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Figure 1: The figure highlights the potential of the proposed DeFi and shows the impact on hole detection and filling in the

Heritage 3D models in comparison with the state-of-the-art technique DeCo. While DeCo struggles with hole filling due

to its limited understanding of the underlying geometry and the precise location of hole boundaries. The proposed DeFi

framework achieves superior hole filling due to prior knowledge of hole boundary and geometry, enabling it to achieve better

results in specific areas (hole filling) of point cloud completion.

Abstract

In this paper, we propose DeFi: a novel perspective for
hole detection and filling of a given deteriorated 3D point
cloud towards digital preservation of cultural heritage sites.
Preservation of heritage demands digitization as cultural
heritage sites deteriorate due to natural calamities and hu-
man activities. Digital preservation promotes acquisition of
3D data using 3D sensor or Multi-view reconstruction. Un-
fortunately, 3D data acquisition finds challenges due to the
limitations in sensor technology and inappropriate capture
conditions, leading to formation of missing regions or holes
in the acquired point cloud. To address this, we propose a
pipeline consisting of detection of hole boundaries, and un-
derstanding the geometry of the hole boundaries to fill the
region of the point cloud. Recent research on hole detection
and filling fails to generalize on complex structures such
as heritage sites, as they find challenges in differentiating
between the hole boundary and non-hole boundary points.
To address this, we propose to detect boundary points of
point cloud and learn to classify them into “hole bound-

ary” and “non-hole boundary” points. We generate a syn-
thetic dataset based on ModelNet40 to learn the detection
of hole boundaries. We demonstrate the results of the pro-
posed pipeline on (i) ModelNet40 dataset, (ii) Heritage 3D
models generated via photogrammetry, and compare the re-
sults with state-of-the-art methods.

1. Introduction

In this paper, we present a pipeline for detecting and fill-

ing holes in point clouds, with the aim of preserving and

digitally presenting cultural heritage sites[13]. Cultural her-

itage sites are physical and intangible elements of a culture

passed down through generations, and often deteriorate or

get destroyed due to natural calamities and human activi-

ties. Preserving these sites is a major goal worldwide, and

digital recreation using modern technology such as pho-

tographs, 3D scanners, and photogrammetry is one way to

achieve this[5, 23, 26, 25]. The advancement of 3D data

acquisition techniques and increased computational power
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Figure 2: Illustration of proposed framework DeFi: a hole detection and filling of deteriorated point cloud.

have made it possible to digitally recreate, reconstruct, and

render 3D models of cultural heritage sites[6, 9]. Many of

these sites have been damaged or are in a state of deterio-

ration due to natural weathering, disasters, and wars. The

government has shown interest in recreation and restoration

of these sites, which paves the way for 3D reconstruction

and modeling. Several challenges exist in the 3D recon-

struction pipeline, as presented by[6, 3, 29].

Photogrammetry is a technology that uses images and

scans to accurately measure and build 3D models of real-

world objects or scene. However, reconstructed models

often have missing regions or holes, noise[10], low den-

sity regions[14, 17], due to various factors such as occlu-

sion, physical properties of the scanned surface, repeated

information[32, 25],missing pieces, limited accessibility,

and external intervention[6, 9, 11, 12]. Filling these holes is

important for better representation of 3D models as shown

in Figure 1.

Recent literature has focused on various methods for

filling holes in point clouds, including interpolation of

new points[19], and generating missing parts[21, 20, 22].

However, these methods have their limitations. Interpo-

lating new points through encoding and decoding the par-

tial/holed point cloud as a latent representation leads to re-

constructing the entire point cloud rather than just filling

the missing parts, resulting in generic reconstructions that

lack specific details[33]. Generating missing parts may be

more likely to generate the missing parts but is not gen-

eralized to holed point clouds[1]. Interpolating points in-

side the boundary using higher order polynomial fit, trian-

gulation, or surface fitting faces challenges depending on

the size of the missing regions and requires perfect hole

boundaries[18, 28]. Towards this, we propose a learning-

based filling algorithm that takes into account the geomet-

ric information[2, 27, 8, 7] of the detected hole boundaries.

Our method aims to generate the missing points in the re-

gions using the specific properties of the input instance,

rather than reconstructing the entire point cloud. By uti-

lizing the detected hole boundaries, we can focus on local

properties of each sample rather than just the global geome-

try, resulting in more accurate and specific reconstructions.

Our method is expected to provide a better solution for fill-

ing holes in point clouds towards the digital preservation

and presentation of cultural heritage sites.

Most existing non-learning-based hole boundary detec-

tion methods rely on manually setting threshold parameters,

which is a tedious task[4]. To automate this process, au-

thors in [24] automate this process by per point classifica-

tion using PointNet[15] architecture. The model finds chal-

lenges to detect the hole boundaries as there is imbalance

between hole boundary and non hole boundary. The pro-

posed pipeline focuses on building a learning-based filling

algorithm with the geometric information of the detected

hole boundaries. The pipeline comprises two main stages:

hole boundary detection and hole filling as shown in Figure

2.

Towards this, the main contributions of the paper are,

• We propose DeFi: a pipeline for detection and fill-

ing of holes towards improved presentation of point

clouds.

– We introduce a Periphery Detector to aid detec-

tion of hole boundaries for complex structures,

where distinguishing between hole boundary and

non-hole boundary points finds challenges.
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– We propose Surficial Geometry Interpreter to de-

rive geometric features (point cloud decomposi-

tion) of the point cloud towards assisting hole fill-

ing.

• We propose to generate synthetic dataset based on

ModelNet40 to facilitate learning detection and filling

of holes.

• We propose to demonstrate effectiveness of the pro-

posed methodology on both ModelNet40[31] and Her-

itage 3D models.

In Section 2, we discuss the proposed pipeline for de-

tection and filling of missing regions. We discuss the re-

sults and effect on filling of missing regions in Section 3

and conclude in Section 4.

2. DeFi: Hole Detection and Filling
We propose DeFi: a novel perspective for hole detection

and filling of a given deteriorated 3D point cloud as shown

in Figure 2. The DeFi incorporates mainly two modules:

(i) Intrinsic Hole Detector, and (ii) Surficial Hole Filling.

We define point cloud P = {p1, p2, ..., pn} where pi ∈ R
3

where we consider three input features x, y, z for process-

ing.

2.1. Intrinsic Hole Detector (IHD)

The detection of hole boundaries in point cloud is sub-

tle process, as the underlying surface of point cloud is un-

defined. Recent advancements in deep learning techniques

detect boundaries of point cloud by leveraging local sur-

face information[16, 30]. However, in hole detection prob-

lem the hole boundary points sets H � non-hole boundary

points set N , such that H⋃N = P this demands a ro-

bust training strategy for hole boundary detection. Towards

this, we propose Intrinsic Hole Detector (IHD), a two-stage

approach for hole boundary detection in point clouds, and

include (a) Periphery Detector: primarily to detect bound-

aries of the point cloud by mitigating the aforementioned

challenge, (b) Hole Selector: to detect the hole boundaries

from identified point cloud boundaries.

• Periphery Detector: Unstructured characteristic of

the point cloud makes it challenging to understand the

boundary points. One approach to detect point cloud

boundaries is by finding the distance d between a query

point q and centroid μ of local neighbourhood point

given by K-NN graph[30], the distance di between

query point and the centroid is calculated using the

equation:

di = ||qi − μi||22 (1)

where || · ||22 is euclidean distance.

Figure 3: Illustrates the notion of proposed Periphery De-

tector where we consider magnitude of entropy between a

query point q and centroid μ of local neighbourhood es-

timated via euclidean distance d(q, μ). The highlighted

region with Red box depicts classification of query point

as a point on manifold as d(q, μ) ≈ 0. In contrast the

highlighted region with Green box depicts classification of

query point as a point on periphery as d(q, μ) � 0 facilitat-

ing detection and filling of deteriorated point cloud.

The classification of a query point into a boundary or

non-boundary point depends on the distance between

the point and the centroid point of its nearest neighbors

using the condition:

bi =

{
1 di � 0,

0 else.
(2)

where, bi is classified output of Periphery Detector, 1
indicates boundary point and 0 indicates non-boundary

point.

Algorithm 1: Point Cloud Periphery Detector

Input: Point Cloud → P
// B,Nin, 3

Output: Boundaries of Point Cloud ← b
// B,Nout, 3

1 Initialize K, Nin

2 for i in Nin do
3 idxknn = KNN(qi, K)

4 μi = mean( gather operation( qi, idxknn ) )

5 di = Calculate distance ( qi, idxknn)

6

7 idx = topK(d, Nout, idx)

8 b = gather operation(P , idx)

In a similar manner, the distance di is estimated for all

1605



Figure 4: Proposed Hole Selector module, consumes peripheries of a point cloud to yield hole sets. We advocate to use a

PointNet style backbone for performing a binary semantic segmentation task on Hole Boundary points vs Non-Hole Bound-

ary.

points in the point cloud, and each point is classified

as a boundary or non-boundary point using the Algo-

rithm 1. The effect of K-nearest neighbour search in

Periphery Detector is illustrated in Figure 3. Periphery

Detector facilitates the overall performance of hole de-

tection by significantly reducing the search space. We

infer, detecting holes within boundary points is a sim-

pler task when compared to detecting in entire point

cloud.

• Hole Selector: The Hole Selector fθ is a learning-

based algorithm parameterized by weights θ that clas-

sifies each point in a point cloud into either a hole

boundary or a non-hole boundary. To achieve this,

each point is treated as an independent point and un-

dergoes the same encoding module in the form of a

Shared MLP[15]/Convolution[30]. A shared MLP is

introduced to extract features from a point and use

a symmetric function to extract the global permuta-

tion invariant features of the point cloud, facilitating

to understand the overall structure of the point cloud.

These global features are merged with local features,

as shown in Figure 4, to provide a better understand-

ing of the global context for each local feature. The ex-

tracted point cloud boundaries are then passed through

the Hole Selector to differentiate between the hole

boundary and non-hole boundary

Towards tuning of hole boundary detection by optimiz-

ing the weights of Hole Selector, we propose to use Cross

Entropy Loss as a per point classification loss function

given by,

Lclassifier(yi, ŷi) = − 1

Nout

Nout∑
i=1

yi log ŷi (3)

where, bi is the ground-truth information on hole boundary

point or non hole boundary point, b̂i is the predicted class

of the particular point Pi from point cloud boundaries and

Nout be the number of points in point cloud boundaries.

Figure 5: Results of hole filling using DeCo[1] without con-

sidering hole boundary information. We observe, the model

fails to fill the hole due to unavailability of hole boundary

information.

2.2. Surficial Hole Filling

Surficial Hole filling is a process of interpolat-

ing/generating M point with hole points prior H such

that M⋃H retains/extrapolates Surficial geometry of hole

points. Learning-based extrapolation/completion method

DeCo[1] fails to extrapolate/complete the points as shown

in Figure 5. We infer, point cloud completion demands two

types of information: (a) identifying the regions that needs

completion, and (b) utilizing geometric information about

the boundaries to extrapolate the points. However, current

state-of-the-art methods fail to extrapolate the points based

on the underlying geometry of the detected hole bound-

ary. Towards this, we extract geometric features of the hole

boundary points using the Surficial Geometry Interpreter

(gφ) and fill the holes using the Holes Set Wadding mod-

ule (hφ), as shown in Figure 2.

• Surficial Geometry Interpreter: We advocate to em-

ploy ABD-Net[7] as a Surficial geometry interpreter
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Figure 6: Our proposed framework features a Surficial Ge-

ometry Interpreter module, which is designed to identify the

primitive decomposition of hole boundary points within a

point cloud. This is accomplished by leveraging a Topolog-

ical feature extractor to gain a deeper understanding of the

surface geometry, and an attention-based per-point classi-

fier to map the Topological features to one of four primitive

decompositions: planar, spherical, conical, or cylindrical.

gφ to comprehend an object’s geometry. The fun-

damental objective here is to discern the geometri-

cal properties of a 3D point cloud through point-wise

classification into one of four primitive shapes: pla-

nar, spherical, conical, or cylindrical. However com-

prehending the geometry of each point can be labori-

ous, and demands understanding the geometry in con-

junction with its neighborhood. To accomplish this, a

K-Nearest Neighbor technique is applied for a given

query point, and topological features are derived ac-

cordingly. An attention mechanism is subsequently

employed to facilitate the architecture in easily distin-

guishing the geometry based on the extracted topolog-

ical features, as illustrated in Figure 6. These features

further aid in Surficial hole filling by extrapolating the

topology of the hole boundary.

Figure 7: Proposed Holes Set Wadding module consumes

Detected Holes and Surficial geometry priors of these holes

towards filling of these holes. The hφ module features a

global encoder and a local neighborhood-based encoder,

which work together to facilitate the decoder in gaining a

better understanding of the geometry, proximity, and loca-

tion of the holes that need to be filled. To perform hole fill-

ing, we leverage DeCo[1], which serves as our decoder and

enables efficient and effective hole filling within the point

cloud.

• Holes Set Wadding: Towards hole segment filling, it

is crucial to understand the global and local structure

based on the geometric signature. To achieve this, we

model hφ two parallel encoders: a local encoder and

a global encoder, as shown in Figure 7. The local en-

coder is responsible for understanding the local topol-

ogy, while the global encoder captures the global infor-

mation. These two representations are then combined

and processed through a decoder that extrapolates the

points between the boundary to fill the holes.

Towards extracting geometric features of hole bound-

aries, we propose to train Surficial Geometry Interpreter

using Eq.3. Towards filling of hole boundaries, we opti-

mize the weights of Hole Set Wadding module by Chamfer
Distance (Cdis) as a reconstruction loss. Chamfer distance

is the measure of squared distance between each points of

one point cloud with nearest point from another point cloud

given by,

Cdis(G, Ŷ ) =
∑
g∈G

min
y∈Ŷ

||g−y||22+
∑
y∈Ŷ

min
g∈G

||g−y||22 (4)

here, g is a point in ground-truth G, and y is a point in filled

segment Ŷ (generated through Hole Set Wadding module).

3. Results and Discussions
In this section, we provide a brief description on the

dataset considered for experimentation, the experimental

setup of the proposed methodology, and demonstrate the re-

sults of proposed methodology in comparison with state-of-

the-art methods[24, 1].

3.1. Dataset

We synthetically introduce missing regions considering

ModelNet40[31] as a base dataset to facilitate detection, and

filling of holes. We employ Traceparts dataset to train Sur-

ficial Geometry Interpreter.

• Synthetic Data Generation: Due to unavailability of

missing region dataset and the corresponding ground-

truth, we synthetically generate the missing regions us-

ing ModelNet40[31] dataset. We consider a random

query point (q) and apply K-Nearest Neighbour search

on the point cloud to generate the missing regions. The

r points nearer to the query point (q) are deleted to

create a hole and the remaining (K − r) points are la-

beled as hole boundary. ModelNet40 dataset consists

of CAD models of 40 categories. These CAD models

are sampled to 4096 points to form a point cloud. We

generate 40K samples including train and validation

set.

• Traceparts[7]: dataset consists a total of 16157 me-

chanical component models, along with primitive
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Figure 8: Visualization of hole detection results on ModelNet40 objects. First column are the considered input point cloud,

Second column are the ground-truth point cloud, and Third to Eighth column are the hold detection results using PointNet[15],

PointNet++[16], DGCNN[30] and their IHD variants.

shapes information labeled as planar, spherical, cylin-

drical, and conical. The dataset is divided into 12984

training samples and 3173 testing samples.

3.2. Experimental Setup

In this section, we discuss experimental setup used in

DeFi, and provide a detailed description on Intrinsic Hole

Detector and Surficial Hole Filling module used in DeFi.

• Intrinsic Hole Detector: Initial we extract the bound-

ary points of the given point cloud using Periphery

detector as shown in Algorithm 1. This helps to bal-

ance the ratio of the number of points belonging to

missing region boundary points verses non missing

region boundary points. We train Hole selector fθ
module using the extracted boundary points and clas-

sify the boundary points into missing region boundary

points and non missing region boundary points. We

use PointNet[15], PointNet++[16], and DGCNN[30]

as a backbone architecture for Hole selector. We train

Hole Selector fθ with initial random weights θ for

100 epochs on synthetically generated data with 1024

points as a input, and with learning rate of 10e−3 using

Adam optimizer.

• Surficial Hole Filling: uses the detected boundary

points as clues and estimates the underlying geometry.

We estimate the basic geometry of the detected hole

boundaries through Surficial Geometry interpreter (gφ)

with ABD-Net[7] as the backbone. We train ABD-Net

on Traceparts dataset for 50 epochs and classify the ge-

ometry of hole boundary points into four basic prim-

itives namely Planar, Spherical, Conical, and Cylin-

drical. Classified geometric signatures of the hole

boundary points are considered as a clue for comple-

tion/hole filling using Holes Set Wadding with DeCo

architecture[1] as the backbone. We use the hyper-

parameter settings similarly to the authors of DeCo

and train the filling/completion architecture hφ for 250

epochs.

3.3. Results

In this section, we demonstrate the results of proposed

methodology DeFi on hole detection and filling of point

cloud using synthetically generated dataset. Due to limited

availability of literature on learning-based hole detection

techniques, we compare the results with[24] and show the

corresponding segmentation IoU scores in Table 1. Authors

in[24] use PointNet[15] as backbone architecture for hole

detection. Through experiments, we infer unbalanced dis-

tribution of hole and non-hole boundary points makes hole

boundary detection a challenging task. As discussed in Sec-
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tion 2, Periphery detector helps us to mitigate the challenge

by confining the search space.

Table 1: Comparison of hole boundary detection with Point-

Net, and PointNet++ with and without our Periphery De-

tector. The term mIoU denotes the mean Intersection over

Union (IoU) of both hole and non-hole segments. In this

context, the Hole IoU corresponds to the IoU calculated

specifically for the hole segment. Higher the IoU, better

the results. Higher values are represented in Bold. Topmost

values are represented in “ . ” (blue).

mIoU Hole IoU
PointNet[15](2016) 0.4530 0.0172

Learning-based Hole Detection[24](2020) 0.4530 0.0172

IHD with PointNet(Ours) 0.5555 0.3234
PointNet++[16](2017) 0.8239 0.6899

IHD with PointNet++(Ours) 0.8956 0.8361

We visually represent the results of proposed methodol-

ogy in Figure 8. We infer, the vanilla PointNet[15] fails to

detect holes, as illustrated in Figure 8. In contrast, the In-

trinsic Hole Detector (IHD) variant of PointNet is capable

of detecting holes, and is further supported by our quanti-

tative analysis presented in Table 1. We observe a signifi-

cant improvement of 10% in mIoU and 31% in Hole IoU

compared to vanilla PointNet on Hole Detection. We report

a similar finding for PointNet++[16] and its IHD variant,

where we achieve a 7% improvement in mIoU and 14%
in Hole IoU, as depicted in Figure 8. This is due to the

fact that IHD reduces the search space of hole detection by

limiting the point cloud to just the periphery points.

Furthermore, we observe both vanilla DGCNN and its

IHD variant fail significantly in detecting holes. This is be-

cause edge conv module in DGCNN may consider to build

semantic relationship between two or more holes, leading

to a drop in hole detection performance. Overall, our re-

sults demonstrate the IHD variant on existing state-of-the-

art point cloud semantic segmentation algorithms performs

better than their vanilla counterparts in detecting holes, in-

dicating the effectiveness of our proposed approach.

Humans typically perceive the overall structure of an

object in 3D by understanding or extracting the boundary

points, and the proposed Periphery Detector performs sim-

ilar to human perception. The Periphery Detector algo-

rithm can facilitate the understanding of the overall struc-

ture/boundary of an object in 3D, as demonstrated in Figure

9. Additionally, this algorithm opens the door for many ap-

plications, such as classification of point clouds and under-

standing key points through heat waves and kernels. In this

paper, we utilize this algorithm to extract all the boundaries

from the point cloud, which aids in differentiating between

hole boundaries and non-hole boundaries.

We report the performance of our proposed surficial hole

Figure 9: Visualization of Periphery Detector on exemplars

such as tetrahedron, chair, and a Heritage 3D model. We

infer, detected boundaries of the point clouds facilitate the

deep learning algorithms to analyse the object. First row

shows the input to the Periphery Detector and second row

shows the extracted boundaries through Periphery Detector.

Figure 10: We visualize the result of hole filling with and

without proposed Surficial Geometric Interpreter. Right fig-

ure show supremacy in hole filling due incorporation of ge-

ometry priors unlike the one without in Left.

filling module with and without surficial geometry inter-

preter in Figure 10. One can conclude that our proposed

Surficial geometry interpreter is capable of understanding

the underlying geometry which indeed facilitates Hole fill-

ing unlike vanilla DeCo[1] which fail comprehensively to

extrapolate the hole boundary points. We also infer that our

proposed method yields noisy hole filling output may be due

to the fact that our methodology is not an end-to-end trained

model on a specific task. Although our study has some lim-

itations, we believe that it provides valuable insights into

the hole filling process in point clouds. We anticipate that

our results will stimulate further investigation to overcome

these limitations and promote the creation of more reliable

and efficient approaches for filling holes in point clouds.

We demonstrate the detection and filling of hole through

our proposed methodology on heritage 3D models in Fig-

ure 1 and Figure 11. We observe, there is discontinutiy
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Figure 11: Visual comparison of our proposed methodology DeFi for detection and filling of holes on Heritage data with

DeCo[1]. Red points are hole boundary detected points and Purple points are the filled/generated points.

in the detected hole boundaries due to the complex struc-

tures/curvature of the point cloud. We observe the filled

points do not deviate from the hole region when compared

with Vanilla DeCo. The complex structure/curvature of the

hole boundary, makes the surface hole filling uneven result-

ing in cluster of points in a particular area within a hole

region as shown in Figure 11.

4. Conclusions
In this paper, we have proposed a pipeline for the detec-

tion and filling of holes in point clouds to aid in the digital

preservation and presentation of cultural heritage sites. We

have proposed a method for detecting hole boundaries by

balancing the uneven distribution of point clouds, and have

shown that our proposed approach achieves significant im-

provements in IoU on hole boundary region detection when

trained on PointNet, PointNet++, and DGCNN. Addition-

ally, we have demonstrated that our proposed ABD-Net ap-

proach is effective in filling holes by leveraging geometric

signatures and achieving a 0.2 decrease in Chamfer distance

when trained on Deco. We have demonstrated the results

of proposed methodology on 3D acquired heritage point

clouds, highlighting the potential of our proposed pipeline

for digital preservation and presentation of cultural heritage

sites.
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