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Abstract

The pooling operation is a cornerstone element of
convolutional neural networks. These elements generate
receptive fields for neurons, in which local perturbations
should have minimal effect on the output activations,
increasing robustness and invariance of the network. In
this paper we present an altered version of the most com-
monly applied method, maximum pooling, where pooling
in theory is substituted by a continuous time differential
equation, which generates a location sensitive pooling
operation, more similar to biological receptive fields. We
present how this continuous method can be approrimated
numerically using discrete operations which fit ideally
on a GPU. In our approach the kernel size is substituted
by diffusion strength which is a continuous valued pa-
rameter, this way it can be optimized by gradient descent
algorithms. We evaluate the effect of continuous pooling
on accuracy and computational need using commonly
applied network architectures and datasets.

1. Introduction

The revolution of computer vision was mainly driven
by convolutional neural networks (CNNs) in the past
decade. These architectures contain an alternating se-
ries of convolution and pooling operations. Since then
other variants have also appeared, like residual networks
[1] and all convolution networks [2], but these two op-
erations can still be found in the applied architectures.
In the paper of LeCun, Bengio, and Hinton [3] origi-
nally the alteration of convolution and a pooling layers
was motivated by the order of the simple and complex
cells in the cortex. The majority of currently applied
methods are built upon these two elements.

Convolutions are responsible to detect certain pat-
terns and their weights are trainable by the network,
meanwhile pooling operations are parameterless and are
responsible for subsampling the activations in the recep-
tive field of a neuron, decreasing the dimensions of the

data and increasing invariance by neglecting minor per-
turbations. The most commonly applied version is max-
imum pooling which selects only the largest response
and neglects all other values. These two functionali-
ties: dimension reduction and disregarding unimportant
changes can be separated from each other and one can
easily see, that the second element is way more impor-
tant and affects the accuracy and the robustness of a
network significantly. Subsampling can be implemented
by simply indexing out the necessary elements or using
any kind of windowed operation with larger strides than
one. The optimal size of the receptive field is a key
element in all networks regarding invariance and it is
difficult to be optimized, since kernel sizes are discrete
values, which are hyper-parameters and can only be
tested by training a new network with the modified
values.

In biology certain neurons can receive inputs from
different number of neighbours and the size of their
receptive field may also vary [4]. It can also be observed
that unlike in the case of maximum pooling, the re-
sponse of a neuron is not completely independent from
the position of the activation inside the receptive field.
In many cases, especially in regions that have visual
information processing tasks, the effect of these spatial
formations shows high similarity to Gaussian, Difference
of Gaussians (DOG) or Laplacian of Gaussian (LOG)
functions as it is stated in [5]. This demonstrates, that
at least in certain parts of the brain or the retina, the
neuronal behavior of receptive fields is very much con-
tinuous in space and spatial location does matter [5].
This motivated us to implement and investigate a ver-
sion of maximum pooling, where the largest activation
is selected, but apart from its value the location of
the activation is also taken into account. This can be
considered as weighting the activation with a Gaussian
distribution of its relative position. Those activations
which are in the central region of the kernel produce
the highest activation and a small translation result in
a small decrease in the response. We also show that
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applying a continuous distribution instead of discrete
sized window for pooling, one can optimize the size of
the pooling kernel as a continuous variable and this way
it can be tuned by gradient based optimization meth-
ods, rather than optimizing them as hyper-parameters.
We implemented our method, called continuous time
pooling using a non-linear diffusion operator where the
propagation time of the diffusion and the diffusion coef-
ficient, which we refer as pooling strength, determines
the size and shape of the pooling kernel.

Our paper is organized as follows. In Section 2 we
briefly describe the most commonly used pooling oper-
ators and we also introduce our approach: Continuous
time pooling. In Section 3 we introduce a simulated
dataset which reveals two different weaknesses of pool-
ing operations and also present how our approach can
solve these tasks. In Section 4 we validate our method
using commonly applied databases. In Section 5 we
demonstrate how the extra computation arising from
our method can be avoided during inference and in
Section 6 we conclude our results.

2. Pooling Operations

CNNs are built up by three main operations: Con-
volution, Non-linearity and Pooling. We have to note
that there are many more commonly applied elements
and layers like batch normalization [6], dropout [7] and
others which can be used to increase the generaliza-
tion capabilities and robustness of a system or other
structural and architectural variants like residual net-
works [1] or all convolutional networks [2], but these
three elements are found in almost every commonly
used architecture. Common networks are built as an
acyclic graph of these operations. The topology of this
graph along with the operations at the nodes deter-
mines the network’s complexity and by this the set of
those functions which the network can approximate.

Average pooling was the first commonly applied sub-
sampling operation, where a feature map was down-
sampled according to a sampling window and each
region was substituted by its average value:

1
Pavg(Ii,j) = N Z Ik,l (1)
klER; ;

where P,,, is the average pooling operator. I is the
input feature map, R is a two-dimensional region which
is selected for pooling and N is the number of elements
in the region. The notation describes two-dimensional
pooling and feature maps, because the operation is most
commonly applied on images, but can also be used with
one- or higher-dimensional data as well. This notation
focuses only on the pooled region and does not deal
with the stride of the convolution operation, which can

be used to set the overlapping area between pooling
regions, but we consider this as a hyper-parameter of
the network architecture and not an inherent part of
the operator.

Average pooling considers the whole input region
and all values are used to create the response of the
pooling layer which is beneficial for the selection of
general features. On the other hand average pooling is
a linear operator and can be considered a simple and
special case of a uniform convolution kernel and two
subsequent convolutions can be replaced by one larger
convolution kernel. As novel applications developed,
average pooling was substituted in almost every case
by maximum pooling. Where the maximum activations
are selected from each region:

Prax(Lij) = Mrréaéfj(lk,z) (2)
The operation of maximum pooling is depicted on Fig.
1.

Maximum

selection Downsampling

>
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selection Downsampling

Figure 1. Example of maximum pooling, dividing the oper-
ation into two steps. The first step selects the maximum
value in each window and the second step selects a single
element (for example top left) from each of these windows.
In this example the strides of the pooling operation (2 x 2)
is the same as the window sizes (2 x 2), creating no overlap
between the windows. As it can be seen this operation can
introduce quantization error, when pixels at the boundary of
the window can move to a neighbouring window caused by
a small shift (one pixel). If the two operations are separated
the window of maximum selection end the stride used for
downsampling can be different. The lower example depicts
maximum selection with 3 x 3 windows with a stride of one.
(Regions are not coloured in this case since it would be con-
fusing because of overlapping windows) and downsampling
is implemented by selecting the top left pixel in every 2 x 2
window. In this case robustness towards small changes and
the receptive field of a neuron is determined by the first
operation. As one can see from this example a small change
in the hyperparameters of the pooling method can result a
drastically different activation map.

Maximum pooling performs well in practice, adds
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extra non-linearity to the network and can be efficiently
calculated (only an index has to be stored to propagate
the error back). Maximum pooling also has disadvan-
tages. It results in a really sparse update in the network.
Only the neuron resulting the maximum element in the
kernel will be responsible for the update of the variables
during backpropagation and the activation of other
neurons does not matter at all. There is a tendency
in certain networks like variational autoencoders [8],
generative adversarial networks (GANs)[9], or networks
used for one shot learning [10] to avoid pooling be-
cause it grasps only certain elements of the input data
which results in features which add an aliasing effect
to generated images. Modified pooling methods has
also appeared in segmentation problems like region of
interest pooling in [11] or [12] which helps in the more
accurate localization of regions of interest, but does
not help in the selection of features inside the proposed
regions, where usually maximum pooling is used. An-
other approach is introduced in [13] which uses patch
similarity over batches to generate a combination of
weighted and maximum pooling. [14] also proposes the
application of heterogeneous pooling methods inside
the network (e.g.: average pooling in certain layers and
max pooling in other) but the selection of pooling meth-
ods for each layer is a hyper-parameter of the network
and is difficult to be optimized in practice. The most
recent improvements in pooling introduced methods
in which the local importance and structure of feature
maps should also be preserved. The conversation of
local information is implemented in a handcrafted and
statistical way in detail preserving pooling [15] and is
further improved by applying trainable, local atten-
tion maps in Local Importance-based Pooling (LIP) in
[16]. Other approaches such as Wavelet Pooling [17]
and Wavelet Integrated CNNs [18] incorporate Discrete
Wavelet Transform into the pooling operation to pre-
serve the global structure of activation maps better and
provide increased robustness to noise.

The problem from a different aspect was also re-
cently demonstrated in [19], where the authors expose
that convolutional networks are not shift equivariant
to small shifts because of the pooling operations. In
[19] anti-aliasing with a fixed kernel is proposed as a
possible solution, which could mitigate this problem. In
this paper we will propose the solution which approxi-
mates maximum selection as a discretized version of a
continuous process and by this both the width of the
pooling window and the anti-aliasing kernel could be
learned by the network.

2.1. Continuous time pooling

While maximum pooling yields invariance to small
perturbations in the receptive field of a neuron, one
could observe that biological receptive fields in certain
cases are sensitive to the location of the activation
and meanwhile shifting an activation in and out of
on/off regions can cause drastic differences, shifts inside
the receptive fields can also cause minor changes in
activations [5].

Continuous time pooling can be considered as the
continuous time counterpart of maximum pooling. It
can be represented by a Gaussian window, with learn-
able width implemented by a diffusion operator and
can be defined by the following differential equation:

8[1 j
J — I I
5 =5 X mesllu) = L0 @

where I; ; is the pooled value of neuron 7, j and the same
operation is executed simultaneously for every neuron
in the array. [ is initialized by the image on which the
pooling operation is executed. S is a parameter, the
time constant of the diffusion. The maximum operation
inside the summation is a ReLLU operation, which results
that the derivative can only be positive, and by this
I; ; will converge to the largest intensity in R; ;. In this
case the width of the pooling window is determined by
the execution time of the diffusion operator, meanwhile
the shape of the pooling kernel will be determined by
S. The result of this non-linear diffusion is depicted in
Fig. 2.

“

Figure 2. This figure depicts the results of the non-linear
diffusion with different execution times. The first image
was taken a t = 0, on the second, third and fourth images
the diffusion was executed for 0.2, 0.5 and 1 time units
accordingly. As it can be seen in the figure each pixel is
slowly and continuously overwritten by the largest intensity
in its neighbourhood. These images were generated using a
continuous time architecture: a Cellular Neural Network.
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This operation can be efficiently implemented on
continuous time neural networks, like Cellular Neural
Networks [20]. Although these architectures provide an
interesting theoretical background for neural networks,
they are not commonly applied, since discrete time com-
puters are easier to manufacture and are more robust
to noise in practice. Because of this, we also present
the discretized approximation of this operation, which
can be derived by approximating Eq. 3 with the Euler
method:

Ii7,j (t + 1) = Il7j(t) + hS Z maX([kJ(t) — I@j (t), 0)
k,ER;
(4)

Where h is the time step of the Euler method. t goes
from 0 to N, I(0) is the map of the input activations
and I(N) is the output map of the pooling operation.
We have to emphasize that this operation does not im-
plement downsampling, it only selects intensities in the
input. Downsampling can be implemented by indexing
out the appropriate elements or using any windowed
operation (such as maximum or average pooling) with
a stride larger than one.
This operation can also be approximated by:

Ii,j (t+ 1) = Ii,j (t) +hSkIll’é§}%X _(max(Ik,l(t) —Iiyj(t), 0))
¥ (5)

Where instead of summing all the positive differences
between the pixels one uses only the largest positive
difference. One can easily see that I; ; converges to the
same value in Eq. 4 and Eq. 5 which is the maximum
intensity pixel in both cases.

Eq. 4 and Eq. 5 are discretized versions of the
diffusion equation defined in Eq. 3 and as it can be
seen, the maximum intensity propagates through the
input data in a diffuse way and in continuous time
(Eq. 3) the distance of propagation is defined by the
execution time (the length of the diffusion). However,
in discrete domain the size of the pooling window is
determined by the number of iterations (N) multiplied
by the step size of the approximation (h), meanwhile
window shape is determined by S. By setting a constant
number of iterations N, one can tune the execution
time by optimizing the multiplication parameters time
step (h) and Pooling strength (S). Since this is a
numerical approximation, A has to be small enough to
provide an appropriate solution and any smaller h value
will also result an accurate approximation. Setting
h two orders of magnitude smaller and increasing N
keeping Nh the same value, the approximation will
result the same output, meanwhile ensuring that S
can increase two orders of magnitude and still result
accurate approximation.

Since execution time depends on the multiplication
of these two values one can combine them and introduce:
Ps = hS, which we will refer to as pooling strength. Pg
could have different values for every layer, feature map
or even for every neuron. Since convolutional networks
should be shift invariant, we opted out from using dif-
ferent Pg for each neuron, since this way the receptive
field of a neuron could depend on its location. We have
set different Pg parameters optimized individually for
each depth dimension after convolutions, but the au-
thors plan to investigate the effect of a layer and neuron
dependent implementations as well. We have also used
different Pg parameters at each iteration of the Euler
method: Pg,. This way vanishing and exploding gra-
dients are avoided since the high number of iterations
will not be derived back to the same parameter.

The effect of Ps on the width and shape of the
pooling window can be seen on Fig. 3 along with a
comparison to the commonly applied maximum pooling
operator.
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20 2

0 2 a @ @ o 2 0 2 @ @ @ o 2

Figure 3. The first three images depict three different contin-
uous time poolings with different pooling strength parame-
ters on a completely black image of size 128x128, containing
only a single white pixel in the middle. As it can be seen
both the width and the shape of the pooling window can be
changed by modifying the continuous parameter Ps. The
first three images from the left depict activations of a Dirac
delta input with Pg equals 0.0008, 0.0012, 0.0018 (from left
to right).The number of iterations for all continuous pooling
operations was set to 10000 steps. The last image depicts
the standard implementation of maximum pooling with a
window size of 30 pixels and stride of 1.

As it can be seen the window size of maximum pool-
ing is a fixed, discrete value and can only be optimized
as a hyperparameter, meanwhile Ps, which corresponds
to the learnable width of the continuous pooling layer
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can take arbitrary values and the window width can
change continuously, which gives an opportunity for
optimization using gradient based algorithms.

2.2. Gradient calculation for Continuous time pool-
ing

Our approximation of the diffusion like continuous
time pooling operation (Eq. 5) is built up from simple
operations: maximum pooling, addition and multiplica-
tion. Its derivative can also be calculated simply and
these operations can be found in all machine learning
frameworks.

We would like to emphasize the fact that the deriva-
tive is determined not only by intensities, but also by
the relative position of the intensities with respect to the
investigated pixel. In the first iteration the largest of
those pixels are considered, which are direct neighbours
of neuron ¢, j in the next iteration the neighbours of the
direct neighbours are also involved and so on. During
these calculation the closer the maximum intensity is
to neuron ¢, 5 the more iterations will it be involved.
Continuous pooling enables the network to have neu-
rons with larger receptive fields, which helps extract
more general features thus improving the generalization
ability of the network. As stated earlier, in the proposed
pooling operation the maximum activation is selected
from the current pooling window (R; ;), but the result
is weighted by the relative distance of the activation.
Continuous time pooling, unlike maximum pooling, can
be implemented in the continuous time domain, and is
defined by a differential equation which is in our case
approximated by the Euler method. This enables us to
employ iterative, gradient-based optimization methods
to tune the size of the pooling kernel. The weighting
and the window size is determined by Pg which can
be optimized along with the other parameters of the
network. However, to enable the continuous pooling
operation to function as a drop-in replacement for max-
imum or average pooling, we have added an additional
element to downscale the data. This additional opera-
tion can either be implemented as maximum pooling,
average pooling or strided convolution. We have found
that the choice of this aggregation operation does not
have a large impact on the accuracy of the network
which is more determined by the size of the receptive
field of the neuron.

3. Caveats of Maximum pooling

To demonstrate the limitations of maximum pooling
we have generated a simple setup where completely
black images with dimensions of 32 x 32 were generated
containing only two non-zero pixels with intensity of
one. The task was a simple regression, where we have

tried to train a neural network to estimate the squared
distance between the two non-zero pixels.

The architecture chosen from this test was the LeNet-
5 [21] containing a single neuron in the output layer
representing the distance between the two non-zero
points. We have trained two variants of the network
with maximum and continuous time pooling, to mini-
mize the mean squared error between the real distances
and the estimation of the networks using batches of
32 with AdamOptimizer [22] with an initial learning
rate of 10~*. For continuous pooling we have used ten
iterations (N = 10) and all Ps, parameters were ini-
tialized with values of 0.1. Our database did not have
previously generated train and test sets, but all images
were randomly generated during the calculations both
for network training and evaluation. During training
64000 different images were presented to the network
and after each training step accuracy was evaluated
using 1000 independent test samples, which were not
used for parameter optimization.

During our first test the non-zero pixels could occupy
any positions on the input images. The result on this
dataset can be seen on Fig. 4.

Estimation Errors on the Pixel Distance Task

Maximum pooling
Continuos time pooling

Mean Square{i Error of Estimation

Train Iteration

Figure 4. This figure depicts maximum pooling and contin-
uous time pooling using the LeNet-5 network on the pixel
distance estimation task. The blue plot depicts test errors
for the regular LeNet-5 architecture, meanwhile the red
curve shows mean squared errors for continuous pooling.
The two lines are averaged results over 20 independent train-
ings and the shaded intervals depict minimal and maximal
values in the trainings.

In this setup the LeNet-5 architecture achieved a

mean squared error of 70, meanwhile this error de-
creased to 10 in case of continuous time pooling. One
could argue that this comparison is not fair, since neu-
rons in the last convolutional layer of LeNet-5 have a
receptive field of seven, which is not enough to cover
all possible distances. We also completely support this
argument, but by this we wanted to demonstrate how
important receptive fields are. Using continuous time
pooling the network can automatically increase recep-
tive fields and optimize them to the task and the train-
ing data. The distribution of the learned Pg, parameters
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were ranging between 0.564 and 2.326 for the first layer
and 0.626 and 3.775 for the second layer, which reveals
that the optimization has increased the sizes of the
receptive fields in the network.

To compensate the bias of the receptive fields, we
have created a new task, where the maximal squared
distance between the two non-zero pixels had to be less
than 49. In this case it was ensured that both pixels
are in the receptive fields of the neurons of the last
fully connected layer. By this we have eliminated the
factor that inaccuracy could come from the bad tuning
of hyperparameters and the important pixels could not
be in the receptive field of the same neuron.

Even in this case continuous time poling significantly
outperformed its regular counterpart as it can be seen
on Fig. 5. On this dataset our method has reached
average mean squared error of 2.1, meanwhile maximum
pooling has achieved an error of 4.3, which is more than
double of our error. This difference demonstrates a
serious flaw of maximum pooling, that the location
of the detected intensity is completely neglected and
by using maximum pooling, the network has to learn
different features for every distance.

Estimation Errors on the Limited Pixel Distance Task
Maximum pooling
Continuos time pooling

on

Mean Squared Error of Estimati

Train Iteration

Figure 5. This figure depicts maximum pooling and continu-
ous time pooling using the LeNet-5 network on the limited
pixel distance estimation task. The blue plot depicts test
errors for the regular LeNet-5 architecture, meanwhile the
red curve shows mean squared errors for continuous pooling.
The two lines are averaged results over 20 independent train-
ing and the shaded intervals depict minimal and maximal
values in the trainings.

This task shows that approximation of distances is
difficult for convolutional networks, since a different
feature map, convolutional kernel has to be used for
each distance. If an activation is inside the kernel
its position does not matter at all, it is difficult to
identify the optimal kernel size for maximum pooling
as a hyperparameter (in case of LeNet-5 it is set to 2x2)
which in case of continuous pooling might be optimized
using gradient based methods.

4. Experiments
4.1. MNIST

The experiments on the simulated data set in the
previous section revealed weaknesses of maximum pool-
ing in convolutional neural networks. Based on our
findings we have tried to demonstrate continuous time
pooling on the MNIST dataset [23] using the LeNet-5
[21] architecture. We have trained the network with
exactly the same training parameters as in the pre-
vious section, but used the outputs for digit classifi-
cation (the last layer was reverted back to the orig-
inal ten neurons of LeNet-5). We will only list the
most important hyperparameters of our training algo-
rithms, but we would like to emphasize that our train-
ing scripts and codes can be find on Github: https:
//github.com/horvathan/ContinuousPooling

The train and test accuracies averaged over ten inde-
pendent trainings compared to LIP and Wavelet Pooling
can be seen in Table 1. As it can be seen the network
reaches 95.30% accuracy with maximum pooling which
is the same cited by LeCun in the original paper [21].
LIP performs poorly on this dataset (96.65%), since the
local structure of extremely high and low intensities of
the MNIST dataset is already well preserved my max-
imum pooling. Our variant with continuous pooling
achieved 98.87% with the same network architecture
and exactly the same training parameters, meanwhile
Wavelet Pooling resulted the highest accuracy: 99.01%.

4.2. CIFAR-10

We have also investigated the AlexNet [24] architec-
ture on CIFAR-10 [25] and compared the same pooling
operations as in Sec. 4.1 to our continuous pooling
operation. All training parameters, optimizer (gradient
descent with momentum) and batch size (128) were the
same for every pooling operation.

The original 32 x 32 images of CIFAR-10 were
rescaled to 227 x 227 to ensure the appropriate input
dimensions for AlexNet. We have trained our networks
for 100 epochs and measured their classification accu-
racy on the test set. The average accuracies of ten
independent runs can be seen in figure Table 1. On
this dataset continuous pooling heavily outperformed
all other pooling variants with an increase of 3.56% in
classification accuracy. We suspect that this is partially
caused by the extreme upscaling of the low-resolution
images, which resulted the appearance of image features
in various distances from each other, but this requires
further investigation.
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4.3. ImageNet

We have selected the ImageNet 2012 [26] dataset
for further investigation and examined three different
network types: the VGG-16 [27], DenseNets [28] and
Residual Networks [1] (ResNet-50 and ResNet-101 ar-
chitectures) and the previously mentioned four pooling
methods.

Training was implemented with batches of 256 fol-
lowing the training method suggested in [29] using SGD
optimizer with Nesterov momentum and weight decay
of 10~ for four million training iterations. The top-1
accuracies on the validation set of ImageNet 2012 are
reported in Table 1.

As it can be seen from the results continuous pool-
ing resulted the highest top-1 accuracy in case of the
VGG-16, DenseNet-121 and ResNet-50 architectures
and a comparable performance using the ResNet-101
architecture, which resulted the highest top-1 accuracy
using LIP.

Here we also have to report the additional computa-
tional need of maximum pooling. Since our operation is
implemented as an iterative approximation of a differen-
tial equation it requires multiple (in this case 10) steps
which are equal to maximum pooling in computational
complexity. This way our method requires ten times
the computational need of maximum pooling, which is
a large increase in the number of operations and as the
number of steps increases in the approximation, our
operations require even more computation. Fortunately
the pooling operation is not the bottleneck operation
in commonly applied convolutional networks. We have
measured the wall time of an average training itera-
tion using VGG-16 on an NVIDIA RTX 2080 Ti and
using maximum pooling one iteration required 149ms
in average, meanwhile changing all pooling operations
to their continuous counterparts and approximating
them with 10 iterations has increased it to 280ms in
average, which results an 87% increase in training time.
This difference was the most significant with the VGG
architecture, since in the DenseNet and ResNet architec-
tures the computational need of the pooling operation
is proportionally smaller.

4.4. Instance segmentation on MS-COCO

To test our method apart from classification tasks we
have also applied it for instance segmentation and object
localization on the MS-COCO [30] dataset. We have se-
lected the Detectron2 [31] framework for evaluation and
used MASK R-CNN with ResNext-101 backbone [32]
with feature pyramid network. Training was executed
for 270,000 iterations, with 2 images per batch with two
variants of the backbone network, one containing maxi-
mum the other continuous pooling with 10 discretized

Table 1. This table contains the comparison of different
pooling operations on image classification tasks on various
datasets. The four columns contain accuracy results for stan-
dard Maximum Pooling (MaxP), Local Importance-based
Pooling (LIP), Wavelet Pooling (WaveP) and Continuous
Pooling (ContP). The accuracy results for Wavelet Pooling
are taken from [17] and [18], for Local Importance-based
Pooling from [16] (except for the cells marked with starts,
which contain the accuracy results of our implementations,
since no data was available for these datasets and architec-
tures in the literature. The implementation of the LIP op-
erator was taken from https://github.com/sebgao/LIP).
The baseline implementations are also taken from [17], [18]
and [16] and the results in the last column are coming from
our implementation.

| MaxP LIP WAVEP | CoNTP
MNIST .
LENETS 95.30 | 96.15 99.01 98.87
CIFAR-10 71.49 7 45k o o101
ALEXNET
IMAGENET C on
VGG-16 73.37 | 75.12 74.40 | 75.65
IMAGENET 74.65 ~6.64 _— 6.1
DENSENET-121
IMAGENET
ResNgrso | (015 | 7819 | 76.71 | 7823
IMAGENET
RESNET101 77.37 79.33 78.51 79.04

iterations and Ps, parameters were all initially set to
0.1. The average precision results are displayed in Table
2. As it can be seen from the results the test accuracies
at the end of both trainings are better using continuous
pooling. We also have to note that continuous pooling
performed worse in case APsy for bounding box regres-
sion at early iterations, but the final accuracy is above
the maximum pooling version. We hypothesize that
the location sensitivity of continuous pooling helps the
network to improve the localization of the objects and
the more accurate regression of bounding boxes.

5. Quantization of the receptive fields

We have demonstrated in the previous section that
the application of continuous pooling can increase net-
work accuracy in classification, object detection and in-
stance segmentation tasks. Unfortunately we have also
shown that this increase in accuracy results a growth
in computational complexity as well and the number of
floating point operations in the network can increase by
20 — 90% depending on the network architecture. An
increase with other methods such as Wavelet Pooling
or LIP can be observed as well, but it is less significant
(25 — 40%)[18] [16].

In this section we would like to demonstrate that the
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Table 2. Test accuracies for Mask-RCNN on MS-COCO on
Segmentation (Seg) and object detection with bounding
boxes (Box) tasks at different iterations (50000, 100000,
150000 and 270000) for ResNext-101 backbone. The columns
show mean average precision at JoU = 50 : .05 : .95 (AP)
and average precision at ToU = 0.5 (APso) with maxim
pooling (MP) and its continuous counterpart (CP)

| MP-AP | CP-AP | MP-APso | CP-APso

Table 3. This table contains the accuracy and computational
cost of the DenseNet-121 and ResNet-50 architectures on
ImageNet, for traditional Maximum Pooling (MaxP), Lo-
cal Importance-based Pooling (LIP), Continuous Pooling
(ContP) and the qunatized variant of Continuous Pooling
(QuantP), where the receptive fields are quantized and re-
verted back to maximum pooling operations.

| MAXP | LIP | CONTP | QUANTP |

Sec(50K) 23.87 | 25.94 44.56 44.77
SEG(100K) | 26.86 | 27.52 45.55 48.62
SEc(150k) | 28.66 | 30.95 51.80 54.35
SEG(270K) | 36.47 | 37.12 58.07 59.11
Box(50K) 23.63 | 23.89 41.90 10.12
Box(100x) | 28.16 | 30.42 48.43 44.98
Box(150k) | 30.53 | 36.57 50.79 53.34
Box(270x) | 40.01 41.27 61.32 62.41

main advantage of our method comes from the optimiza-
tion of the receptive fields of the neurons not only from
the different behaviour of the pooling operator. Because
of this we have trained the DenseNet-121 and ResNet-50
architectures with continuous pooling and once training
was finished we have quantized the receptive field in
each pooling operation for each convolutional channel
(since we were using a different Pg, parameter for each
channel) and reverted them back to traditional maxi-
mum pooling. For this we have generated a Dirac-delta
input (similarly to Fig. 3) and calculated its activa-
tion map after the continuous pooling operation. After
this we have thresholded the output activation at 50%
of the maximum intensity and from the radius of the
resulted sphere we calculated the closest maximum pool-
ing range, which was between 1 and 10. Using these
steps we have reverted back our continuous approach
and approximated our continuous pooling operation
with maximum pooling.

To avoid the one-by-one application of maximum
pooling with different window size for each channel, we
have reordered the channels according to their pool-
ing window size, grouping the same sizes together. We
have implemented the pooling operations for each group
according to their window size and reorganized them
after pooling to their original order, similarly how it is
implemented in [33]. Once this modification of the ar-
chitecture was done, we have continued training for two
epochs. The accuracy and computational need of this
approach compared to the original pooling algorithms
can be seen in Table 3. By this we have demonstrated
that a significant part of the improvement is coming
from the change in the network architecture: a different
sized pooling window can be used for each convolutional
channel. With this method we could also decrease the
computational complexity of the networks resulting only

DENSENET-121

ACCURACY 74.65 76.64 76.71 76.12
GFLOP 2.88 4.13 5.18 2.95

RESNET-50

ACCURACY 76.15 78.19 78.23 77.24
GFLOP 4.12 5.33 6.12 4.27

a minor drop in accuracy. Additionally this also means
that the receptive size optimization could be combined
with other pooling methods (e.g. LIPS), substituting
the continuous approach with these algorithms instead
of maximum pooling, but the investigation of this was
out of the scope of the current paper.

6. Conclusion

In this paper we have demonstrated certain limi-
tations of maximum pooling and introduced a novel
approach: continuous time pooling which instead of se-
lection, propagates larger activations in a neighborhood
by diffusion in continuous time. We have demonstrated
how our differential equation can be approximated on
boolean hardware using the Euler method, since differ-
ential equations can not be efficiently implemented on
current architectures. Approximation results an itera-
tive approach of maximum pooling which still alleviates
the quantization problems caused by maximum pooling
and the kernel size can be optimized by traditionally
applied gradient based methods.

We compared our method to other pooling operations
and have demonstrated on commonly applied datasets
and architectures that the continuous time implemen-
tation, which also reflects the position of an activation
inside a pooling region, increases the overall accuracy
of the network. Our method can also be quantized and
reverted back to maximum pooling after training, re-
sulting a balance between accuracy and computational
need and opens the possibility of combination with
other pooling operators.
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