generalize to this

setting, especially when trained at lower altitudes. These

observations highlight the importance of considering the in-

terplay between different altitudes.

Evaluation on different towns

To further investigate the model’s performance, we con-

ducted comparative training and testing across different

towns. By analyzing Table 4, it is evident that the model’s

accuracy varies significantly across different town scenar-

ios. The highest accuracy is achieved when training and

testing are conducted on all towns together, indicating the

importance of incorporating more diversified data from a

range of towns for improved generalization. On the other

hand, the model’s accuracy drops considerably when tested

on specific towns that were not part of its training set (no-

tice that not all towns have data for all classes and this can

impact severely performances if the training town does not

include some of the classes in the test one). Interestingly,

the results also reveal that certain pairs of towns exhibit

reasonable performances (e.g. when trained on town “t01”

and tested on town “t02”, the model achieves an accuracy

of 27.9%), while in other cases performances are very low.

This indicates that there might be similarities or shared vi-

sual patterns between some towns, allowing the model to

generalize well in these particular cases. In general, the

heterogeneity in performance between towns highlights the

need of gathering and combining data from numerous lo-

cations in order to increase the model’s capacity to gen-

eralize well to previously encountered town settings. The
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Setting
Aeroscapes

ICG Drone
UAVid UDD5 UDD6

train val train val train val train val

Oracle 90.9 71.2 94.1 87.7 70.4 97.1 86.4 97.3 84.8

SynDrone (w/o Resize, w AllClasses) 22.0 27.5 15.6 32.9 33.7 27.2 26.7 26.8 26.2

SynDrone (w Resize, w AllClasses) 22.0 27.5 16.8 36.3 35.6 30.9 30.0 30.2 29.7

SynDrone (w Resize, w/o AllClasses) 24.6 33.1 16.8 51.3 53.6 58.3 57.1 57.2 56.4

Table 7: Performance of models trained on SynDrone and tested on other semantic segmentation datasets. Refer to Table 8

for the class re-mapping. In the latter tests only the valid classes for each specific dataset are considered.

P
re

d
G

T

Aeroscapes ICG Drone UAVid UDD5 UDD6

P
re

d
G

T

Road Nature Person Vehicle Construction Obstacle Water Void

Figure 4: Qualitative results of models trained on SynDrone and tested on real-world data: (GT) Ground-truth semantic

map, (Pred) prediction of the model trained on SynDrone. Note that, as generally in semantic segmentation, void is ignored

during training.

model’s performance is influenced by the distinct charac-

teristics and scene variations in each town, highlighting the

need for comprehensive training datasets that cover diverse

town scenarios.

Evaluation on multi-modal segmentation

Furthermore, we investigate the effectiveness of multi-

modal data fusion for the semantic segmentation task. We

tested both early and late fusion approaches combining

RGB and Depth (D) data (see Table 6). First of all, by

looking at the performances of the two modalities alone,

it is possible to notice that the mIoU score for the depth

is slightly lower than that of color data. Still, similar re-

sults suggest that depth information carries useful semantic

information as well. The early fusion approach combines

the RGB and depth data at the input layer (i.e., a 4-channel

RGBD input), while the late fusion approach performs the

fusion at the output stage, requiring twice the computational

cost. In particular, for the late fusion, we replicated the

whole architecture (decoder included) and opted to merge

the predicted logits using a 1 × 1 convolution, effectively

mapping the 2× C channels into C for the final segmenta-

tion prediction. The mIoU score for the latter configuration

improves by 3.1% over the RGB results, showing that the

multimodal data has a greater information content, although

it is important to recognize that it doubles the required oper-

ations. Notice that these are just baseline results with naive

fusion strategies to offer a starting point for future research.

There is a large amount of work on multi-modal segmen-

tation and state-of-the-art strategies will very likely achieve

better performances.
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Ours
(coarse)

Ours
(fine)

Aeroscapes ICG
Drone

UAVid UDD

Road Road Road Paved Area Road Road

Ground

Sidewalk

Road Line

Rail Track

Nature Vegetation Vegetation Vegetation Vegetation Vegetation

Terrain Tree Tree

Grass

Dirt

Gravel

Rocks

Person Person Person Person Human

Vehicle Car Car Car Static Car Vehicle

Truck Bicycle Bicycle Dynamic Car

Bus

Train

Motorcycle

Bicycle

Construction Building Construction Roof Building Roof

Wall Wall Facade

Fence Fence

Bridge Window

Door

Fence Pole

Obstacle Other Obstacle Obstacle

Pole

Traffic Signs

Guard Rail

Traffic Light

Static

Dynamic

Water Water Water

Pool

Table 8: Coarse class re-mapping for synthetic-to-real adap-

tation.

4.1. Synthetic-to-real training

A key aspect in the evaluation of the quality of a syn-

thetic dataset is the capability of models learned on it to

perform well on real-world data. Aiming to perform this

evaluation on state-of-the-art datasets, we performed a re-

mapping of the labels into a common 8 classes set, Table 8

shows how the labels in the different datasets are mapped to

our common set. In Table 7 we show the performances of

the same model, i.e., DeeplabV3 with MobilenetV3, trained

and tested on different datasets. The Oracle tests, which as-

sume training and testing on the same dataset, use the same

set of parameters as the previous tests with some modifi-

cations. Due to the limited size of the datasets, the tests

were conducted with 30k iterations to prevent overfitting.

Additionally, for all datasets with resolutions ranging from

2-4k, we downscaled the data to full HD while maintain-

ing the original aspect ratio. This adjustment was necessary

to ensure compatibility with the network architecture. No-

tably, for the ICG Drone dataset, since no training and test-

ing splits were provided, the test has not been performed

(as such the metric reported for the oracle is basically the

training accuracy, which is an overestimation of the per-

formance). Generally, our dataset, without any augmen-

tation or adaptation (i.e., performing source-only training),

demonstrates good generalization performance across the

majority of datasets. However, it faces challenges when

tested on more complex datasets, where the accuracy of

class mapping is less precise. It is worth mentioning a par-

ticular case, i.e., ICG Drone, where the absence of the road

class and a focus on non-urban areas, mainly green and res-

idential zones, affect the results. Nevertheless, the model

trained on our dataset still achieves promising results in

these scenarios, and there is potential for further enhance-

ment by exploring transfer learning and domain adaptation

techniques. In figure 4, the qualitative results of the trained

model on the real-world data are shown. The reconstruc-

tion of semantic maps remains unaffected by factors such

as height, viewing angle, or variations in traffic density, en-

compassing both heavy traffic and sparsely populated roads.

5. Conclusion

In this paper, we introduced a new multimodal synthetic

dataset for UAVs, focusing on the costly and scarcely avail-

able densely-annotated data. The dataset contains several

sequences recorded in different synthetic towns and with

a multimodal sensor array, providing ground truth depths,

semantic maps, 3D bounding boxes, and semantic LiDAR

information. Given the heterogeneous nature of recording

heights found in real datasets, we opted to render our sam-

ples from three different altitudes (20m, 50m, and 80m)

with different camera orientations. In total, our dataset of-

fers 72k samples with pixel-level annotations split into 60k

training samples and 12k test samples. We provide multi-

ple benchmark results for semantic segmentation and object

detection by training standard networks on our dataset. Ad-

ditionally, we performed some studies on the generalization

capability of the trained architectures when tested on the

presence of domain shift (town→town and height→height),

highlighting the need for heterogeneous data during train-

ing. We also investigate the generalization potential of our

dataset in the synthetic-to-real scenario, testing a model

trained on our dataset on different real datasets without any

explicit adaptation strategies, achieving results that clearly

show the potential of the dataset in the task.

In the future, we plan to further extend the dataset includ-

ing more sensors and a bigger variety of settings. Domain

adaptation strategies will be also tested in order to better

evaluate the generalization capabilities of the dataset.

2217



References
[1] Naser Hossein. Motlagh, Miloud. Bagaa, and Tarik. Taleb,

“Uav-based iot platform: A crowd surveillance use case,”

IEEE Communications Magazine, vol. 55, no. 2, pp. 128–

134, 2017.

[2] Hyunbum. Kim, Lynda. Mokdad, and Jalel. Ben-Othman,

“Designing uav surveillance frameworks for smart city and

extensive ocean with differential perspectives,” IEEE Com-
munications Magazine, vol. 56, no. 4, pp. 98–104, 2018.

[3] Mouna. Elloumi, Riadh. Dhaou, Benoit. Escrig, Hanen.

Idoudi, and Leila Azouz. Saidane, “Monitoring road traffic

with a uav-based system,” in 2018 IEEE wireless communi-
cations and networking conference (WCNC). IEEE, 2018,

pp. 1–6.

[4] Rodrigo Saar. De Moraes and Edison Pignaton. De Freitas,

“Multi-uav based crowd monitoring system,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 56, no. 2,

pp. 1332–1345, 2019.

[5] Saheba. Bhatnagar, Stefano. Puliti, Bruce. Talbot,

Joachim Bernd. Heppelmann, Johannes. Breidenbach,

and Rasmus. Astrup, “Mapping wheel-ruts from timber

harvesting operations using deep learning techniques in

drone imagery,” Forestry, vol. 95, no. 5, pp. 698–710, 2022.

[6] Ziyi. Chen, Cheng. Wang, Jonathan. Li, Nianci. Xie, Yan.

Han, and Jixiang. Du, “Reconstruction bias u-net for road

extraction from optical remote sensing images,” IEEE Jour-
nal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 14, pp. 2284–2294, 2021.

[7] Alexandre. Robicquet, Amir. Sadeghian, Alexandre. Alahi,

and Silvio. Savarese, “Learning social etiquette: Human

trajectory understanding in crowded scenes,” in Computer
Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings,
Part VIII 14. Springer, 2016, pp. 549–565.

[8] Tanmay Kumar. Behera, Sambit. Bakshi, and Pankaj Ku-

mar. Sa, “Vegetation extraction from uav-based aerial images

through deep learning,” Computers and Electronics in Agri-
culture, vol. 198, p. 107094, 2022.

[9] Haiyan. Guan, Xiangda. Lei, Yongtao. Yu, Haohao. Zhao,
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