A. Appendix

In Sec. 3.2.1, we describe how the WiMA update is equivalent to updating the first model comprised in the window frame $w^{t^{\prime}}$ with various SGD steps, using a learning rate decay dependent on the position in the queue, given by $t^{\prime}+w-\tau / W$ (Eq. 6,7). We describe here the steps to reach this conclusion.

We recall that

$$
\begin{align*}
w_{\mathrm{WIMA}}^{t^{\prime}+W} & =\frac{1}{W} \sum_{\tau=t^{\prime}}^{t^{\prime}+W-1} w_{\mathrm{FEDAVG}}^{\tau+1} \tag{Eq.4}\\
& =\frac{1}{W} \sum_{\tau=t^{\prime}}^{t^{\prime}+W-1} \sum_{i \in \mathcal{S}^{\tau}} \frac{N_{i}}{N} w_{i}^{\tau} \tag{FedAvginEq.3}\\
& =\frac{1}{W} \sum_{\tau=t^{\prime}}^{t^{\prime}+W-1}\left(w^{\tau}-\eta_{s} \sum_{i \in \mathcal{S}^{\tau}} \frac{N_{i}}{N}\left(w^{\tau}-w_{i}^{\tau}\right)\right)
\end{align*}
$$

(FedOpt in Eq. 3)
where $w_{\text {FEDAVG }}^{\tau+1}$ is the new global model built with FedAvg at the end of round τ, W the window size, t^{\prime} the first round comprised in window frame, w_{i} the local update of client i, \mathcal{S}^{t} the subset of clients selected at round t, η_{s} the server learning rate.

For simplicity, we first assume all clients have access to the same number of images, i.e. $\frac{N_{i}}{N}=\frac{1}{\left|\mathcal{S}^{t}\right|}$. Since the same number of clients is selected at each round, $\frac{1}{\left|\mathcal{S}^{t}\right|}=\frac{1}{|\mathcal{S}|^{t-1}}$.

First, we recursively rewrite w^{τ} following Eq. 3 as

$$
\begin{align*}
w_{\mathrm{WIMA}}^{t^{\prime}+W} & =\frac{1}{W} \sum_{\tau=t^{\prime}}^{t^{\prime}+W-1}\left(w^{\tau}-\frac{1}{\left|\mathcal{S}^{\tau}\right|} \sum_{i \in \mathcal{S}^{\tau}}\left(w^{\tau}-w_{i}^{\tau}\right)\right) \tag{8}\\
& =\frac{1}{W} \sum_{\tau=t^{\prime}}^{t^{\prime}+W-1}\left(w^{\tau}-\frac{1}{\left|\mathcal{S}^{\tau}\right|} \sum_{i \in \mathcal{S}^{\tau}}\left(w^{\tau-1}-\frac{1}{\left|\mathcal{S}^{\tau-1}\right|} \sum_{j \in \mathcal{S}^{\tau-1}}\left(w^{\tau-1}-w_{j}^{\tau-1}\right)-w_{i}^{\tau}\right)\right) \tag{9}\\
& \left\lvert\, \underbrace{\mathcal{S}^{\tau-1}\left|=\left|\mathcal{S}^{\tau}\right|\right.}_{w^{\tau}} \frac{1}{W} \sum_{\tau=t^{\prime}}^{t^{\prime}+W-1}\left(w^{\tau}-\frac{1}{\left|\mathcal{S}^{\tau}\right|} \sum_{i \in \mathcal{S}^{\tau}}\left(w^{\tau-1}-\frac{1}{\left|\mathcal{S}^{\tau}\right|} \sum_{j \in \mathcal{S}^{\tau-1}}\left(w^{\tau-2}-\frac{1}{\left|\mathcal{S}^{\tau}\right|} \sum_{l \in \mathcal{S}^{\tau-2}}\left(w^{\tau-2}-w_{l}^{\tau-2}\right)+\right.\right.\right.\right. \tag{10}\\
& \left.\left.\left.-w_{j}^{\tau-1}\right)-w_{i}^{\tau}\right)\right) \tag{11}\\
& =\ldots=\frac{1}{W} \sum_{\tau=t^{\prime}}^{t^{\prime}+W-1}\left(w^{\tau}-\frac{1}{\left|\mathcal{S}^{\tau}\right|} \sum_{i \in \mathcal{S}^{\tau}}\left(w^{\tau-1}-\ldots-\frac{1}{\left|\mathcal{S}^{\tau}\right|} \sum_{m \in \mathcal{S}^{1}}\left(w^{0}-\frac{1}{\left|\mathcal{S}^{\tau}\right|} \sum_{l \in \mathcal{S}^{0}}\left(w^{0}-w_{l}^{0}\right)+\right.\right.\right. \tag{12}\\
& \left.\left.\left.\left.-w_{m}^{1}\right)-\ldots-w_{j}^{\tau-1}\right)-w_{i}^{\tau}\right)\right) \tag{13}
\end{align*}
$$

As in standard SGD, each model implicitly contains information on the previous updates. By unraveling the summation over
τ, we get

$$
\begin{align*}
w_{\mathrm{WIMA}}^{t^{\prime}+W} & =w^{0}-\frac{1}{\left|\mathcal{S}^{0}\right|}(\underbrace{\sum_{i \in \mathcal{S}^{0}}\left(w^{0}-w_{i}^{0}\right)+\ldots+\sum_{i \in \mathcal{S}^{t^{\prime}}}\left(w^{t^{\prime}}-w_{i}^{t^{\prime}}\right)}_{\tau \leq t^{\prime}}+ \tag{14}\\
& +\underbrace{\frac{W-1}{W}}_{t^{t^{\prime}<\tau<t^{\prime}+W}} \underbrace{}_{i \in \mathcal{S}^{t^{\prime}+1}}\left(w^{t^{\prime}+1}-w_{i}^{t^{\prime}+1}\right)+\ldots+\frac{1}{W} \sum_{i \in \mathcal{S}^{t^{\prime}+W-1}}\left(w^{t^{\prime}+W-1}-w_{i}^{t^{\prime}+W-1}\right))= \tag{15}\\
& =w^{t^{\prime}}-\frac{1}{\left|\mathcal{S}^{0}\right|}\left(\frac{W-1}{W} \sum_{i \in \mathcal{S}^{t^{\prime}+1}}\left(w^{t^{\prime}+1}-w_{i}^{t^{\prime}+1}\right)+\ldots+\frac{1}{W} \sum_{i \in \mathcal{S}^{t^{\prime}+W-1}}\left(w^{t^{\prime}+W-1}-w_{i}^{t^{\prime}+W-1}\right)\right)= \tag{16}\\
& =w^{t^{\prime}}-\frac{1}{\left|\mathcal{S}^{0}\right|} \sum_{\tau=t^{\prime}+1}^{t^{\prime}+W-1} \frac{t^{\prime}+W-\tau}{W} \sum_{i \in \mathcal{S}^{\tau}}\left(w^{\tau}-w_{i}^{\tau}\right) . \tag{17}
\end{align*}
$$

If we drop the constraint $\frac{N_{i}}{N}=\frac{1}{\left|\mathcal{S}^{\dagger}\right|}$ and insert the server learning rate η_{s}, we can summarize the results as

$$
\begin{equation*}
w_{\mathrm{W} \text { IMA }}^{t^{\prime}+W}=w^{t^{\prime}}-\eta_{s} \sum_{\tau=t^{\prime}}^{t^{\prime}+W-1} \frac{t^{\prime}+W-\tau}{W} \sum_{i \in \mathcal{S}^{\tau}} \frac{N_{i}}{N}\left(w^{\tau}-w_{i}^{\tau}\right), \tag{18}
\end{equation*}
$$

obtaining Eq. 6.

