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Abstract

This paper investigates the optimization of acquisition in
Reflectance Transformation Imaging (RTI). Current meth-
ods for RTI acquisition are either computationally expen-
sive or impractical, which leads to continued reliance on
conventional classical methods like homogenous equally
spaced methods in museums. We propose a methodology
that is aimed at dynamic collaboration between automated
analysis and cultural heritage expert knowledge to obtain
optimized light positions. Our approach is cost-effective
and adaptive to both linear and non-linear reflectance pro-
file scenarios. The practical contribution of research in this
field has a considerable impact on the cultural heritage con-
text and beyond.

1. Introduction
Reflectance Transformation Imaging (RTI) is an imaging

technique used to enhance the visualization experience. It

is a non-contact, non-destructive technique which makes it

particularly interesting for cultural heritage applications.

The RTI principle encompasses three main stages. The

first step is known as Acquisition which involves hardware

components e.g. robotic arms or servo motors in conjunc-

tion with software algorithms to facilitate the acquisition. It

also involves designing light sources and choice of suitable

light and its compatibility with the camera. This step of

acquisition results in capturing a sequence of images under

different light positions. The diversity of light directions is

crucial for revealing the surface details. The RTI acquisi-

tion setup primarily consists of a camera, light source, and

object that is to be captured. It is demonstrated in figure 1.

Figure 1: Reflectance Transformation Imaging (RTI) Setup.

The camera and object are fixed whereas the light source is

moving for every acquisition.

After performing acquisition on RTI setup, the result-

ing data is known as RTI data. However, it is worth men-

tioning that it is also known by other names like Multi

Light Image Collection (MLIC), Single Camera Multi Light

(SCML), and Multi Light Reflectance (MLR). These alter-

native names are used by different researchers and practi-

tioners in different contexts however they all refer to the

same concept of acquiring the data from RTI [41].

The second step in RTI process is referred to as mod-
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eling. This is the core of RTI. These are algorithms that

use RTI images to learn the ability to understand the sur-

face. The oldest and first method was Polynomial Tex-

ture Mapping (PTM) [25] in which the author developed

a re-lightening algorithm. It interactively displayed the ren-

dered images from light positions that were not captured

physically during RTI acquisition. Subsequently, some

other modeling methods were developed as advancements

in the field. The notable ones are Hemi-Spherical Harmon-

ics (HSH) [13, 40], Discrete Modal Decomposition (DMD)

[32] and NeuralRTI [9]. The modeling algorithms can also

be used for learning features of an object such as Normal

maps, directional slopes, enhancement maps, directional

curvatures, etc.

The third and final step of RTI is known as feature ex-

traction. The feature maps serve as valuable tools for con-

ducting meaningful tasks like investigating cultural heritage

objects, studying deterioration in the artifact, or digitizing

the cultural heritage object.

RTI allows visualization and exploration of an object’s

texture, shape, and other properties of the object revealing

hidden details and aiding in the analysis, interpretation, and

preservation of objects of archeological or cultural interest.

RTI is used to study degradation in paintings and artifacts

over time which makes it a paramount imaging technique

for archaeological and cultural heritage investigations [37,

24, 38, 34, 30, 10, 26]. RTI also provides visual analysis,

conservation documentation, and monitoring of remedial

operations in cultural heritage [20, 11, 24, 39, 35, 15, 27].

RTI’s integration with other imaging modalities has

demonstrated profound utility in the domain of cultural her-

itage. A significant advancement in RTI is the incorpo-

ration of High Dynamic Range Reflectance Transforma-

tion Imaging (HDR-RTI)[29], Multi-Spectral Reflectance

Transformation Imaging (MS-RTI)[18, 14, 2], Florescence

Transformation Imaging (FTI) [5, 19] and Focus Variation

Reflectance Transformation Imaging [21] techniques in it.

These techniques provide better opportunities for surface

analysis bringing new knowledge to the field of cultural her-

itage and archeology. However, these enhanced capabilities

demand substantial data acquisition and processing, giving

rise to computational challenges. An efficient data acquisi-

tion methodology aimed at ameliorating the computational

burdens and bringing optimal efficiency within the domain

of RTI is a need of the hour.

There are also different RTI acquisition methods that

have been used and developed over the years. The basic

one is Highlight-RTI (H-RTI) [28] in which the camera is

on a tripod and acquisition is carried out with a handheld

light source. However handheld acquisition is a painstaking

and tedious task prompting the development of machine se-

tups to bring efficiency and precision to the acquisition pro-

cess. One of them is the called Fixed Light Dome [17]. It

has fixed light sources attached to the dome body number-

ing from 40 to 100 but provides less liberty in the choice

of light position. However, since the LEDs are fixed and

there is no moving part, it is fast. Another one is known as

Mechanized Dome System. It consists of a servo motor that

moves the light source inside the dome [42, 16]. Recently,

robotic arm-based systems have been developed to capture

large surfaces for RTI [22, 18].

The choice of light positions is one important part of ac-

quisitions. There are two categories for classifying the se-

lection of light positions for RTI acquisitions. The first cat-

egory encompasses pre-defined light positions. An exam-

ple of this category would be evenly spaced light positions.

The number and position of the light is pre-defined without

any consideration of the surface of the object. The goal is

to capture as much of the surface as possible. This princi-

ple of acquisition supposes that all light positions contribute

equally. However, it is observed that surface reflectance is

a complicated phenomenon and some light positions have

more importance than others. In contrast, the second cate-

gory employs automated methods which have the ability to

adjust the number and distribution of light positions based

on the surface characteristics. However, the field of auto-

mated acquisition is not fully explored. Our objective is to

delve into the field of automated acquisition by leveraging

surface information.

It is important to understand the significance of an op-

timized acquisition algorithm for RTI. RTI is an imaging

technique that is centered around processing multiple, of-

ten high-quality images (Multi Light Image Collection).

This demands very high computational power which of-

ten causes a bottleneck in the RTI pipeline. The quality

of RTI results is generally enhanced by increasing the num-

ber of light positions however it is an important tradeoff

between a high-quality reflectance modal resulting from a

larger number of light positions and associated resources to

acquire them. The intricacies and irregularities of an ob-

ject’s surface pose a formidable challenge in identifying the

optimal lighting angles for RTI acquisition. Cultural her-

itage objects are complicated surfaces offering multiplicity

in reflectance profiles and topography traits, offering unique

textures, thus rendering each region on the surface as a dis-

tinct entity. It is found that cultural heritage professionals

often prioritize specific regions of interest over the entirety

of a given surface. Furthermore, optimizing these regions

of interest yields significant benefits thereby contributing to

the preservation, examination, and digitization of cultural

heritage objects.

In this paper, we present a surface adaptive method for

the planning of light positions for RTI based on the Region

of Interest (ROI) selected by an expert and propose new sur-

face adaptive light positions to the expert. The method is

based on the analysis of sparse RTI data and finds optimal
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light positions using gradients. The method also provides

the cultural heritage expert the liberty of interacting with

the algorithm to produce the new light positions thus tak-

ing leverage of human and technological expertise. Cultural

heritage professionals possess a profound understanding of

the intricacies and complexities inherent in various objects.

Our tool can provide them an opportunity to interact, focus

and identify the best light positions for the acquisition. We

leverage expert knowledge and technical analysis tools to

collaborate for optimizing acquisition.

The section 2 discusses the related work in this field.

Section 3 explains the methodology. Section 4 presents the

dataset, experimentation, and results. Finally, section 5 dis-

cusses the conclusion of this study.

2. Related Work

The field of automated RTI acquisition is not fully ex-

plored. Initially, the tedious acquisition for RTI prompted

the cultural heritage workers to find better ways to acquire

data. One of the conservators came up with the trial and

error method for refining the light positions after a pre-

defined homogenous equally spaced acquisition [1]. The

nearest work related to our work is Next Best Light Posi-

tion (NBLP) [23]. In this work, the author first acquires a

small sparse dataset, investigates reflectance changes in the

dataset, and proposes the next best light position. However,

the method is computationally expensive and thus is hard to

implement practically.

Photometric Stereo serves as a closely related field to

RTI. There has been some work to find the optimal light

positions for Photometric stereo [8, 12, 4, 3]. Another

inspiring but distinct to RTI acquisition problem is Next

Best View (NBV) problem for 3D reconstruction where

they develop planning algorithms for future acquisitions

that can potentially give promising 3D reconstruction re-

sults [6, 36, 7, 31].

3. Methodology

The aim of this research is to improve the acquisition

part of RTI. This research involves the optimized placement

of light positions adapting to the surface. The primary ob-

jective is to maximize the information extracted from RTI

data while minimizing the number of required images. Our

methodology is based on Signal analysis. The figure 6 and

figure 4 demonstrates the method.

Sparse Ring
Acquisition

Interactivey selecting
Region of Iinterest

Calculating Standard
Deviation of each

signal (Pixel) in MLIC

Identifying signal with
maximum Standard

Deviation

Signal Filtering and
Analysis

Identifying light
positions with highest

gradient

Placing new light
positons between the

light positions with
highest gradient

Choosing no of light
positions and standard
deviation of new light
postions distribution

Figure 2: Flowchart of our method

The first step is to take a sparse acquisition. Our method

is designed to optimize the acquisition in ring setup. We

choose ring setup because the variation in pixel intensity

through ring setup (varying azimuth, fixed elevation) mani-

fests a non-linear and unpredictable pattern. Such responses

are highly dependable on surface characteristics thereby

presenting a significant challenge for modeling. Notwith-

standing, maintaining a fixed azimuth and modulating the

elevation demonstrates a more predictable response that can

be modeled relatively easily. Figure 3 describes the eleva-

tion and azimuth angle for the RTI setup.

Figure 3: The figure demonstrates elevation (θ) and azimuth

(φ) angle for acquisition setup.

We provide an interactive way to choose the Region of

1700



Figure 4: The figure demonstrates the data selection of our

method. In the first step, the user interactively selects the

region of interest. The ROI consists of a certain number

of pixels. The pixel value is extracted all along the MLIC

to form a signal. Each signal is then examined and signal

analysis techniques are applied to find the Pixel of Interest.

Interest (ROI). The ROI can be chosen by a cultural her-

itage expert (user) for e.g. it can be a region where there

is a specularity or a surface with irregular reflectance. The

choice of ROI narrows down the location and significantly

reduces the computational power. The algorithm creates a

mask of the ROI and analyzes every pixel in the dataset. We

perform some signal filtering if needed. Signal filtering in-

volves using a low-pass filter. It can reduce sensor noise,

and smoothen the signal. We then identify the pixel with

the highest standard deviation in the dataset. Note that each

pixel vector is a signal. We name this pixel as Pixel of In-

terest (POI). We calculate the gradient of POI in the dataset

and find out the light positions where there is the highest

gradient. The importance of POI is demonstrated in figure

5. The light positions with the highest gradient deduce that

there is some latent information that has to be captured. In

order to reveal that information the algorithm proposes the

new light positions between these two light positions in a

Gaussian distribution. The user can decide the number of

new light positions. The standard deviation of the Gaus-

sian distribution should be proportional to the gradient. We

propose a parameter α that can be adjusted to get the best

result. It is mentioned in equation 1. The user can also use

a fixed standard deviation for this algorithm.

σNewLp = α∇max (1)

where:

σNewLp = Standard deviation for distribution of new light

positions,

α = Tunable parameter,

∇ = Absolute maximum gradient of POI.

This method targets the missing information from a

sharp increase in pixel intensities using gradients. We com-

pute the gradient using the finite differences method. It then

places the new light positions in that region to capture the

missing information. The gradient serves as an objective

function that the algorithm tries to minimize. The stopping

criteria for the algorithm is the threshold of the gradient. If

after certain iterations, the maximum gradient of the signal

reduces under a certain threshold, the algorithm will stop.

The threshold depends on the tolerance parameter and stan-

dard deviation in the signal. It is defined as β in the equation

2

β = γ × σPOI (2)

where:

β = Stopping criteria parameter,

γ = Tunable tolerance parameter,

σPOI = Standard deviation of POI.

4. Experiments and results

We implemented our proposed methodology on the

dataset delineated in section 4.1. Our investigation focused

on two distinct regions of interest to authenticate the va-

lidity of the algorithm across diverse surfaces. In the first

experiment, the region of interest has a linear and gradual

response. We compare the result of the linear region with

the homogenous equally spaced acquisition. The number

of light positions for homogenous equally spaced and our

algorithm was kept constant. In the second experiment, the

region of interest has an anomaly and irregular response.

We compare our results with a significantly dense acquisi-

tion for this experiment. These experiments validate that

our algorithm adapts to diverse reflectance profiles on a sur-

face.

4.1. Dataset

We performed the experiment on a coin named ’Coin of

Emperor Nicolas’ from the year 1897 as shown in figure 6.

The coin 3D model was obtained from Sketchfab under a

creative commons license [33]. We used Blender to capture

the RTI setup images using the RTI plugin in Blender. The

ground truth dataset was also created using a dense acquisi-

tion of 100 light positions at an elevation of 30 degrees. All

the experiments were also performed at the same elevation

of 30 degrees.
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Figure 5: The figure shows 20 signals captured from the region of the eye of the coin. The x-axis shows different light

positions along the ring. The standard variation of each signal is shown. It can be observed that there are 2 clusters of signals

pointing towards two reflectance profiles in the eye region. One cluster of points is less sensitive to light positions and another

cluster is varying highly with light positions. We deduce that the signal with the highest standard deviation is the Pixel of

Interest (POI) and has information in the region that is to be revealed.

Figure 6: Coin of Emperor Nicolas from the year 1897 AD.

The method also has the ability to adapt itself according

to the information coming from the new acquisitions. Dur-

ing each iteration, it calculates the standard deviation and

finds the POI as explained in figure 5. This POI can or can-

not be the same one during the acquisition. This makes our

method adaptive to the whole ROI. The objective function is

to minimize the gradient of the signal so that the maximum

amount of information can be captured.

4.2. Experiment and results

We performed experiments to study the behavior of the

algorithm. The fundamental goal of the algorithm is to iden-

tify abrupt, significant changes within a particular region,

subsequently suggesting light positions in between these

changes.

The first experiment explains our algorithm result on a

linear reflectance region. Our algorithm tries to adapt it-

self and creates a result very similar to homogenous as ex-

plained in section 4.3. Figure 8 demonstrates the first exper-

iment of the mouth region in the coin. The parameters used

for this experiment are standard deviation (Stdlp = 0.2),

number of new light positions (n = 3) stopping criteria

(gamma = 0.7).

In the second experiment of the ear region, there is an

anomaly that might be a result of a rendering error. Our al-

gorithm is able to identify it and tries to explore it. Our al-

gorithm was able to locate the anomaly and started to place

light positions around it to capture information. This de-

duces that our algorithm can detect specularities. It can be

observed in figure 9 that our algorithm has well-placed light

positions around the anomaly. The dense acquisition of 100

light positions which we consider as ground truth here ad-
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dresses anomaly with only 1 light position whereas our al-

gorithm addresses anomaly with around 5 light positions.

This is the idea of optimized acquisition. We want more

dense acquisition around pixels where there is a strong non-

linear response and sparse acquisition around pixels where

there is a linear predictable response.

4.3. Comparison with homogenous equally spaced
method

We compared the features of our acquisition method with

the homogenous acquisition method. Figure 7 demonstrates

the result for the mouth region of the surface. It is ob-

served that the region of interest has a linear reflectance

profile. Consequently, the algorithm did not necessitate

any dense acquisition, with the acquisition demonstrating

a bias towards homogeneity. However, the resulting normal

map generated by our algorithm closely approximated the

ground truth corroborating the effectiveness of our method-

ology. Moreover, comparing our result to the homogenous

acquisition approach also yielded results near to ground

truth. This underscores the robustness of our approach in

achieving results of comparable quality, while potentially

offering benefits in scenarios requiring adaptive acquisition

strategies.

5. Conclusion
RTI acquisition is a tedious and painstaking task. Exist-

ing methods are either computationally very expensive or

not practical thereby limiting its wide-scale adoption. Such

limitations are underscored by the continued reliance on ho-

mogenous equally spaced acquisition approaches in muse-

ums and industry. The enduring popularity of the homoge-

nous approach testifies to the existing gap in optimized, ef-

ficient, and user-friendly RTI acquisition methods.

We have investigated the problem of optimized acqui-

sition for RTI in 2D ring setup in this paper. We have

proposed a methodology based on signal analysis which

is computationally very cheap. The average computational

time for proposing new light positions is 0.48 seconds on

MATLAB using 11 Gen Intel Core i7 cpu. This marks a

notable reduction in comparison to existing algorithms, sig-

naling a promising avenue for further exploration. Our algo-

rithm can effectively address surfaces with both linear and

significantly non-linear reflectance profiles.

The optimization of acquisition represents a highly nu-

anced and complex domain. It necessitates the recognition

of diverse perspectives, including those of experts in the

field of cultural heritage. Our approach encourages a dy-

namic interplay between automated analysis and heritage

expert knowledge. This is an effort to facilitate a more

comprehensive and fine-tuned approach to acquisition op-

timization, maximizing the unique benefits derived from

both technological advancement and human expertise. This

(a) Normal map created

from our method’s acquisi-

tion.

(b) Normal map created

using homogenous equally

spaced acquisition.

(c) Histogram comparison of

our acquisition normal map

with ground truth normal

map. It can be seen that the

histogram is overlapping the

ground truth normal map.

(d) Histogram comparison of

our acquisition normal map

with ground truth normal

map. It can be seen that the

histogram is overlapping the

ground truth normal map.

(e) Directional slope ob-

tained using our acquisi-

tion

(f) Directional slope ob-

tained using homogenous

acquisition

Figure 7: This figure shows features extracted from 27 ho-

mogenous light positions and 27 light positions from our

algorithm as explained in the first experiment of the mouth

region. The linear reflectance profile does not necessitate a

dense acquisition and our algorithm performs as well as the

homogenous method.

study contributes a valuable proposition to the ongoing di-

alogue concerning the optimization of RTI acquisition, a

realm that remains open for further investigation and de-

velopment.
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(a) 1st iteration light positions.

(b) 7th iteration light positions. The blue dots are the

last iteration of light positions.

(c) 1st iteration: Signal in-

tensity variation of POI.

(d) 7th iteration: Signal in-

tensity variation of POI.

(e) The blue box shows the ROI to

be optimized.

Figure 8: The figure demonstrates the experiment where

a) Sparse acquisition for the initialization of algorithm, b)

Light positions on final iteration, c) POI on acquisitions

from 1st iteration, d) POI on acquisitions from 7th itera-

tion, e) Surface under study.

(a) The blue box shows the

ROI to be optimized. (b) POI after 6th iteration.

(c) Initial light positions.

(d) 6th iteration light positions. The blue dots are

the last iteration of light positions.

(e) POI of ground truth (100 light positions)

Figure 9: The figure demonstrates that our algorithm is able

to detect and explore anomaly in the subject. Our algorithm

focuses on anomaly and suggests very dense acquisition for

light positions sensitive to anomaly.
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We plan to continue testing and refining our algo-

rithm with the goal to enhance its practicality and user-

friendliness. A key component of this procedure is to create

an interactive and intuitive graphical user interface designed

specifically for cultural heritage professionals. The ultimate

aim will be to visualize latent features of signals and export

optimized light position files to be used for acquisition. We

also plan to scale and broaden our approach to 3D hemi-

sphere.
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