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Abstract

The performance of generative zero-shot methods mainly

depends on the quality of generated features and how well

the model facilitates knowledge transfer between visual and

semantic domains. The quality of generated features is a di-

rect consequence of the ability of the model to capture the

several modes of the underlying data distribution. To ad-

dress these issues, we propose a new two-level joint maxi-

mization idea to augment the generative network with an in-

ference network during training which helps our model cap-

ture the several modes of the data and generate features that

better represent the underlying data distribution. This pro-

vides strong cross-modal interaction for effective transfer

of knowledge between visual and semantic domains. Fur-

thermore, existing methods train the zero-shot classifier ei-

ther on generated synthetic image features or latent embed-

dings produced by leveraging representation learning. In

this work, we unify these paradigms into a single model

which, in addition to synthesizing image features, also uti-

lizes the representation learning capabilities of the infer-

ence network to provide discriminative features for the final

zero-shot recognition task. We evaluate our approach on

four benchmark datasets i.e. CUB, FLO, AWA1 and AWA2

against several state-of-the-art methods, and show its per-

formance. We also perform ablation studies to analyze and

understand our method more carefully for the Generalized

Zero-shot Learning task.

1. Introduction

Practical settings require recognition models to have the

ability to learn from few labeled samples and be extended to

novel classes where data annotation is infeasible. However,

deep learning models do not directly adapt to such settings

due to their reliance on large amounts of labeled data dur-

ing training. On the other hand, humans perform well under

such conditions due to their capability to transfer semantics

and recast information from high-level descriptions to the

visual space, enabling them to recognize objects that they

have never seen before. Zero-shot learning (ZSL) aims to

bridge this gap by providing recognition models with the

capability to classify images of novel classes that have not

been seen during the training phase. The model is typically

given access to semantic description of the novel unseen

classes during training (such as embeddings of attributes of

the classes) and is expected to recognize unseen class im-

ages by knowledge transfer between visual and semantic

domains.

Based on the classes that a model sees in the test phase,

the ZSL problem is generally categorized into two settings:

conventional and generalized zero-shot. In conventional

ZSL, the image features to be recognized at test time be-

long only to unseen classes. In the generalized ZSL (GZSL)

setting, the images at test time may belong to both seen

or unseen classes. The GSZL setting is practically more

useful and challenging when compared to the conventional

setting, since the assumption that images at test time come

only from unseen classes need not hold. We aim to address

the generalized zero-shot learning problem in this work (al-

though we also show the applicability of our method to con-

ventional ZSL).

A potential approach to address GZSL is to utilize gen-

erative models to generate features for unseen classes and

reduce the zero-shot problem to a supervised learning prob-

lem [21, 29, 15, 8, 30]. Most existing methods in this direc-

tion use a unidirectional mapping by generating visual fea-

tures conditioned on semantic attributes. However, it has

been shown that such methods that rely on unidirectional

mapping lose out a tight visual-semantic coupling which is

crucial for zero-shot recognition [11, 16]. To address this is-

sue, more recent approaches such as [11, 16] have proposed

to use bidirectional mapping between visual and semantic

domains to enhance zero-shot recognition performance.

In this work, we propose a holistic unified framework

that uses a two-level adversarial visual-semantic coupling

(and hence named TACO) approach for bidirectional map-

ping that provides a tight coupling between semantic and

visual spaces, and is also expressive enough to capture the

complex distributions of the underlying data. Figure 1 sum-

marizes our overall framework. Our key contributions are
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Figure 1: Network architecture for our proposed methodology. The proposed pipeline consists of a Generative module,

Inference module, Recognition module and a Joint Discriminator. The model is trained on seen class visual features and

semantic attributes. The feature extractor backbone network Φ is used to extract visual features from images. The vectors

generated by our model are shown with a dotted outline. The final softmax classifier is trained on synthesized features x̂ and

representations from the inference network(< ĥ, f >) as shown.

as follows:

(1) Unlike most existing methods that use only a genera-

tive module, we augment the generative network with an

inference network, and train these two components of our

TACO framework together to maximize the joint likelihood

of visual and semantic features. Learning the inference net-

work jointly with the generative model helps us capture the

underlying modes of the data distribution better [7].

(2) We use a two-level adversarial training strategy to train

TACO, where we train both generative and inference mod-

ules through respective discriminators. We also use an ad-

versarial joint-maximization loss as an additional supervi-

sory signal to enhance the visual-semantic coupling and fa-

cilitate better cross-domain information transfer. This helps

our model outperform other bidirectional mapping methods

which lack such a mechanism.

(3) We use a novel Wasserstein semantic alignment loss that

helps us model the joint distribution of visual and seman-

tic features better, and ensures that the generated semantic

features are distributionally aligned with real semantic fea-

tures, which in turn helps lower loss in the semantic space.

(4) Furthermore, we use the discriminative information in

latent layers of the inference network to train our final

recognition model. This helps provide the final recogni-

tion module with representations from both generative and

inference modules, and thus enhances performance when

compared to earlier approaches that use only the synthe-

sized image features in the final recognition model.

(5) We perform detailed experimental studies and analysis

on Caltech-UCSD Birds (CUB), Oxford Flowers (FLO) and

Animals and Attributes (AWA1 and AWA2) datasets. We

demonstrate that the proposed method helps in better visual-

semantic coupling, and thus obtains state-of-the art perfor-

mance, outperforming other methods on both fine-grained

as well as coarse-grained datasets.

To the best of our knowledge, this is the first effort to

employ a joint maximization step in adversarial training to

provide deeper visual-semantic coupling for solving GZSL.

In addition, the new idea of using an adversarially learned

discriminative representation from the latent layers of in-

ference network, along with the generated features from

the generator to train the final zero-shot recognition model,

significantly improves GZSL performance. The use of a

Wasserstein alignment loss to preserve semantics is also the

first of its kind to be used in a generative approach to GZSL.
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2. Related Work

As stated in Section 1, existing work in ZSL can be

broadly divided into work on conventional ZSL and work

on generalized ZSL (GZSL). This work focuses on the more

challenging GZSL setting, and we focus on presenting re-

lated literature in GZSL in this section.

There has been a recent increase in efforts in the field of

zero-shot learning with the aim of boosting GZSL perfor-

mance. The methods proposed so far can be broadly catego-

rized into approaches that learn a projection function based

on seen class image features [1, 9, 20, 5, 27, 2, 32, 10, 14,

22] or generative network-based methods which aim to syn-

thesize unseen class features reducing GZSL to a standard

supervised problem [29, 21, 11, 16, 23, 12, 31, 8, 30, 24, 4].

We focus on describing recent related methods in more de-

tail in the rest of this section. The authors in [22] first pro-

posed to leverage multi-modal learning by learning a joint

embedding of image and textual features for GZSL. They

utilized a common representation learning along with cross-

domain alignment to map and align visual and semantic fea-

tures in a common latent space. To alleviate the bias prob-

lem, generative methods for GZSL have been proposed.

These methods generally combine adversarial loss and clas-

sification loss to generate discriminative features for unseen

classes conditioned on semantic attributes. Methods like

f-clsWGAN [29], CVAE [15], [8] used conditional Gen-

erative Adversarial Networks (GANs) or Variational Au-

toencoders (VAE) for generation of unseen class features.

[21] tried combining multi-modal learning with generative

GZSL approaches and learned a cross-aligned multi-modal

VAE to generate latent features for unseen classes and later

trained a softmax classifier on latents from all classes. More

recently, [30] proposed to combine the strengths of VAEs

and GANs by using the decoder of VAE as a generator. On

the other hand, GDAN [11] and DASCN [16] formulates

a dual learning framework that uses bidirectional mapping

between visual and semantic spaces, and trained the model

with adversarial loss and cyclic consistency. All of these ef-

forts showed the need to enforce stronger coupling between

the visual domain (images) and the semantic domain (image

attributes provided for seen and unseen classes) in different

ways. Our work is closest to GDAN [11] and DASCN [16]

in this regard, and also comes in the category of methods

that learn a bidirectional mapping. However, there many

differences as described below. Importantly, our approach

unifies ideas from existing approaches.

In DASCN [16], in the formulation of dual GAN, the

visual to semantic mapping network never sees real image

features and only has access to the features generated by

the primal generator. As pointed out in [6], since the gen-

erated image features are practically not as good as actual

features, this inhibits the ability of the network to make full

use of the dual learning paradigm since the flow of infor-

mation from visual to semantic domains is partial. On the

other hand, GDAN [11] uses a regressor to implement dual

learning which maps the generated features back to the at-

tribute space. As pointed out in [16], minimizing L2-norm

between generated semantic embeddings and real semantic

attributes is weak and unreliable to preserve high-level se-

mantics when using Euclidean distance. Furthermore, in the

objective of GDAN, the only way the generative network

and regressor interact with each other is via an L2-norm

based cyclic loss which does not provide a strong coupling

between the visual and semantic domains.

In contrast, in our formulation, adversarial learning is in-

troduced in a two-level fashion, where both generative and

inference modules are first adversarially learned (see Fig-

ure 1). We subsequently then introduce a new adversarial

joint maximization loss which specifically aims to maxi-

mize the joint probability of visual and semantic features.

This is achieved through a joint discriminator, which has a

slightly different formulation from a traditional discrimina-

tor (as used in GDAN [11] and DASCN [16]). As pointed in

[6], learning a regressor by minimizing reconstruction loss

performs poorly when compared to learning an inference

network jointly. This helps our model generates features

that better represent the underlying distribution of unseen

classes. Besides, our design provides our inference net-

work with access to real image features, which facilitates

stronger cross-domain coupling with improved representa-

tions. Also, our Wasserstein semantic alignment loss en-

ables us to preserve semantics and alleviate semantic loss

better than L2 loss. To show the benefits of our method over

GDAN and DASCN, we directly compare with them (as

well as many other recent methods) on four different GZSL

learning benchmark datasets, and show that our method pro-

vides the new state-of-the-art for GZSL.

3. Proposed Methodology
We begin our description of the proposed methodology

by defining the problem setting and notations, followed by

descriptions of each module of our framework.

Problem Setting: Given the dataset D = {DTr, DTs}, the

aim of generalized zero-shot learning is to correctly classify

images from both seen and unseen classes during the test

phase. Here, DTr = {(x, y, hy)|x ∈ X s, y ∈ Ys, hy ∈ A}
is the training set, where x is an image feature, X s is the fea-

ture space of seen classes, y is the label corresponding to x,

Ys is the set of labels for seen classes, hy is the semantic at-

tribute vector for class y. Similarly, DTs = {(x, y, hy)|x ∈
X u, y ∈ Yu, hy ∈ A} is the test set, where X u represents

the set of image features from unseen classes, Yu represents

the set of labels of unseen classes such that Yu ∩ Ys = ∅.

Note that image features are typically extracted using a fea-

ture extractor backbone Φ as shown in Figure 1. The GZSL

task can be formally seen as learning the optimal parame-

ters of a classifier f : x → Yu ∪ Ys where x denote the
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image features and Ys, Yu denote the set of labels of seen

and unseen classes respectively.

Mathematical Framework: GZSL can be formulated as

a problem of modeling joint probability P (x, h, y) where

x, h and y are as described above. The joint probability

P (x, h, y) can be factored in two ways:

F1 : p(x, h, y) = p(x)p(h|x)p(y|h) (1)

F2 : p(x, h, y) = p(h)p(x|h)p(y|x) (2)

While most existing work consider one of these factoriza-

tions in their approach, we use both the factorizations, and

model each of them using separate modules, viz. the gener-

ative module and inference module as shown in Figure 1.

For modeling F1, we have the marginal Pr(x) since we

have access to the visual features x of seen classes. The

second term Pr(h|x), the conditional probability of h given

the input x, is modeled by an inference network. Thus, Eqn

1 can be written as:

Pr(x, h, y) = Pr(x) Pr(ĥ|x) Pr(y|ĥ) (3)

where ĥ is the output of the inference module. Now, the

term Pr(y|ĥ) can be factorized as:

Pr(y|ĥ) = Pr(y|h) Pr(h|ĥ) (4)

Here, the factor Pr(y|h) can be taken as unity, since a

known h has a direct map to the label. We attempt to use a

Wasserstein alignment to ensures that the ĥ is close to the

original h in this work. Hence, the joint distribution in fac-

torization F1 can now be written as:

Pjoint = Pr(x) Pr(ĥ|x) Pr(h|ĥ) (5)

This joint distribution is modeled by the Inference Module

(see Figure 1 left), which we discuss in detail in Section 3.2.

For modeling F2, we are provided with the marginal

Pr(h), since we have access to the attributes h of seen

classes. The second term Pr(x|h), the conditional prob-

ability of x given h, is modeled by a generative network.

Pr(y|x) refers to the extra classification constraint that is

present in the loss formulation of our generative network

(see Eqn 9). Thus, Eqn 2 reduces to:

Pjoint = Pr(h) Pr(x̂|h) Pr(y|x̂) (6)

where x̂ is the output of the generative network. This fac-

torization is modeled by the Generative Module (see Figure

1 right), which we discuss in detail in Section 3.1.

To provide strong coupling between the generative and

inference modules, we also train the generative and in-

ference networks by maximizing the joint probability and

matching Eqns 5 and 6, which we describe later in this sec-

tion. To this end, we introduce a joint discriminator D3 (see

Figure 1 top), whose goal is to match the joint probabil-

ity by discriminating between a combination of generated

and real features i.e <real image feature, generated seman-

tic feature> and <generated image feature, real semantic

feature> (as shown in Figure 1). This is different from a

vanilla discriminator (such as D1,D2 in the figure) which

only discriminates between generated and real features.

3.1. Generative Module

Given the training data DTr, the objective of the gen-

erative module is to learn a feature generating model con-

ditioned on the semantic attribute vectors, i.e., it should be

able to generate discriminative image features that represent

the underlying data distribution well. We follow the for-

mulation in [29] for our baseline generative network. The

input to generator G and the discriminator D1 are seman-

tic attributes h and image features x of seen classes. The

generator G learns a mapping G(z, h) : Z × A → X̂ by

taking a random Gaussian noise vector z concatenated with

the attribute vector h as input and generating image features

x̂. We use a Wasserstein GAN [3] for this purpose with the

loss given by:

LWGAN1
=E[D1(x, h(y))]− E[D1(x̂, h(y))]− (7)

λE[(||∇x̃D1(x̃, h(y))||2 − 1)
2
],

where x̂ = G(z, h(y)) is the generated feature, x̃ = αx +
(1−α)x̂ with α ∼ U(0, 1), and λ is a weighting coefficient.

In order to ensure that the features generated from the net-

work are discriminative, in addition to the adversarial loss,

the generated features are required to minimize the classifi-

cation loss evaluated over a softmax classifier pretrained on

seen class features as in [29]:

LCLS = −Ex̂∼px̂
[logP (y|x̂; θ)] (8)

The final loss for the generative module is then given by:

Lgen = min
G

max
D

LWGAN1
+ βLCLS (9)

where β is a hyperparameter weighting the classifier.

3.2. Inference Module

It has been shown [7] that augmenting a generative

model with an inference network enhances the ability of

the model to capture different modes of the data distribu-

tion well and generate samples which better represent the

underlying distribution. Since the performance of GZSL

depends greatly on the quality of synthesized features, we

hypothesize that learning an inference network jointly with

the generative model will help our proposed TACO model

to express the actual data distribution well and generalize to

unseen classes better.

The inference network and the discriminator D2 together

form the Inference Module of our TACO framework as

shown in Figure 1. The goal of the inference network

I(x) : X → Â is to learn a mapping from image/visual

space to semantic space. The module learns a network that
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maps input image features to corresponding semantic at-

tributes i.e. it attempts to infer the semantic attributes that

generated the image in the generation module. The discrim-

inator D2 : A × Z → R outputs a real value. This is also

learned through a WGAN, and the loss function is given by:

LWGAN2
=E[D2(h(y), x)]− E[D2(ĥ(y), x)]− (10)

λE[
(

||∇ ˜h(y)
D2(h̃(y), x)||2 − 1

)2

],

where ĥ = I(x) is the generated semantic attribute, h̃ =
αh + (1 − α)ĥ with α ∼ U(0, 1), and λ is a weighting

coefficient.

In addition, we use a Wasserstein metric-based align-

ment loss at the output of the inference network. This aims

to ensure that the distribution of class centers of output se-

mantic attributes ĥ aligns with the distribution of ground

truth h, enabling us to preserve semantic information better.

The overall loss function for this module is then given by:

Linf = min
I

max
D

LWGAN2
+ γLwasserstein (11)

where Lwasserstein is computed using the sinkhorn distance

as in [25], and γ is a weighting coefficient. More details of

this alignment loss term is provided in the Supplementary

Section.

3.3. Adversarial Joint Maximization

Existing zero-shot approaches have hitherto not con-

sidered the use of a third joint maximization step to im-

prove visual-semantic coupling and cross-domain knowl-

edge transfer. In our proposed TACO framework, we in-

troduce the use of a joint maximization loss as an additional

supervisory signal to enhance visual-semantic interaction.

We match the joint probability of visual-semantic features

using a joint discriminator D3 as shown in Figure 1. The

joint discriminator is formulated as follows:

Ljoint−discriminator = E[D3(x, ĥ(y))]−E[D3(x̂, h(y))]−

λE[
(

||∇x̃D3(x̃, ˜h(y)),∇h̃D3(x̃, ˜h(y))||2 − 1
)2

] (12)

where ĥ = I(x), x̂ = G(z, h) are the generated semantic at-

tributes and image features respectively. x̃ = αx+(1−α)x̂
and h̃ = αĥ+(1−α)h with α ∼ U(0, 1), as before, and λ is

a weighting coefficient. Note that the joint discriminator is

formulated differently form vanilla discriminators D1, D2,

as mentioned earlier. D3 aims to discriminate between the

pairs < x, ĥ > and < x̂, h > which enables it to match

(p(x)p(ĥ|x)) and (p(h)p(x̂|h)) (also shown in Figure 1 top).

On the other hand, while D3 aims to optimizes Eqn 12,

the generator and inference networks jointly maximize:

Ljoint−max = −(E[D3(x, ĥ(y))] − E[D3(x̂, h(y))])
(13)

Note that the difference between Eqns 13 and 12 is only

a regularizer term which is added to improve D3. In

summary, the generative and inference modules are jointly

trained to optimize the final objective, given as:

Ltotal = Lgen + α1Linf + α2Ljoint-max (14)

3.4. Recognition module

In previously proposed zero-shot methods, once the gen-

erative model is trained, it is used to generated images

features for the unseen classes. However, the synthesized

image features by themselves might not be discriminative

enough to get best GZSL performance. In order to address

this issue and obtain highly discriminative features for train-

ing the classifier in the recognition module of our TACO

framework, we train the final classifier using the adversar-

ially learned representation in the intermediate layers and

the output of the inference network.

To this end, we combine seen class image features from

DTr and synthesized features for unseen classes from the

trained generator into a set, D. We then pass the image

features in D through the pre-trained inference network and

get the output ĥ, as well as internal intermediate features

from the inference network. These are concatenated and

used to train the final classifier. For fair comparison with

other methods, we use a single layered softmax classifier

(as used in most earlier efforts).

At test time, for an input image feature xtest, we pass it

through the inference network and get the internal feature

vectors f and output ĥ. We concatenate these with the test

image vector (output of generator module), and pass it to

the softmax classifier, given by:

f(x) = argmax
y∈Ỹ

P (y| < xtest, h, f >; Θ′) (15)

where Ỹ = Ys ∪ Yu for GZSL, and Θ′ are the parameters

of our overall architecture.

4. Experiments and Results

In this section, we conduct extensive experiments on

four public benchmark datasets under the generalized zero-

shot learning setting. We compare our model with sev-

eral baselines and state-of-the-art methods on four bench-

mark datasets: CUB [26], FLO [17], AWA1 [13] and

AWA2 [13]. Among these datasets, AWA1 and AWA2

are coarse-grained, while FLO and CUB are fine-grained

datasets. We follow the standard training/validation/testing

splits and evaluation protocols, as in [28]. Following the

protocol in [28], we use ResNet101 as the feature extrac-

tor backbone network for fair comparison. We denote

this backbone by Φ1 henceforth, for convenience. Re-

cently, [18] proposed to transform the ResNet-101 image

features and use a 1024-dimensional intermediate represen-

tation as input features to overcome hubness and preserve
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Dataset CUB FLO AWA1 AWA2

Methods U S H U S H U S H U S H

DEM(CVPR’17)[32] 19. 6 57. 9 29. 2 - - - 32. 8 84. 7 47. 3 30. 5 86. 4 45. 1

ZSKL(CVPR’18)[10] 21. 6 52. 8 30. 6 - - - 18. 3 79. 3 29. 8 18. 9 82. 7 30. 8

DCN(NIPS’18)[14] 28. 4 60. 7 38. 7 - - - - - - 25. 5 84. 2 39. 1

ALE(TPAMI’13)[1] 23. 7 62. 8 34. 4 13. 3 61. 6 21. 9 16. 8 76. 1 27. 5 81. 8 14. 0 23. 9

DEVISE(NIPS’13)[9] 23. 8 53. 0 32. 8 9. 9 44. 2 16. 2 13. 4 68. 7 22. 4 74. 7 17. 1 27. 8

ESZSL(ICML’15)[20] 12. 6 63. 8 21. 0 11. 4 56. 8 19. 0 6. 6 75. 6 12. 1 77. 8 5. 9 11. 0

SYNC(CVPR’16)[5] 11. 5 70. 9 19. 8 - - - 8. 9 87. 3 16. 2 90. 5 10. 0 18. 0

LATEM(CVPR’16)[27] 15. 2 57. 3 24. 0 - - - 7. 3 71. 7 13. 3 77. 3 11. 5 20. 0

SJE(CVPR’15)[2] 23. 5 59. 2 33. 6 13. 9 47. 6 21. 5 74. 6 11. 3 19. 6 73. 9 8. 0 14. 4

CLSWGAN(CVPR’18)[29] 43. 7* 57. 7* 49. 7* 59. 0 73. 8 65. 6 - - - 57. 9 61. 4 59. 6

CADA-VAE(CVPR’19)[21] 53. 5 51. 6 52. 4* - - - 72. 8 57. 3 64. 1 75. 0 55. 8 63. 9

VSE(CVPR’19)[19] 39.5* 68.9* 50.2* - - - - - - 45.6 88.7 60.2

GZLOCD(CVPR’20)[12] 44. 8* 59. 9* 51. 3* - - - - - - 59.5 73.4 65.7

GDAN(NIPS’19)[11] 39. 3* 66. 7* 49. 5* - - - - - - 32. 1 67. 5 43. 5

DASCN(NIPS’19)[16] 45. 9* 59. 0* 51. 6* - - - 59. 3 68. 0 63. 4 - - -

SGAL(NIPS’19)[31] 40. 9* 55. 3* 47. 0* - - - 52. 7 75. 7 62. 2 55. 1 81. 2 65. 6

SE-GZSL(CVPR’18)[23] 41. 5 53. 3 46. 7 - - - 56. 3 67. 8 61. 5 58. 3 68. 1 62. 8

CycWGAN(ECCV’18)[8] 47. 9 59. 3 53. 0 61. 6 69. 2 65. 2 59. 6 63. 4 59. 8 59. 6 63. 4 59. 8

f-VAEGAN(CVPR’19)[30] 48. 4 60. 1 53. 6 56. 8 74. 9 64. 6 - - - 57. 6 70. 6 63. 5

ZSML(AAAI’20)[24] 60. 0 52. 1 55. 7 - - - 57.4 71.1 63.5 58.9 74.6 65.8

TACO-GZSL 61.2 57.7 59.4 60. 6 81. 1 69. 4 60.5 71.9, 65.7 59.4, 74.2, 66.0

TACO-GZSL(312) 51.8* 60. 0* 55. 6* 60. 6 81. 1 69. 4 60.5 71.9, 65.7 59.4, 74.2, 66.0

TACO-GZSL(using Φ2) 64.7 65.9 65.35 - - - - -, - 62.6 75.6 68.5

TACO-GZSL(312)(using Φ2) 55.6* 67.50* 61.0* - - - - -, - 62.6 75.6 68.5

Table 1: GZSL performance comparison with several baseline and state-of-the-art methods. For fair comparison, all results

reported here are without fine-tuning the backbone ResNet101 feature extractor. We measure Top-1 accuracy on Unseen(U),

Seen(S) classes and their Harmonic mean(H). Best results are highlighted in bold. * indicates result on CUB dataset with

only 312 dim attributes (included for fair comparison with other work that use this setting)

semantic relations. To show the generalizability of our ap-

proach, we also evaluate our model on features provided

by [18]. The feature extractor network corresponding to

these 1024-dimensional features is denoted as Φ2, hence-

forth. We use the class attributes/embeddings provided in

[28] for each dataset, which represents the h(.) in our ap-

proach (Fig 1). For CUB and FLO datasets, we use ad-

ditional 1024-dimensional character-based CNN-RNN fea-

tures as in [30][4], unless explicitly stated otherwise. We

use the average-per-class top 1 accuracy metric to evaluate

our model on a set of classes, as generally followed [28].

In order to evaluate and compare our model in the GZSL

setting, we report the harmonic mean of our model perfor-

mance on both seen and unseen classes[28]. For fair com-

parison, we follow the architecture used in [30] for all our

components. Due to space constraints, we provide the de-

tails of each component in the supplementary material.

Results: Table 1 shows the performance comparison of

our model with multiple baselines and state-of-the-art meth-

ods in GZSL. The table is divided into two sections, which

show the performance of non-generative (top) and gen-

erative GZSL approaches (bottom) respectively. For fair

comparison, all results reported are without fine-tuning the

backbone ResNet-101 network. It can be clearly seen

that our methodology consistently outperforms other ap-

proaches across all four datasets. Note that GZSL is a chal-

lenging problem and most existing methods have not been

able to maintain consistently high performance on both fine-

grained and coarse-grained datasets. Thanks to the joint-

maximization loss and Wasserstein alignment which en-

ables our model to facilitate better cross-domain coupling

and learn a useful discriminative representation, our method

is able to outperform even other approaches which utilize

bidirectional mapping i.e [11, 16] across all datasets with

varying granularity. We also note that our method consis-

tently outperforms approaches like [8, 11, 16] which use a

cyclic consistency to model visual-semantic interaction.

In Table 1, we also show the results for our method using

Φ2 as the feature extractor backbone for CUB (fine-grained)

and AWA2 (coarse-grained) datasets. We see that GZSL

performance increases from 59.4% to 65.35% in CUB, and

66.0% to 68.5% in AWA2. This shows that our model gen-

eralizes well to different feature extractor backbones and is

not specific to learning from only ResNet-101 features.

Visualizing Generated Features: To visualize the un-

seen class image features generated by our method, we sam-

ple 200 synthesized feature vectors for each unseen class for

the FLO dataset and plot them using t-SNE as shown in Fig

3. In addition, we also show the mean of all synthesized

features (represented by �) and the mean of real unseen

class features (represented by ×). It is evident that for most

classes, the center/mean of generated synthetic features co-
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(a) Study of Seen class accuracy, Unseen class accuracy and Harmonic

mean by varying α1 for fine- and coarse-grained datasets

(b) Study of Seen class accuracy, Unseen class accuracy and Harmonic

mean by varying α2 for fine- and coarse-grained datasets

(c) Study of Seen class accuracy, Unseen class accuracy and Harmonic

mean by varying γ for fine- and coarse-grained datasets

(d) (Left) Harmonic mean accuracy for varying α2 (plotted on smaller

scale for clarity); (Right) GZSL error trajectory over epochs for proposed

method

(e) t-SNE visualisations of unseen class features on FLO dataset, which are

input to softmax layer of zero-shot classifier (recognition module): (Left)

f-VAEGAN; (Right) Ours

(f) Variation in GZSL performance (S=seen class accuracy; U=unseen

class accuracy; H=harmonic mean) with number of synthesised features

for unseen classes

Figure 2: Ablation Studies and Analysis

Figure 3: t-SNE visualization of synthesized image features

for unseen classes for FLO dataset. � = mean centers of

synthesized features; × (in white) = centres of actual unseen

class features (Best viewed in color, when zoomed in)

incides or is very close to the center of actual unseen class

image features. This verifies that our model captures the

modes of the underlying distribution well. Furthermore, it

can be seen that the features of unseen classes form distinct

clusters for most cases which shows the discriminative abil-

ity of the generated features.

We note that both at training and test times, our method

has time complexity comparable to any other recent GZSL

method, and no additional overheads.

5. Ablation Studies and Analysis

We show several ablation studies to show the usefulness

of different components as well as the sensitivity of our

method to hyperparameter choices in this section. Simi-

lar to [21, 11, 31, 12], we use 312-dimensional semantic

attributes for our ablation studies on CUB in these studies.

Relevance of Each Component in our Approach: Table

2 shows the performance enhancement that each module of

our overall architecture brings to GZSL performance.

• S1 corresponds to using only the baseline generative

module as explained in Section 3.1.

• S2 corresponds to the use of baseline generative mod-

ule, along with the inference module trained using

joint maximization loss. Both S1 and S2 have the final

recognition module trained solely on synthesized im-

age features (i.e x̂) without any latent representations

from the inference module.

• S3 denotes the use of S2, along with the use of output

of inference network and latent representations from
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the intermediate layers of the inference module in the

recognition module.
• Lastly, S4 denotes our complete model, with the

Wasserstein alignment loss added to S3.

Model CUB AWA1

S1 = Baseline Generative Module 51.9 61.1

S2 = S1 + Inference module + Joint maximization 52.7 62.5

S3 = S2 + Additional features for recognition

module

54.4 65.4

S4 = S3 + Wasserstein alignment 55.6 65.7

Table 2: Ablation study of different components of our

framework on CUB and AWA1. Result reported is har-

monic mean accuracy.

We draw the following conclusions from Table 2. Train-

ing the generative module along with the inference network

and joint maximization improves performance for both fine-

grained and coarse-grained datasets. The improvement is

higher for the coarse-grained dataset since visual-semantic

knowledge transfer becomes more important when classes

are farther apart. Utilizing features from inference network

gives a strong boost in GZSL performance for both datasets,

showing the importance of good features at final recognition

time. Lastly, the Wasserstein alignment also adds improve-

ment for both datasets, although more significantly in fine-

grained datasets (CUB). We hypothesize that this is because

the classes are close in such datasets, and aligning the distri-

bution of semantic attributes appropriately leads to clearer

decision boundary between classes.

Hyperparameter Choices: In Figures 2a, 2b, and 2c,

we plot the variation in seen class, unseen class and har-

monic mean performance with change in hyperparameters

α1, α2, and γ respectively - for both coarse-grained and

fine-grained datasets. In Figure 2b, the best performance is

obtained at α = 10 for the coarse-grained dataset AWA1,

and at α = 1 for the fine-grained dataset CUB. For more

careful analysis, the variation of harmonic mean accuracy

is also shown in Figure 2d(left) where we plot the GZSL

performance on a smaller scale for the sake of clarity. It

can be seen that the performance increases with an increase

in α2 for AWA1 (coarse-grained), while it decreases after

a certain point for CUB (fine-grained). This behavior is

expected since a higher value of α2 is required in case of

coarse-grained datasets, when compared with fine-grained

datasets, as it is more difficult to learn from seen classes and

generalize to unseen classes for coarse-grained datasets due

to classes being more different. In case of Figures 2a and

2c, we note that higher values of α1 and γ provide the best

performance for both CUB and AWA1, showing the impor-

tance of the proposed terms. The improvement of higher

values of α1 and γ is greater in AWA1, which we ascribe to

the same reason described above for α2. Fig 2f shows the

performance of our model with varying number of synthe-

sized examples for unseen classes. The trend for harmonic

mean is stable for fine and coarse-grained datasets.

Stability and Generalization: Training Generative

Adversarial Networks is in general known to be diffi-

cult due to an inherently unstable training procedure. In

Figure 2d(right), we show the training error trajectories

over epochs for CUB and AWA1 datasets. We see that

the training error smoothly decreases with a stable trend,

and reaches convergence within 100 epochs for both fine-

grained as well as coarse-grained datasets.

Usefulness of Latent Features in Recognition Module:

In order to study the usefulness of using latent feature rep-

resentations from intermediate layers of the inference net-

work, we plot the representation before the softmax activa-

tion layer of the zero-shot classifier (recognition module)

of our method and f-VAEGAN-D2, a recent state-of-the-

art method, for the FLO dataset in Fig 2e. We visualize

the representations for unseen classes (20 classes), since

visualizing the seen classes (82 classes) can be cluttered

due to their high number. Notice that the clusters for our

method (right subfigure) are more compact than those of

f-VAEGAN-D2 (left subfigure) for almost all classes. The

clusters in f-VAEGAN-D2 show features from one class po-

tentially leaking into other classes, which can result in mis-

classification. This is however improved in our approach.

6. Conclusions

In this work, we propose a unified approach for the gen-

eralized zero-shot learning problem that uses a two-level

adversarial learning strategy for tight visual-semantic cou-

pling. We use adversarial learning at the level of individual

generative and inference modules, as well as use a separate

joint maximization constraint across the two modules. In

addition, we also show that using the latent representation

of intermediate layers of the inference network improves

recognition performance. This helps our model unify ex-

isting latent representation and generative approaches in a

single pipeline. Our contributions in this framework en-

able us to capture the several modes of the data distribu-

tion better and improve GZSL performance by providing

stronger visual-semantic coupling. We conduct extensive

experiments on four benchmark datasets and demonstrate

the value of the proposed method across these fine-grained

and coarse-grained datasets. Our future work will include

coming up with other ways of performing the joint maxi-

mization, as well as considering alignments beyond Wasser-

stein alignment to improve GZSL performance.
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