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Abstract

The performance of generative zero-shot methods mainly
depends on the quality of generated features and how well
the model facilitates knowledge transfer between visual and
semantic domains. The quality of generated features is a di-
rect consequence of the ability of the model to capture the
several modes of the underlying data distribution. To ad-
dress these issues, we propose a new two-level joint maxi-
mization idea to augment the generative network with an in-
ference network during training which helps our model cap-
ture the several modes of the data and generate features that
better represent the underlying data distribution. This pro-
vides strong cross-modal interaction for effective transfer
of knowledge between visual and semantic domains. Fur-
thermore, existing methods train the zero-shot classifier ei-
ther on generated synthetic image features or latent embed-
dings produced by leveraging representation learning. In
this work, we unify these paradigms into a single model
which, in addition to synthesizing image features, also uti-
lizes the representation learning capabilities of the infer-
ence network to provide discriminative features for the final
zero-shot recognition task. We evaluate our approach on
four benchmark datasets i.e. CUB, FLO, AWAI and AWA2
against several state-of-the-art methods, and show its per-
formance. We also perform ablation studies to analyze and
understand our method more carefully for the Generalized
Zero-shot Learning task.

1. Introduction

Practical settings require recognition models to have the
ability to learn from few labeled samples and be extended to
novel classes where data annotation is infeasible. However,
deep learning models do not directly adapt to such settings
due to their reliance on large amounts of labeled data dur-
ing training. On the other hand, humans perform well under
such conditions due to their capability to transfer semantics
and recast information from high-level descriptions to the
visual space, enabling them to recognize objects that they
have never seen before. Zero-shot learning (ZSL) aims to
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bridge this gap by providing recognition models with the
capability to classify images of novel classes that have not
been seen during the training phase. The model is typically
given access to semantic description of the novel unseen
classes during training (such as embeddings of attributes of
the classes) and is expected to recognize unseen class im-
ages by knowledge transfer between visual and semantic
domains.

Based on the classes that a model sees in the test phase,
the ZSL problem is generally categorized into two settings:
conventional and generalized zero-shot. In conventional
ZSL, the image features to be recognized at test time be-
long only to unseen classes. In the generalized ZSL (GZSL)
setting, the images at test time may belong to both seen
or unseen classes. The GSZL setting is practically more
useful and challenging when compared to the conventional
setting, since the assumption that images at test time come
only from unseen classes need not hold. We aim to address
the generalized zero-shot learning problem in this work (al-
though we also show the applicability of our method to con-
ventional ZSL).

A potential approach to address GZSL is to utilize gen-
erative models to generate features for unseen classes and
reduce the zero-shot problem to a supervised learning prob-
lem [21, 29, 15, 8, 30]. Most existing methods in this direc-
tion use a unidirectional mapping by generating visual fea-
tures conditioned on semantic attributes. However, it has
been shown that such methods that rely on unidirectional
mapping lose out a tight visual-semantic coupling which is
crucial for zero-shot recognition [11, 16]. To address this is-
sue, more recent approaches such as [11, 16] have proposed
to use bidirectional mapping between visual and semantic
domains to enhance zero-shot recognition performance.

In this work, we propose a holistic unified framework
that uses a two-level adversarial visual-semantic coupling
(and hence named TACO) approach for bidirectional map-
ping that provides a tight coupling between semantic and
visual spaces, and is also expressive enough to capture the
complex distributions of the underlying data. Figure 1 sum-
marizes our overall framework. Our key contributions are
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Figure 1: Network architecture for our proposed methodology. The proposed pipeline consists of a Generative module,
Inference module, Recognition module and a Joint Discriminator. The model is trained on seen class visual features and
semantic attributes. The feature extractor backbone network @ is used to extract visual features from images. The vectors
generated by our model are shown with a dotted outline. The final softmax classifier is trained on synthesized features & and

representations from the inference network(< iL, f >)as sh

as follows:

(1) Unlike most existing methods that use only a genera-
tive module, we augment the generative network with an
inference network, and train these two components of our
TACO framework together to maximize the joint likelihood
of visual and semantic features. Learning the inference net-
work jointly with the generative model helps us capture the
underlying modes of the data distribution better [7].

(2) We use a two-level adversarial training strategy to train
TACO, where we train both generative and inference mod-
ules through respective discriminators. We also use an ad-
versarial joint-maximization loss as an additional supervi-
sory signal to enhance the visual-semantic coupling and fa-
cilitate better cross-domain information transfer. This helps
our model outperform other bidirectional mapping methods
which lack such a mechanism.

(3) We use a novel Wasserstein semantic alignment loss that
helps us model the joint distribution of visual and seman-
tic features better, and ensures that the generated semantic
features are distributionally aligned with real semantic fea-
tures, which in turn helps lower loss in the semantic space.

(4) Furthermore, we use the discriminative information in
latent layers of the inference network to train our final

own.

recognition model. This helps provide the final recogni-
tion module with representations from both generative and
inference modules, and thus enhances performance when
compared to earlier approaches that use only the synthe-
sized image features in the final recognition model.

(5) We perform detailed experimental studies and analysis
on Caltech-UCSD Birds (CUB), Oxford Flowers (FLO) and
Animals and Attributes (AWA1 and AWA?2) datasets. We
demonstrate that the proposed method helps in better visual-
semantic coupling, and thus obtains state-of-the art perfor-
mance, outperforming other methods on both fine-grained
as well as coarse-grained datasets.

To the best of our knowledge, this is the first effort to
employ a joint maximization step in adversarial training to
provide deeper visual-semantic coupling for solving GZSL.
In addition, the new idea of using an adversarially learned
discriminative representation from the latent layers of in-
ference network, along with the generated features from
the generator to train the final zero-shot recognition model,
significantly improves GZSL performance. The use of a
Wasserstein alignment loss to preserve semantics is also the
first of its kind to be used in a generative approach to GZSL.
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2. Related Work

As stated in Section 1, existing work in ZSL can be
broadly divided into work on conventional ZSL and work
on generalized ZSL (GZSL). This work focuses on the more
challenging GZSL setting, and we focus on presenting re-
lated literature in GZSL in this section.

There has been a recent increase in efforts in the field of
zero-shot learning with the aim of boosting GZSL perfor-
mance. The methods proposed so far can be broadly catego-
rized into approaches that learn a projection function based
on seen class image features [1, 9, 20, 5, 27, 2, 32, 10, 14,
22] or generative network-based methods which aim to syn-
thesize unseen class features reducing GZSL to a standard
supervised problem [29, 21, 11, 16, 23, 12, 31, 8, 30, 24, 4].
We focus on describing recent related methods in more de-
tail in the rest of this section. The authors in [22] first pro-
posed to leverage multi-modal learning by learning a joint
embedding of image and textual features for GZSL. They
utilized a common representation learning along with cross-
domain alignment to map and align visual and semantic fea-
tures in a common latent space. To alleviate the bias prob-
lem, generative methods for GZSL have been proposed.
These methods generally combine adversarial loss and clas-
sification loss to generate discriminative features for unseen
classes conditioned on semantic attributes. Methods like
f-cIsWGAN [29], CVAE [15], [8] used conditional Gen-
erative Adversarial Networks (GANSs) or Variational Au-
toencoders (VAE) for generation of unseen class features.
[21] tried combining multi-modal learning with generative
GZSL approaches and learned a cross-aligned multi-modal
VAE to generate latent features for unseen classes and later
trained a softmax classifier on latents from all classes. More
recently, [30] proposed to combine the strengths of VAEs
and GANSs by using the decoder of VAE as a generator. On
the other hand, GDAN [11] and DASCN [16] formulates
a dual learning framework that uses bidirectional mapping
between visual and semantic spaces, and trained the model
with adversarial loss and cyclic consistency. All of these ef-
forts showed the need to enforce stronger coupling between
the visual domain (images) and the semantic domain (image
attributes provided for seen and unseen classes) in different
ways. Our work is closest to GDAN [11] and DASCN [16]
in this regard, and also comes in the category of methods
that learn a bidirectional mapping. However, there many
differences as described below. Importantly, our approach
unifies ideas from existing approaches.

In DASCN [16], in the formulation of dual GAN, the
visual to semantic mapping network never sees real image
features and only has access to the features generated by
the primal generator. As pointed out in [6], since the gen-
erated image features are practically not as good as actual
features, this inhibits the ability of the network to make full
use of the dual learning paradigm since the flow of infor-

mation from visual to semantic domains is partial. On the
other hand, GDAN [11] uses a regressor to implement dual
learning which maps the generated features back to the at-
tribute space. As pointed out in [16], minimizing L.2-norm
between generated semantic embeddings and real semantic
attributes is weak and unreliable to preserve high-level se-
mantics when using Euclidean distance. Furthermore, in the
objective of GDAN, the only way the generative network
and regressor interact with each other is via an L2-norm
based cyclic loss which does not provide a strong coupling
between the visual and semantic domains.

In contrast, in our formulation, adversarial learning is in-
troduced in a two-level fashion, where both generative and
inference modules are first adversarially learned (see Fig-
ure 1). We subsequently then introduce a new adversarial
joint maximization loss which specifically aims to maxi-
mize the joint probability of visual and semantic features.
This is achieved through a joint discriminator, which has a
slightly different formulation from a traditional discrimina-
tor (as used in GDAN [11] and DASCN [16]). As pointed in
[6], learning a regressor by minimizing reconstruction loss
performs poorly when compared to learning an inference
network jointly. This helps our model generates features
that better represent the underlying distribution of unseen
classes. Besides, our design provides our inference net-
work with access to real image features, which facilitates
stronger cross-domain coupling with improved representa-
tions. Also, our Wasserstein semantic alignment loss en-
ables us to preserve semantics and alleviate semantic loss
better than L2 loss. To show the benefits of our method over
GDAN and DASCN, we directly compare with them (as
well as many other recent methods) on four different GZSL
learning benchmark datasets, and show that our method pro-
vides the new state-of-the-art for GZSL.

3. Proposed Methodology

We begin our description of the proposed methodology
by defining the problem setting and notations, followed by
descriptions of each module of our framework.

Problem Setting: Given the dataset D = {DT" DT}, the
aim of generalized zero-shot learning is to correctly classify
images from both seen and unseen classes during the test
phase. Here, DT" = {(x,y,h,)[x € X%,y € Y*,h, € A}
is the training set, where x is an image feature, X'? is the fea-
ture space of seen classes, y is the label corresponding to X,
Y? is the set of labels for seen classes, h,, is the semantic at-
tribute vector for class y. Similarly, D”* = {(x,y,h,)|x €
X%y e Yihy € A} is the test set, where X' represents
the set of image features from unseen classes, " represents
the set of labels of unseen classes such that Y* N Y = ().
Note that image features are typically extracted using a fea-
ture extractor backbone ® as shown in Figure 1. The GZSL
task can be formally seen as learning the optimal parame-
ters of a classifier f : x — V" U Y*® where x denote the
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image features and )°, Y* denote the set of labels of seen
and unseen classes respectively.

Mathematical Framework: GZSL can be formulated as
a problem of modeling joint probability P(x,h,y) where
x, h and y are as described above. The joint probability
P(x,h,y) can be factored in two ways:

F1: p(x, h,y) = p(x)p(h|x)p(y/h) (1)

F2: p(x,h,y) = p(h)p(x[h)p(y[x) 2
While most existing work consider one of these factoriza-
tions in their approach, we use both the factorizations, and
model each of them using separate modules, viz. the gener-
ative module and inference module as shown in Figure 1.
For modeling F1, we have the marginal Pr(x) since we
have access to the visual features x of seen classes. The
second term Pr(h|x), the conditional probability of h given
the input x, is modeled by an inference network. Thus, Eqn
1 can be written as:

Pr(x,h,y) = Pr(x) Pr(h|x) Pr(y|h) (3)

where h is the output of the inference module. Now, the
term Pr(y|h) can be factorized as:

Pr(y[h) = Pr(y|h) Pr(hlh) )

Here, the factor Pr(y|/h) can be taken as unity, since a
known h has a direct map to the label. We attempt to use a
Wasserstein alignment to ensures that the h is close to the
original h in this work. Hence, the joint distribution in fac-
torization F1 can now be written as:

Pjoint = Pr(x) Pr(R|) Pr(h[h) )

This joint distribution is modeled by the Inference Module
(see Figure 1 left), which we discuss in detail in Section 3.2.

For modeling F2, we are provided with the marginal
Pr(h), since we have access to the attributes h of seen
classes. The second term Pr(x|h), the conditional prob-
ability of x given h, is modeled by a generative network.
Pr(y|x) refers to the extra classification constraint that is
present in the loss formulation of our generative network
(see Eqn 9). Thus, Eqn 2 reduces to:

Pjoint = Pr(h) Pr(x[h) Pr(y[x) ©)

where X is the output of the generative network. This fac-
torization is modeled by the Generative Module (see Figure
1 right), which we discuss in detail in Section 3.1.

To provide strong coupling between the generative and
inference modules, we also train the generative and in-
ference networks by maximizing the joint probability and
matching Eqns 5 and 6, which we describe later in this sec-
tion. To this end, we introduce a joint discriminator D3 (see
Figure 1 top), whose goal is to match the joint probabil-
ity by discriminating between a combination of generated

and real features i.e <real image feature, generated seman-
tic feature> and <generated image feature, real semantic
feature> (as shown in Figure 1). This is different from a
vanilla discriminator (such as Dj,Ds in the figure) which
only discriminates between generated and real features.

3.1. Generative Module

Given the training data D7", the objective of the gen-
erative module is to learn a feature generating model con-
ditioned on the semantic attribute vectors, i.e., it should be
able to generate discriminative image features that represent
the underlying data distribution well. We follow the for-
mulation in [29] for our baseline generative network. The
input to generator G and the discriminator D are seman-
tic attributes h and image features x of seen classes. The
generator G learns a mapping G(z,h) : Z x A — X by
taking a random Gaussian noise vector z concatenated with
the attribute vector h as input and generating image features
X. We use a Wasserstein GAN [3] for this purpose with the
loss given by:

Lwaan, =E[D1(x,h(y))] - E[D1(x,h(y))]- ()
AE[(|[V5D1 (% h(y)l2 — 1)7],

where x = G(z, h(y)) is the generated feature, X = ax +
(I1—a)x witha ~ U(0, 1), and A is a weighting coefficient.
In order to ensure that the features generated from the net-
work are discriminative, in addition to the adversarial loss,
the generated features are required to minimize the classifi-
cation loss evaluated over a softmax classifier pretrained on
seen class features as in [29]:

Lors = —Egp, [log P(y[x; 0)] (®)

The final loss for the generative module is then given by:

Lgen = mén HlDaX ‘CWGANl + B‘CC'LS (9)

where (3 is a hyperparameter weighting the classifier.

3.2. Inference Module

It has been shown [7] that augmenting a generative
model with an inference network enhances the ability of
the model to capture different modes of the data distribu-
tion well and generate samples which better represent the
underlying distribution. Since the performance of GZSL
depends greatly on the quality of synthesized features, we
hypothesize that learning an inference network jointly with
the generative model will help our proposed TACO model
to express the actual data distribution well and generalize to
unseen classes better.

The inference network and the discriminator D- together
form the Inference Module of our TACO framework as
shown in Figure 1. The goal of the inference network
I(x) : X — Ais to learn a mapping from image/visual
space to semantic space. The module learns a network that
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maps input image features to corresponding semantic at-
tributes i.e. it attempts to infer the semantic attributes that
generated the image in the generation module. The discrim-
inator Dy : A x Z — R outputs a real value. This is also
learned through a WGAN, and the loss function is given by:

Lwaan, =E[Da(h(y),x)] — E[Da(h(y), x)]—  (10)

NE[(119, ) D (i) )12~ 1) ]

where h = I(x) is the generated semantic attribute, h =
oh + (1 — a)h with & ~ U(0,1), and X is a weighting
coefficient.

In addition, we use a Wasserstein metric-based align-
ment loss at the output of the inference network. This aims
to ensure that the distribution of class centers of output se-
mantic attributes h aligns with the distribution of ground
truth h, enabling us to preserve semantic information better.
The overall loss function for this module is then given by:

LGf = HlIiH mgx EWGANQ + Vﬁwasserstein (1T)

where L,qsserstein 18 computed using the sinkhorn distance
as in [25], and + is a weighting coefficient. More details of
this alignment loss term is provided in the Supplementary
Section.

3.3. Adversarial Joint Maximization

Existing zero-shot approaches have hitherto not con-
sidered the use of a third joint maximization step to im-
prove visual-semantic coupling and cross-domain knowl-
edge transfer. In our proposed TACO framework, we in-
troduce the use of a joint maximization loss as an additional
supervisory signal to enhance visual-semantic interaction.
We match the joint probability of visual-semantic features
using a joint discriminator D3 as shown in Figure 1. The
joint discriminator is formulated as follows:

Ejoint—discriminutor = E[DB (X, ﬁ(y))]_E[D3(f(7 h(y))]_

AE[(I[V2 Ds (% h(y), ViDs( b))l ~ 1) ] (12)

where h = I(x), # = G(z, h) are the generated semantic at-
tributes and image features respectively. X = ax+ (1 — a)x
andh = ah+(1—a)h with a ~ U(0, 1), as before, and X is
a weighting coefficient. Note that the joint discriminator is
formulated differently form vanilla discriminators D1, Do,
as mentioned earlier. D3 aims to discriminate between the
pairs < x,h > and < %, h > which enables it to match
(p(x)p(h[x)) and (p(h)p(x|h)) (also shown in Figure 1 top).

On the other hand, while D3 aims to optimizes Eqn 12,
the generator and inference networks jointly maximize:

Ejointfmax = _(E[D3(Xﬂﬁ(y))} - E[DB(ﬁvh(y))])
(13)

Note that the difference between Eqns 13 and 12 is only
a regularizer term which is added to improve D3. In
summary, the generative and inference modules are jointly
trained to optimize the final objective, given as:

Lioal = Lgen + a1 Lins + a2£j0int—max (14)

3.4. Recognition module

In previously proposed zero-shot methods, once the gen-
erative model is trained, it is used to generated images
features for the unseen classes. However, the synthesized
image features by themselves might not be discriminative
enough to get best GZSL performance. In order to address
this issue and obtain highly discriminative features for train-
ing the classifier in the recognition module of our TACO
framework, we train the final classifier using the adversar-
ially learned representation in the intermediate layers and
the output of the inference network.

To this end, we combine seen class image features from
DT" and synthesized features for unseen classes from the
trained generator into a set, ). We then pass the image
features in D through the pre-trained inference network and
get the output h, as well as internal intermediate features
from the inference network. These are concatenated and
used to train the final classifier. For fair comparison with
other methods, we use a single layered softmax classifier
(as used in most earlier efforts).

At test time, for an input image feature X, we pass it
through the inference network and get the internal feature
vectors f and output h. We concatenate these with the test
image vector (output of generator module), and pass it to
the softmax classifier, given by:

f(z) = argmax P(y| < Xgest, h, £ >;0")  (15)
yey
where ) = Y5 U V¥ for GZSL, and ©' are the parameters
of our overall architecture.

4. Experiments and Results

In this section, we conduct extensive experiments on
four public benchmark datasets under the generalized zero-
shot learning setting. We compare our model with sev-
eral baselines and state-of-the-art methods on four bench-
mark datasets: CUB [26], FLO [17], AWA1 [13] and
AWA2 [13]. Among these datasets, AWAl and AWA?2
are coarse-grained, while FLO and CUB are fine-grained
datasets. We follow the standard training/validation/testing
splits and evaluation protocols, as in [28]. Following the
protocol in [28], we use ResNet101 as the feature extrac-
tor backbone network for fair comparison. We denote
this backbone by ®; henceforth, for convenience. Re-
cently, [18] proposed to transform the ResNet-101 image
features and use a 1024-dimensional intermediate represen-
tation as input features to overcome hubness and preserve
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Dataset CUB FLO AWA1 AWA2

Methods U S H U S H U S H U S H
DEM(CVPR’17)[32] 19. 6 57.9 29.2 - - - 32.8 84.7 47.3 | 30.5 86.4 45.1
ZSKL(CVPR’18)[10] 21. 6 52.8 30. 6 - - - 18.3 79.3 29.8 | 18.9 82.7 30.8
DCN(NIPS’18)[14] 28. 4 60. 7 38.7 - - - - - - 25.5 84.2 39.1
ALE(TPAMI’13)[1] 23.7 62. 8 34. 4 13.3 61.6 21.9 | 16.8 76.1 27.5 | 81.8 14.0 23.9
DEVISE(NIPS’13)[9] 23.8 53.0 32.8 9.9 442 16.2 | 13.4 68.7 22.4 | 747 17.1 27.8
ESZSL(ICML’15)[20] 12. 6 63.8 21.0 11.4  56.8 0| 6.6 75.6 12.1 | 77.8 5.9 11.0
SYNC(CVPR’16)[5] 11.5 70.9 19. 8 - 8.9 87.3 16.2 | 90.5 10.0 18.0
LATEM(CVPR’16)[27] 15.2 57.3 24.0 - - 7.3 71.7 13.3 | 77.3 1.5 20.0
SJE(CVPR’15)[2] 23.5 59.2 33.6 13.9 47.6 21.5 | 74.6 11.3 19.6 | 73.9 8.0 14. 4
CLSWGAN(CVPR’18)[29] 43.7% 57.7* 49.7*% | 59.0 73.8 65.6 - - - 57.9 61.4 59.6
CADA-VAE(CVPR’19)[21] 53.5 51.6 52. 4% - - 72.8 57.3 64.1 | 75.0 55.8 63.9
VSE(CVPR’19)[19] 39.5% 68.9% 50.2% - - - - - - 45.6 88.7 60.2
GZLOCD(CVPR’20)[12] 44.8*% 59.9%  5]1.3% - - - - - - 59.5 734 657
GDAN(NIPS’19)[11] 39.3*%  66.7%  49.5% - - - - - - 32.1 67.5 43.5

DASCN(NIPS’19)[16] 45.9*%  59.0%  51.6% - - - 59.3 68.0 63.4 - - -
SGAL(NIPS’19)[31] 40.9*%  55.3%  47.0% - - - 52.7 75.7 62.2 | 55.1 8l1.2 65.6
SE-GZSL(CVPR’18)[23] 41.5 53.3 46.7 - - - 56.3 67.8 61.5 | 58.3 68.1 62.8
CycWGAN(ECCV’18)[8] 47.9 59.3 53.0 | 61.6 69.2 652 | 59.6 63.4 59.8|59.6 63.4 59.8
f-VAEGAN(CVPR’19)[30] 48. 4 60. 1 53.6 | 56.8 74.9 64.6 - - - 57.6 70.6 63.5
ZSML(AAAT’20)[24] 60. 0 52.1 55.7 - - - 574 711 63.5 58.9 746 658
TACO-GZSL 61.2 57.7 59.4 60.6 81.1 69.4 | 605 719, 657 | 594, 742, 66.0
TACO-GZSL(312) 51.8%# 60.0%* 55.6% | 60.6 81.1 69.4 | 605 719, 657 | 594, 742, 66.0
TACO-GZSL(using ®2) 64.7 65.9 65.35 - - - - 626 756 685
TACO-GZSL(312)(using ®2) | 55.6*  67.50%  61.0% - - - - - - 626 756 685

Table 1: GZSL performance comparison with several baseline and state-of-the-art methods. For fair comparison, all results
reported here are without fine-tuning the backbone ResNet101 feature extractor. We measure Top-1 accuracy on Unseen(U),
Seen(S) classes and their Harmonic mean(H). Best results are highlighted in bold. * indicates result on CUB dataset with
only 312 dim attributes (included for fair comparison with other work that use this setting)

semantic relations. To show the generalizability of our ap-
proach, we also evaluate our model on features provided
by [18]. The feature extractor network corresponding to
these 1024-dimensional features is denoted as ®-, hence-
forth. We use the class attributes/embeddings provided in
[28] for each dataset, which represents the h(.) in our ap-
proach (Fig 1). For CUB and FLO datasets, we use ad-
ditional 1024-dimensional character-based CNN-RNN fea-
tures as in [30][4], unless explicitly stated otherwise. We
use the average-per-class top 1 accuracy metric to evaluate
our model on a set of classes, as generally followed [28].
In order to evaluate and compare our model in the GZSL
setting, we report the harmonic mean of our model perfor-
mance on both seen and unseen classes[28]. For fair com-
parison, we follow the architecture used in [30] for all our
components. Due to space constraints, we provide the de-
tails of each component in the supplementary material.

Results: Table 1 shows the performance comparison of
our model with multiple baselines and state-of-the-art meth-
ods in GZSL. The table is divided into two sections, which
show the performance of non-generative (top) and gen-
erative GZSL approaches (bottom) respectively. For fair
comparison, all results reported are without fine-tuning the
backbone ResNet-101 network. It can be clearly seen
that our methodology consistently outperforms other ap-
proaches across all four datasets. Note that GZSL is a chal-

lenging problem and most existing methods have not been
able to maintain consistently high performance on both fine-
grained and coarse-grained datasets. Thanks to the joint-
maximization loss and Wasserstein alignment which en-
ables our model to facilitate better cross-domain coupling
and learn a useful discriminative representation, our method
is able to outperform even other approaches which utilize
bidirectional mapping i.e [11, 16] across all datasets with
varying granularity. We also note that our method consis-
tently outperforms approaches like [8, 11, 16] which use a
cyclic consistency to model visual-semantic interaction.

In Table 1, we also show the results for our method using
®,, as the feature extractor backbone for CUB (fine-grained)
and AWA?2 (coarse-grained) datasets. We see that GZSL
performance increases from 59.4% to 65.35% in CUB, and
66.0% to 68.5% in AWA2. This shows that our model gen-
eralizes well to different feature extractor backbones and is
not specific to learning from only ResNet-101 features.

Visualizing Generated Features: To visualize the un-
seen class image features generated by our method, we sam-
ple 200 synthesized feature vectors for each unseen class for
the FLO dataset and plot them using t-SNE as shown in Fig
3. In addition, we also show the mean of all synthesized
features (represented by M) and the mean of real unseen
class features (represented by x). It is evident that for most
classes, the center/mean of generated synthetic features co-
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Figure 2: Ablation Studies and Analysis
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Figure 3: t-SNE visualization of synthesized image features
for unseen classes for FLO dataset. M = mean centers of
synthesized features; x (in white) = centres of actual unseen
class features (Best viewed in color, when zoomed in)

incides or is very close to the center of actual unseen class
image features. This verifies that our model captures the
modes of the underlying distribution well. Furthermore, it
can be seen that the features of unseen classes form distinct
clusters for most cases which shows the discriminative abil-
ity of the generated features.

We note that both at training and test times, our method

has time complexity comparable to any other recent GZSL
method, and no additional overheads.

5. Ablation Studies and Analysis

We show several ablation studies to show the usefulness
of different components as well as the sensitivity of our
method to hyperparameter choices in this section. Simi-
lar to [21, 11, 31, 12], we use 312-dimensional semantic
attributes for our ablation studies on CUB in these studies.

Relevance of Each Component in our Approach: Table
2 shows the performance enhancement that each module of
our overall architecture brings to GZSL performance.

e S1 corresponds to using only the baseline generative
module as explained in Section 3.1.

e 52 corresponds to the use of baseline generative mod-
ule, along with the inference module trained using
joint maximization loss. Both S1 and S2 have the final
recognition module trained solely on synthesized im-
age features (i.e ) without any latent representations
from the inference module.

e 53 denotes the use of 52, along with the use of output
of inference network and latent representations from
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the intermediate layers of the inference module in the

recognition module.
e Lastly, S4 denotes our complete model, with the

Wasserstein alignment loss added to S3.

[ Model [ CUB | AWAL |
S1 = Baseline Generative Module 51.9 61.1
S2 =51 + Inference module + Joint maximization 52.7 62.5

S3 = S2 + Additional features for recognition | 54.4 65.4
module
S4 =53 + Wasserstein alignment 55.6 65.7

Table 2: Ablation study of different components of our
framework on CUB and AWAI1. Result reported is har-
monic mean accuracy.

We draw the following conclusions from Table 2. Train-
ing the generative module along with the inference network
and joint maximization improves performance for both fine-
grained and coarse-grained datasets. The improvement is
higher for the coarse-grained dataset since visual-semantic
knowledge transfer becomes more important when classes
are farther apart. Utilizing features from inference network
gives a strong boost in GZSL performance for both datasets,
showing the importance of good features at final recognition
time. Lastly, the Wasserstein alignment also adds improve-
ment for both datasets, although more significantly in fine-
grained datasets (CUB). We hypothesize that this is because
the classes are close in such datasets, and aligning the distri-
bution of semantic attributes appropriately leads to clearer
decision boundary between classes.

Hyperparameter Choices: In Figures 2a, 2b, and 2c,
we plot the variation in seen class, unseen class and har-
monic mean performance with change in hyperparameters
a1, a9, and v respectively - for both coarse-grained and
fine-grained datasets. In Figure 2b, the best performance is
obtained at @ = 10 for the coarse-grained dataset AWAL,
and at « = 1 for the fine-grained dataset CUB. For more
careful analysis, the variation of harmonic mean accuracy
is also shown in Figure 2d(left) where we plot the GZSL
performance on a smaller scale for the sake of clarity. It
can be seen that the performance increases with an increase
in g for AWAI (coarse-grained), while it decreases after
a certain point for CUB (fine-grained). This behavior is
expected since a higher value of s is required in case of
coarse-grained datasets, when compared with fine-grained
datasets, as it is more difficult to learn from seen classes and
generalize to unseen classes for coarse-grained datasets due
to classes being more different. In case of Figures 2a and
2c, we note that higher values of «; and y provide the best
performance for both CUB and AWA1, showing the impor-
tance of the proposed terms. The improvement of higher
values of a; and +y is greater in AWA 1, which we ascribe to
the same reason described above for as. Fig 2f shows the
performance of our model with varying number of synthe-
sized examples for unseen classes. The trend for harmonic

mean is stable for fine and coarse-grained datasets.
Stability and Generalization: Training Generative

Adversarial Networks is in general known to be diffi-
cult due to an inherently unstable training procedure. In
Figure 2d(right), we show the training error trajectories
over epochs for CUB and AWAI datasets. We see that
the training error smoothly decreases with a stable trend,
and reaches convergence within 100 epochs for both fine-
grained as well as coarse-grained datasets.

Usefulness of Latent Features in Recognition Module:
In order to study the usefulness of using latent feature rep-
resentations from intermediate layers of the inference net-
work, we plot the representation before the softmax activa-
tion layer of the zero-shot classifier (recognition module)
of our method and f-VAEGAN-D2, a recent state-of-the-
art method, for the FLO dataset in Fig 2e. We visualize
the representations for unseen classes (20 classes), since
visualizing the seen classes (82 classes) can be cluttered
due to their high number. Notice that the clusters for our
method (right subfigure) are more compact than those of
f-VAEGAN-D2 (left subfigure) for almost all classes. The
clusters in f-VAEGAN-D2 show features from one class po-
tentially leaking into other classes, which can result in mis-
classification. This is however improved in our approach.

6. Conclusions

In this work, we propose a unified approach for the gen-
eralized zero-shot learning problem that uses a two-level
adversarial learning strategy for tight visual-semantic cou-
pling. We use adversarial learning at the level of individual
generative and inference modules, as well as use a separate
joint maximization constraint across the two modules. In
addition, we also show that using the latent representation
of intermediate layers of the inference network improves
recognition performance. This helps our model unify ex-
isting latent representation and generative approaches in a
single pipeline. Our contributions in this framework en-
able us to capture the several modes of the data distribu-
tion better and improve GZSL performance by providing
stronger visual-semantic coupling. We conduct extensive
experiments on four benchmark datasets and demonstrate
the value of the proposed method across these fine-grained
and coarse-grained datasets. Our future work will include
coming up with other ways of performing the joint maxi-
mization, as well as considering alignments beyond Wasser-
stein alignment to improve GZSL performance.
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