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Abstract

In this paper, we addressed the problem faced by ar-
chaeologists in associating relief-printed decorations on ce-
ramic objects discovered during excavations carried out
with the same wheel. This is crucial to understand the
trade networks between regions, but highly complex and
time-consuming task. We used two approaches: supervised
classification or unsupervised clustering of 2D relief views
generated from 3D scans of ceramic sherds. Inspired by
experimental archaeology, we created wheel facsimiles to
supplement significantly the database with numerous plau-
sible and clearly identified samples. Taking advantage of
the powerful convolutional neural network EfficientNet to
extract reliable discriminating features, experimental re-
sults show that the facsimiles significantly improve the net-
works’ training to achieve a classification accuracy exceed-
ing 95% on real sherds. On the other hand, unsupervised
spectral clustering from a vector reduced to a few hun-
dred of the most significant features delivered by the net-
work EfficientNet-B5 trained on ImageNet, without any fine-
tuning, achieves an accuracy of 77.47% on our database.
These results validate the strategy of using facsimiles to
supplement a too-small data set and are very promising for
the development of a computer-assisted archaeology tool
for pattern-wheel association.

1. Introduction

Among the artifacts found on archaeological dig sites,

ceramic fragments are often abundant, and they are a pre-

cious source of information for archaeologists seeking to

understand the lifestyles of ancient civilizations or the trade

networks between regions. Since 1994, a number of archae-

ological excavations in Saran (Loiret, France) have uncov-

Figure 1: Left : some excavated ceramic sherds from the

Saran archaeological site (Loiret, France). Right: an exam-

ple of a carved wooden thumbwheel used to print a frieze in

clay.

ered numerous kilns and yielded a wealth of ceramic ma-

terial testifying to mass production during the High Middle

Ages (6th-11th centuries). Most of the ceramic sherds are

decorated with a relief frieze, a process that was widespread

in Europe in late Antiquity (see Fig. 1). At that time, potters

personalized their creations with hand-engraved wooden

thumbwheels imprinting a geometric frieze on fresh clay.

The thumbwheel used by potters is a cylinder about two

centimeters wide, usually made of wood, roughly notched

to create geometric decoration on ceramic series. The orig-

inal wheels are generally not found on site due to the rela-

tively rapid decomposition of wood.

The pattern produced by the wheel application appears

as an imprint of one to two millimeters and constitutes a

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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signature unique to each potter. As the lifespan of a wheel

is relatively short (it degrades rapidly), the analysis of the

decorations enables archaeologists to pinpoint the chronol-

ogy of ceramic series and map the distribution of produc-

tion: the similar pattern found on several vases may be as-

sociated with the same workshop or craftsman. Common

patterns include sticks, squares, chevrons, and diamonds,

often arranged in single or multiple lines. Archaeologists

use a typology for these medieval ceramics (see Fig. 2).

The classic method used by archaeologists to capture

decorations is manual stamping: applying modeling paste

to the surface of the sherd, then inking to obtain a negative

of the decoration on a sheet of paper (see Fig. 3). The black-

and-white pattern is then scanned, vectorized, and stored

in a database with other digital data (measurements, type

and number of lines on the decoration, etc). Next, the ar-

chaeologist tries to determine visually whether the stamped

motifs can be associated with the same wheel, possibly by

superimposing the shapes on top of each other using trans-

parent sheets. This association is a crucial step in archae-

ological research but is very complex and time-consuming.

The manual and visual analysis reaches its limits in the face

of the growing corpus unearthed during recent excavations

(over 40,000 sherds unearthed between 2009 and 2012).

We have been working to develop advanced image pro-

cessing and machine learning methods to overcome these

challenges by developing some automatic classification.

Past work has demonstrated the ability of convolutional

neural networks (CNN) to successfully classify the types

of patterns found according to the proposed nomenclature

([7]). In this paper, we seek to go a step further by clus-

tering the patterns that could be linked to the same wheel.

Variations in the manual application of the wheel (pressure

and speed of the gesture), texture of the clay, shape of the

pottery, changes over time, and the sometimes incomplete

imprint on the sherd make association really difficult even

for an experimented archaeologist.

One of the thorniest problems for machine learning is

the lack of labeled data. Unfortunately, while the number

of scanned sherds is quite large, there are very few sam-

ples in the available corpus already associated with the same

wheel by the archaeologist (only 404 scanned sherds are as-

sociated with 5 thumbwheels). Increasing the sample base

using conventional brightness or geometric image transfor-

mations would be of very limited use in our case since it

would not really increase the number of wheel samples but

simply the print variants. In order to create new, useful, and

plausible examples, we have opted for an approach inspired

by experimental archaeology, building facsimiles, i.e., new

wooden wheels used to produce multiple impressions on

modeling clay which are then scanned. In this way, no

errors are introduced into the labels. This study aims to

examine whether state-of-the-art networks exhibit consis-

tent learning using these facsimiles for supervised classifi-

cation or whether unsupervised clustering algorithms could

effectively help archaeologists in their analysis of excavated

sherds.

The structure of this paper is as follows. The relevant

literature and previous works are reviewed in the next sec-

tion. Section 3 focuses on how the image database supplied

for deep learning networks is created from 3D scans of real

excavated sherds and facsimiles. Experimental results are

presented and discussed in Section 4. The conclusions sec-

tion ends the paper.

2. Related Work
Computer vision has been involved in this field for

decades, proposing automatic processing to facilitate ar-

chaeologists’ analysis. A variety of imaging techniques

were used: not only color images [16] or 3D scans [9],

but also hyperspectral [10], ultrasonic [27] or X-ray [21].

Since many of ceramic artifacts found on excavation sites

are in the form of sherds of broken pottery, early published

works include an automatic process for reassembling frag-

mented artifacts into a partially or fully reconstructed orig-

inal vase [22, 15]. Other works aim to automate the classi-

fication of ceramics into different styles, either by shape or

morphology, generally based on a surface of revolution to

extract an axis and a profile [35, 37], by color and/or tex-

ture [16, 30, 10, 20, 13] or by the presence of decoration

[11, 9, 14]. These works combine some conventional image

processing techniques for extracting features with machine

learning algorithms.

More recent publications use deep learning techniques,

particularly convolutional neural networks (CNNs) to ex-

tract informative features and achieve accurate classifica-

tion of archaeological ceramic artifacts. The superiority

of deep learning has been demonstrated in several studies

in comparison with approaches, such as Bag-of-Words, for

content-based retrieval of three-dimensional vessel repli-

cas [3] or classification of engraved decorations on ceramic

sherds [6], by fine-tuning well-known CNN models, then

using pooling methods to combine classifiers [7]. Arch-

I-Scan project is developing a system for the automatic

identification of Roman ceramic types (fabrics, forms, and

sizes) using artificial intelligence to contribute to a better

understanding of Roman foodways [32]. Likewise, Ar-

chAIDE is a European project for developing two machine-

learning tools that assist archaeologists in classifying pot-

sherds [26, 1, 2]: one analyses the fracture outline shape of

a pottery sherd, while the other is centered around its dec-

orative features. An AI-based imaging solution was pro-

posed to assist archaeologists in classifying ROman COm-

monware POTtery (ROCOPOT) database, which includes

over 4000 potsherds extracted from 25 Roman pottery cor-

pora [23]. Similar profiles are associated through unsuper-
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incisions 1

incisions 2

Engraving pattern for wooden wheels Archaeological pattern results

Diamonds (type A)

Sticks (type C)

Squares (type H)

Squares (type G)

Chevrons (type L)

Oblique parallel lines

crossed by other parallel lines

Axis-parallel lines crossed by one

or perpendicular lines

Axis-parallel lines crossed by

two perpendicular lines

A row of parallel oblique lines

symmetrical to another row of

parallel lines, crossed by

a horizontal median line.

Positive motifs on the wheel and 

recessed motifs on the ceramic

Figure 2: Typology of medieval motifs based on the potter’s gesture and incisions on the thumbwheel (number of lines).

Figure 3: Manual stamping steps.

vised hierarchical clustering of non-linear features learned

in the latent space of a deep convolutional Variational Au-

toencoder (VAE).

The protean nature of decoration on ceramics means that

studies focus on a particular geographical area or civiliza-

tion. Roman pottery in the works above, Kamares pottery,

produced in Crete during the Minoan period in [11], Myce-

naean Pottery from Cyprus in [19], Tusayan White Ware,

ancient painted pottery from the American Southwest in

[24], potsherds belonging to the Jomon era in [21].

In our study, we focus on relief decorations dating from

the High Middle Ages (6th-11th centuries), from which

we derive representations in the form of grayscale images

(shaded 2D views created from the 3D point cloud). As,

[21], we’ll take advantage of the powerful EfficientNet

model to extract relevant features for clustering and clas-

sification. We must not only identify a decoration style but

also group together decorations made by the same tool or

craftsman. A critical point is the lack of annotated data in

the corpus of excavated ceramic objects to train the models

adequately. We, therefore, propose to create facsimiles to

compensate. This is an original strategy that we present to

validate experimentally.

3. Materials and Methods

3.1. Data collection

The database is made up of ceramic material exca-

vated in the archaeological digs at Saran (Loiret, France).
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Figure 4: 3D scan and pattern extraction in a shaded view.

The manual stamping procedure was replaced by using an

EinScan-SP scanner to create a 3D model of each sherd.

Then, a 2D shaded view of the surface is generated (see

Fig. 4). This image is easily produced by the scanner

software, even by non-experts, and it provides a conve-

nient grayscale relief map, capturing the decoration on the

sherd. The classification performances obtained with this

2D shaded view input overpass those previously obtained

with other image inputs like variance maps or binary im-

ages.

To date, we have over a thousand scans of excavated

sherds, but only a few have been associated by archaeol-

ogists with five wheels. Following the methods of experi-

mental archaeology, we have created facsimiles, i.e., new

wooden wheels used to produce multiple impressions in

modeling paste, which can be scanned. In so doing, the

learning database can be supplemented by plausible and

clearly identified samples without introducing errors. Ta-

ble 1 presents our experimental dataset. Six-wheel facsim-

iles are included in the REMIA data set, bringing the num-

ber of wheels to 11 and the number of associated images

to 2,561. The number of samples is given for each identi-

fied wheel (real excavated sherds and facsimiles, in Latin

and Greek alphabet, respectively), grouping into the most

representative types of decorations (squares, chevrons, and

diamonds). Additionally, Fig. 5 shows an example of an

imprint from each wheel (from excavated sherds and fac-

similes).

The facsimiles were made using cylinders of hazelwood,

about 2 cm in diameter and high. The fresh wood was

notched with a knife, reaching a depth of around 2 mm.

A hole is then drilled in the center of the cylinder to insert

a metal rod that facilitates the rolling. The decoration is

printed on a flattened strip of modeling paste about 10 to 15

cm long and 3 to 5 cm wide. In order to introduce varia-

tions, the direction, speed and pressure of rolling are delib-

erately modified at each pass, or even during the same pass

for the last two factors. To reproduce the tool degradation

observed on real archaeological decorations, we also delib-

erately degrade the wheel, after a certain number of passes,

by removing parts of the pattern (a missing square, for ex-

ample). The digitalization step with the scanner is exactly

the same for facsimile and real excavated sherds. It should

be noted that the facsimile pattern obtained differs from the

archaeological pattern observed on pottery in that it is linear

on a flat surface, whereas the pattern on pottery follows the

curved line of the ceramic surface.

3.2. Deep learning models

The association of the scanned decorations with the same

wheel can be seen as an image classification or cluster-

ing problem. We choose to take advantage of state-of-art

CNN models to use them for discriminative feature extrac-

tion from grey-levels images of the engraved pottery sherds.

For supervised classification, models pre-trained on the Im-

ageNet dataset are easy to use and can be refined on rela-

tively small datasets for specific computer vision tasks us-

ing transfer learning [36]. To speed up development, we

compare the Keras implementations of some EfficientNet

models considered as the best in recent benchmarking for

image classification [31]. The EfficientNet family (from B0

to B7) includes CNN designed to achieve a balance between

model size and performance. The models feature simulta-

neous scaling of network depth, width, and resolution, re-

sulting in highly efficient, high-performance models. From

the baseline model EfficientNet-B0 to EfficientNet-B7, the

models progressively become more profound, wider, and

have higher-resolution input sizes. Table 2 compares the

number of layers, total parameters, trainable parameters,

and image input size for EfficientNet models. The classi-

fication step is realized by a fully connected network (FCN)

from the high-dimensional feature vectors provided by the

CNN.

3.3. Clustering approach

The clustering approach is based on the image features

extracted from the EfficientNet variant pre-trained on Im-

ageNet to feed an unsupervised image classification task,

as suggested by [29]. A Principal Component Analysis

(PCA) is applied to the outputs of the CNN to reduce the

dimensionality before using the clustering. Among the clus-

tering algorithms provided by the scikit-learn implementa-

tions [25], we tested the most popular ones, namely Spectral

Clustering [34], K-means [12], Agglomerative Clustering

[8], and BIRCH (Balanced Iterative Reducing and Cluster-

ing using Hierarchies) [33]. We utilized the default config-

uration without fine-tuning for all algorithms and kept the

one given the best performance. Note that these algorithms

require an estimated number of labels as a priori.

4. Experiments
All experiments are implemented in Keras with the Ten-

sorFlow backend. The input image size is 224x224 pixels.

4.1. Evaluation protocol

For classification, a breakdown by class into 70% for

training-validation and the remaining 30% for testing is ap-

plied to the data set. In order to evaluate the pertinence of
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Table 1: REMIA database: number of samples by types of decoration and by identified thumbwheels (real excavated sherds

and facsimiles, in Latin and Greek alphabet respectively).

Dataset

Type of wheels

TotalSquares (type G) Squares (type H) Chevrons (type L) Diamonds (type A)

γ G8 η H1 H12 H13 λ λ1 α α1 A2

Real excavated sherds 0 63 0 104 20 45 0 0 0 0 172 404

Facsimiles 450 0 450 0 0 0 150 462 150 495 0 2157

Total 450 63 450 104 20 45 150 462 150 495 172 2561

Figure 5: Samples of images from the REMIA dataset mixing scans of real excavated sherds and facsimiles. From top-left to

bottom-right, associated thumbwheel’s labels are: γ, G8, η, H1, H12, H13, λ, λ1, α, α1, and A2.

introducing facsimiles in the learning process, two config-

urations were tested (see Table 3): the first one introduces

facsimiles in the learning and test phases, while the second

relied exclusively on real excavated sherds for both phases.

4.2. Hyper-parameters tuning

Hyper-parameters’ significance lies in their direct con-

trol over the model’s behavior. Consequently, when hyper-

parameters are finely tuned, they substantially impact the

model’s performance. We used the Adam [17] optimizer to

train varied epochs of each model convergence with a learn-

ing rate of 0.001 and a batch size of 32. Furthermore, we

applied the weighted categorical cross-entropy loss function

to the training, which computes the loss between the actual

probability of the sherd’s category and the probability of the

class predicted from the softmax activation function.

4.3. Evaluation metrics

The classification results are evaluated using the four

standard metrics: Accuracy, Precision, Recall, and F1-

score.

For the clustering approach, three standard metrics are

used to evaluate the overlapping between predicted clusters

and ground truth labels: the Normalized Mutual Informa-

tion (NMI) [4], Adjusted Rand Index (ARI) [28] and Accu-

racy (ACC) defined as:

NMI(y, c) =
2× I(y, c)

H(y) +H(c)
(1)

where y represents the ground-truth labels, c denotes the

cluster assignments, H(.) is the entropy, and I(y, c) is the

mutual information between y and c.

ARI =
RI − Expected RI

max RI − Expected RI
(2)

where RI quantifies the similarity between two cluster re-

sults. q

ACC(y, c) = max
m

∑n
i=1 1{yi = m(ci)}

n
(3)

where yi is the ground truth labels, ci is the cluster labels,

and m enumerates mappings between predicted clusters and

labels. Efficient computation of the optimal mapping can be

achieved using the Hungarian algorithm [18].

All metrics fall within the range of 0 to 1, where 0 in-

dicates a complete disagreement between two data clusters

on any pair of points, while a value of 1 signifies perfect

agreement, meaning the two clusters are identical.

4.4. Classification results

The classification results obtained by transfer learning

on our REMIA database with EfficientNet variants are pro-
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Table 2: Characteristics of the EfficientNet variants tested for classification.

Architectures Number of layers Total number of parameters Trainable parameters Image input size

EfficientNet-B7 813 66,658,687 66,347,960 600 × 600

EfficientNet-B5 576 30,562,527 30,389,784 456 × 456

EfficientNet-B3 384 12,320,535 12,233,232 300 × 300

EfficientNet-B0 237 5,330,571 5,288,548 224 × 224

Table 3: Experimental protocol for testing the use of facscimiles for wheel-based image classification.

Configurations Data splitting

Type of wheels

Real excavated sherds Facsimiles

A2 G8 H1 H12 H13 α γ η λ α1 λ1

With facsimiles
Training-Validation 120 44 72 14 32 105 316 315 105 346 324

Test 52 19 32 6 13 45 134 135 45 149 138

Without facsimiles
Training-Validation 120 44 72 14 32 0 0 0 0 0 0

Test 52 19 32 6 13 0 0 0 0 0 0

vided in table 4. Unsurprisingly, performance improves

with deeper network versions from B0 to B7. The basic

B0 version trained with an enhanced database with facsim-

iles already gives excellent results of more 97%, slightly

improved by the B7 version to 97.79%. These results indi-

cate that EfficientNet can identify relevant features from the

grey-level images for wheel identification.

On the other hand, the configurations using only real

sherds show a much greater increase in precision (about

6%) between versions B0 and B7 than with the introduction

of facsimiles in the dataset (about 0.8%). Without incor-

porating facsimiles, convergence is always much longer (on

the order of twice as long), which probably underlines a too-

small database if facsimiles are not added. Table 5 presents

the confusion matrix obtained with Efficientnet B7 trained

on enhanced dataset with facsimiles. Less than 17 out of

768 sherds (i.e., only 2.2% of ceramics) were misclassified

due to labels that are really hard to distinguish.

We used Grad-CAM++ as a tool for the explicability of

the global network decision [5]. The saliency maps illus-

trated in Fig. 6 are overlaid on the input images to show the

importance of each pixel in the form of heat maps (in red,

high activation, in blue, low activation). These maps are re-

lated to the significant features associated with wheel identi-

fication. The network successfully focuses on discriminat-

ing areas to distinguish irregular patterns specific to each

wheel.

4.5. Clustering results

A performance evaluation of the unsupervised clustering

approach for wheel identification on the REMIA dataset is

presented in Table 6. The image features are extracted us-

ing several EfficientNet variants (B0, B3, B5, and B7) pre-

trained on ImageNet, without any fine-tuning. To reduce

dimensionality, a PCA is applied to the outputs of the net-

works. The number of components selected to feed the clus-

tering algorithms corresponds to an explanatory cumulative

variance of 95%. For example, we have chosen the first

257 components from EfficientNet-B5 outputs (see Fig. 7).

The 3D projection of the clusters, based on the ground truth

labels, can be seen in Fig. 8, illustrating their distribution

according to the first three principal components.

The results of comparing four state-of-the-art clustering

algorithms show that spectral clustering outperforms the

other algorithms on the REMIA dataset for all observed

metrics. Among the different networks tested, EfficientNet-

B5 surpasses the B7 and proves to be the most effective one

for the wheel identification task, achieving an accuracy rate

of 77.47% when combined with spectral clustering. There

are a few confusions, including the fact that the algorithm

can’t distinguish specific samples from the G8, H12, and

H13 wheels; these samples need to be checked by the ar-

chaeologist.

5. Conclusion
In this study, we addressed the problem faced by archae-

ologists in associating relief-printed decorations on ceramic

objects discovered during excavations carried out with the

same wheel, using two approaches: supervised classifica-

tion or unsupervised clustering. In both cases, we took ad-

vantage of the latest and most powerful networks, such as

EfficientNet, to extract reliable discriminating features from

2D relief views generated from 3D scans of ceramic sherds.

Given the small amount of data available, we were inspired

by experimental archeology to develop our learning base

by creating wheel facsimiles to significantly supplement

1618



Table 4: Performance comparison of EfficientNet variants (bold indicates the best value per metric).

Methods Configurations
Metrics (%) Convergence rate

Accuracy Precision Recall F1-score Number of epochs Time (s)

EfficientNet-B7
With facsimiles 97.79 97.32 97.79 97.54 48 1902

Without facsimiles 83.61 84.18 83.61 82.96 87 611

EfficientNet-B5
With facsimiles 97.66 97.12 97.66 97.38 66 1568

Without facsimiles 81.97 81.41 81.97 80.84 85 351

EfficientNet-B3
With facsimiles 97.40 97.12 97.40 97.22 72 1085

Without facsimiles 81.15 82.17 81.15 81.22 86 222

EfficientNet-B0
With facsimiles 97.01 96.81 97.01 96.84 63 541

Without facsimiles 77.87 78.77 77.87 77.28 101 158

Table 5: Confusion matrix obtained with EfficientNet-B7 trained on enhanced dataset with facsimiles.

Actual label
Classified by EfficientNet-B7 as

α α1 A2 γ G8 η H1 H12 H13 λ λ1

α 45 0 0 0 0 0 0 0 0 0 0

α1 0 149 0 0 0 0 0 0 0 0 0

A2 0 0 52 0 0 0 0 0 0 0 0

γ 0 0 0 134 0 0 0 0 0 0 0

G8 0 0 0 0 18 0 1 0 0 0 0

η 0 0 0 0 0 135 0 0 0 0 0

H1 0 0 1 0 1 0 25 1 4 0 0

H12 0 0 0 0 0 0 4 0 2 0 0

H13 0 0 0 0 0 0 3 0 10 0 0

λ 0 0 0 0 0 0 0 0 0 45 0

λ1 0 0 0 0 0 0 0 0 0 0 138

the database with numerous plausible and clearly identified

samples. Note that the alternative of conventional augmen-

tation techniques by image transformation would not have

added any new wheel to associate. In fact, translation or

cropping the images could be useful to multiply the num-

ber of printed representations of existing wheels, as could

a double vertical-horizontal inversion to simulate an oppo-

site rolling direction (right- or left-handed application). But

rotations and other inversions should be totally excluded.

Therefore, introducing facsimiles is a much better way of

increasing the database consistently, even if we could add a

few of the transformations mentioned above. In the future,

facsimiles may also include printing on curved supports to

get closer to real pottery.

Experimental results show that adding these facsimiles

significantly improves the networks’ training to achieve ex-

cellent classification performance up to 97.79%, obtained

with EfficientNet-B7. On the other hand, unsupervised

spectral clustering from a vector reduced to a few hundred

of the most significant features delivered by the network

EfficientNet-B5 trained on ImageNet without any fine-

tuning achieves an accuracy of 77.47% on our database.

This experimental study offers promising prospects for

developing computer-assisted archaeology for the pattern-

wheel association, a highly complex and time-consuming

task. The aim is to develop pattern identification within

a larger corpus, with an interactive strategy between au-

tomatic classification and clustering and archaeologist.

Firstly, by identifying sherds that can be associated with

referenced wheels from the trained models and then extract-

ing new groups from the remainder to create further wheel

references. The idea would be for the machine to suggest

associations to the archaeologist if they exist in this gigan-

tic corpus. Once validated by the archaeologist, these new

associations could, in turn, be iteratively exploited in the

network’s learning process. Future work will also focus on

weakly supervised learning techniques since the corpus of

images is without a priori wheel labels. As many Late An-

tique ceramics discovered in Europe are decorated with a

relief frieze, these automatic classification tools would be

useful far beyond our Loiret excavation site.
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(a) Sample of label ‘G8’ (b) Sample of label ‘H1’

Figure 6: Grad-CAM++ saliency maps for two samples showing regions of high activation in the EfficientNet-B7 model by

hot areas (red) versus low activation areas (blue).

Table 6: Performance comparison of unsupervised clustering algorithms: Spectral clustering (in black), BIRCH clustering

(in green), Agglomerative Clustering (in blue), and K-means (in red).

Architectures
Metrics (%)

Shape of features Number of components
ACC NMI ARI

EfficientNet-B7 76.53 76.31 69.86 (2561, 2560) 193

EfficientNet-B5

77.47 78.52 72.33 (2561, 2048) 257

72.71 73.94 65.41 (2561, 2048) 257

65.87 69.64 58.20 (2561, 2048) 257

61.77 66.46 50.64 (2561, 2048) 257

EfficientNet-B3 76.65 78.08 71.84 (2561, 1536) 295

EfficientNet-B0 58.14 68.13 48.36 (2561, 1280) 237

Figure 7: Cumulative variance explained as a function of

the number of retained components

Figure 8: Clusters projections on the first 3 main compo-

nents based on ground truth labels.
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