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Abstract

This paper investigates the problem of generating ad-
versarial examples for video classification. We project all
videos onto a semantic space and a perception space, and
point out that adversarial attack is to find a counterpart
which is close to the target in the perception space but far
from the target in the semantic space. Based on this for-
mulation, we notice that conventional attacking methods
mostly used Euclidean distance to measure the perception
space, but we propose to make full use of the property of
videos and assume a modified video with a few consecu-
tive frames replaced by dummy contents (e.g., a black frame
with texts of ‘thank you for watching’ on it) to be close to
the original video in the perception space though they have
a large Euclidean gap. This leads to a new attack approach
which only adds perturbations on the newly-added frames.
We show its high success rates in attacking six state-of-the-
art video classification networks, as well as its universality,
i.e., transferring well across videos and models.

1. Introduction

Deep neural networks, while being powerful in learning
from complicated visual data, are vulnerable to small noise
known as adversarial perturbations. Researchers designed
a lot of attacking algorithms to add imperceptible perturba-
tions onto well-trained neural networks so that the predic-
tion is dramatically destroyed. Successful scenarios include
image classification [17, 22, 20], object detection and se-
mantic segmentation [34], super-resolution [8], visual ques-
tion answering [35], image captioning [8], efc. Researchers
conjectured that adversaries are closely related to the work-
ing mechanism as well as explainability of deep neural net-
works [30, 1 1], and both adversarial attack and defense have
been attracting attentions in both academia and industry.

Compared to adversarial attacks for visual recognition
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Surfing

Figure 1: We generate adversarial examples for video clas-
sification by replacing the ending part of the input clip with
a few dummy frames, i.e., black images with texts of ‘thank
you for watching’. The video clip was originally (correctly)
recognized as ‘BenchPress’. While adding dummy frames
alone does not alter the classification result, adding slight
perturbations on them changes the prediction to ‘Surfing’ (a
success attack).

on still images, the same topic on video data has been
fewer investigated. There exist a few video-based attack
methods [33, 15, 18], but they mostly added perturba-
tions to individual video frames, as if video is a kind of
high-dimensional data with no internal structures. Having
ignored the property that video is a sequence of images
and neighboring frames are closely correlated, these attack
methods suffer either high perceptibility or limited transfer-
ability across videos or models.

This paper studies this problem from a new perspective.

We first define two spaces named semantic space and per-
ception space, respectively, where the former is determin-
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istic provided the target model (e.g., for video classifica-
tion) but the latter involves human perception which is quite
subjective and difficult to depict, i.e., defining the distance
between two elements in the space. For image-based adver-
sarial attack, people often use the [, distance to approximate
the perception space, but we notice that video-based attack
can benefit from an intriguing property: if some consecutive
frames of a video are replaced by some dummy contents
(e.g., a black frame with texts of ‘thank you for watching’
on it), people may not perceive that it is a attack. In other
words, the perception space has an intriguing property that
lies in its subspaces (e.g., a few consecutive frames): the
points that correspond to the original and dummy clips have
nearly a zero distance in the subspace.

Making full use of this observation, we present a novel
video attack method named appending adversarial frames
(A%F) and demonstrate its effectiveness on the video clas-
sification task. As shown in Fig. 1, the idea is very sim-
ple: given a target video, we first replace a few consecu-
tive frames (e.g., in the end of the video) by dummy frames,
and then add adversarial perturbations only to these dummy
frames. Note that the first step often does not fool the deep
network, but pushes the target video towards the classifica-
tion border, so that the second step can achieve the attack
with very small perturbations. From the conventional per-
spective, A’F has large perceptibility (measured in the Eu-
clidean space), but unless educated beforehand, people may
not notice that the black frames come from manual editing.

Compared to a regular attack, our approach enjoys three-
fold benefits. First, a high success rate. Note that the
dummy frames do not contain any semantic information,
i.e., lying close to the semantic border, so that pushing
it towards any class requires much fewer efforts and thus
easier to accomplish. Second, a low perceptibility, e.g.,
in terms of pixel-level difference or the number of itera-
tions, which is for the same reason. Third and most impor-
tantly, a strong ability in transferring across different sce-
narios. Since the perturbations are added beyond these com-
mon, class-agnostic frames, we shall expect that the noise
is highly associated to the target class, and thus it produces
the same classification result when moved to a new video
or even a new classification network. This paves the way
of universal adversarial attack which is believe to be more
challenging yet threatening for real-world scenarios.

We evaluate our approach on two popular video classifi-
cation datasets, namely, UCF101 [27] and HMDBS51 [16].
We select six victim models from a wide range of
video classification methods, including CNN+LSTM [10],
C3D [31], ResNet3D [12], P3D [25], and I3D [4] on both
ResNet [13] and Inception [29]. We start with white-box
attacks, in which the parameters of the victim models are
known to the attacker, and then transfer the perturbations
computed on each video to other unseen models, i.e., black-

box attacks. Our approach enjoys superior success rate
while the perturbations added to the dummy frames are
much smaller than that added by the baseline approaches
to the original video frames.

The main contributions of this paper are as follows:

e We provide a new insight that understands adversar-
ial attacks in the semantic and perception spaces, from
which we point out that video attack should be consid-
ered differently from image attack, since the percep-
tion space can be decomposed according to individual
frames.

e We propose to append adversarial frames to videos and
demonstrate that the idea is effective in different sce-
narios, including having a high success rate and being
less perceptible to observers.

e We further discuss different application scenarios of
A’F, with the most important one being black-box at-
tack, i.e., transferring the attack across different target
videos and victim models, which we show the promise
of A’F being a universal attack method.

2. Related Work

Video Recognition. The power of deep learning ar-
chitectures is not only shown in image classification (Im-
ageNet [9]), but also shown in video recognition. There are
many successful video recognition models. For instance,
Donahue et al. [10] proposed a class of recurrent long-term
models that can be jointly trained to learn temporal dy-
namics and convolutional perceptual representations, and
demonstrated superior performance on recognition and de-
scription of images and videos. Tran et al. [31] addressed
the problem of learning spatio tempora features for videos
using 3D ConvNets. Noting that the training of 3D Con-
vNets is computationally extensive, Carreira et al. [4] in-
troduced a two-stream Inflated 3D (I3D) ConvNets, which
built upon on 2D kernels but inflated filters and pooling
kernels into 3D. Another representative strategy to reduce
training cost was proposed in [25], which simulated 3D con-
volutions with 2D convolutions on spatial domain plus 1D
convolutions on adjacent feature maps in time. Recently,
Hara et al. [12] examined the architectures of various 3D
CNNSs from relatively shallow networks to very deep ones
on current video datasets.

Adversarial Attacks on Images. There are fruitful at-
tack methods in the literature. Among the first to intro-
duce adversarial examples against deep neural networks
was [30]. After that, Goodfellow et al. [1 1] used the sign
of the gradient to propose a fast attack method called Fast
Gradient Sign Method (FGSM). FGSM seeks the direction
that can maximize the classification errors to update each
pixel. The subsequent method I-FGSM [17] extends FGSM
by more iterations, and can generate adversarial examples
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in the physical world. In [20], an iterative method called
Projection Gradient Descent (PGD) was proposed. PGD
makes the perturbations project back to the e-ball which
center is the original data when perturbations over the e-
ball. Moosavi et al. [22] proposed DeepFool to find the clos-
est distance from the original input to the decision boundary
of adversarial examples. Moosavi et al. [21] analyzed uni-
versal perturbations and its relationship between different
classification regions of decision boundary. Liu et al. [19]
studied the transferability of both non-targeted and targeted
adversarial examples, and proposed an ensemble-based ap-
proaches to generate adversarial examples with stronger
transferability. Sabour et al. [26] performed a targeted at-
tack by minimizing the distance of the representation of
intermediate neural network layers instead of the output
layer. There also exists other methods for white-box attack,
e.g. Jacobian-based Saliency Map Attack (JSMA) [24] and
Elastic net attack (EAD) [0]. Except the white-box image
attack, some black-box attack methods e.g. Zeroth-order
optimization attack (ZOO) [7] used a black-box method to
estimate the adversarial gradient. HopSkipJumpAttack [5],
which estimated the gradient direction using binary infor-
mation at the decision boundary, is also a family of black-
box algorithms. Naseer et al. [23] indicate that we can en-
hance adversarial transferability by maximize distortions in
the network feature space.

Adversarial Attacks on Videos. There are several at-
tack methods proposed for generating video adversarial ex-
amples. Wei er al. [33] claimed that they were the first
to explore the adversarial examples in videos. In their pa-
per, they mainly investigated the sparsity and propagation of
adversarial perturbations across video frames. Recently,Li
Sabour et al. [18] showed that we can use a Generative
Adversarial Networks (GANs) like architecture to generate
perturbations in real-time video classifier. Jiang er al. [15]
was the first work on black-box video attacks against video
recognition models. In this paper, we use an optimization
based method to find adversarial perturbations. Being dif-
ferent from previous works that add perturbations to the
original videos, we append the adversarial frames to the
original videos. To our knowledge, we are the first to pro-
pose to append adversarial frames to videos. Furthermore,
to make the attack comparison more reasonable, we modify
the attacking method [33] to be adaptive attacks [3, 2, 14]
when evaluating on the effectiveness of our method.

3. Our Approach

3.1. Adversarial Attack, Semantic and Perception
Spaces

We use J(-;0) to denote the threat model with @ indi-
cating network parameters. We always consider the threat
model as a deep neural network, which means the classifier

J(-;0) is a complicated yet differentiable function. Let X
be the input video. Without loss of generality, we assume
X € RTXWxHXD ‘where T denotes the number of frames,
and W, H, and D denote the width, height, and the number
of channels of each frame, respectively. From the conven-
tional perspective, the goal of adversarial attack is to find an
adversarial example, X, which shares the same dimension-
ality with X, looks identical to X, but J(X; 8) and J(X; 6)
are very different, e.g., after hard quantization, classified
into different classes.

Here, we provide an alternative formulation of this prob-
lem. We assume that the threat model, J(X; @), defines a
C-dimensional semantic space so that each video can be
projected onto the space, i.e., being assigned with a class
distribution. In addition, we also project each video onto
a perception space, in which the distance between two el-
ements, say, X and X, indicates how people can perceive
that X is a perturbed counterpart of X. Given a fixed threat
model, the semantic space is mostly deterministic, where
we use £(1,,J(X;8)) (1, is a one-hot vector with the y-
th class being 1, and y is the dominant class of J(X;6))
to measure the distance between X and X, where £(-,-) is
the cross-entropy loss function. However, the perception
space is subjective and difficult to depict — one cannot easily
come up with a standard of perceptibility, and researchers
mostly used the Euclidean space to approximate the percep-
tion space, i.e., the distance between X and X is measured
by X — X[l..

This formulation leads to the so-called basic attack (BA)
method, which was introduced in [33] and follow-up ap-
proaches later [15, 18] added frame-level constraints to it.
These methods all adding their perturbations to original
frames, which is difficult in some situations as manipulat-
ing the original videos needs a high authority. As for the at-
tack transferability, these methods almost perform not well
when attacking across models. From the semantic under-
standing perspective, this is because the orientations of per-
turbations in different models are always random, while a
primary across models settings will not be able to constrain
the perturbations to a specific orientation.

On the other hand, we argue that the internal structure
of the video should be considered in generating effective
adversarial attacks, yet the BA method does not make full
use of it, but simply regard the video as an arbitrary type
of high-dimensional data. This motivates us to find a better
solution.

3.2. An Intriguing Property of the Video Perception
Space

The key is to notice that for video attack, the percep-
tion space has an intriguing property which has not been ex-
ploited. Note that video allows the scenario to be switched
sparsely, which means that one can replace a consecutive
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part of a video with another, yet this operation may not be
perceived by the observer if the semantics of the original
clip and the replacement do not heavily conflict with each
other. Note that this property does not hold for still images,
as one often expects an image to have pixel-level continu-
ity, e.g., most observers are sensitive to the change that an
image patch is replaced by another.

This assumption changes the conventional definition of
the perception space. We no longer measure it solely by the
Euclidean distance, but allow some ‘shortcut connections’
in the space. Specifically, let a set of consecutive frames
define a subspace, then we assume that all video clips in
the subspace, without heavy semantic conflict, have a zero
distance in the perception space. Note that this is a com-
plementary depiction of the perception space. Though not
complete, it is sufficient in generating video-based adver-
sarial examples efficiently, as shown in later parts.

We make a side comment here. The essence is to make
use of the internal structure of video data (each frame can
be a relatively individual semantic unit) and thus investigate
the perception space from its subspaces. Such decomposi-
tion also affects the semantic space, which we shall see in
Section 3.6 that if the replaced frames do not contain se-
mantic information, the video, in the semantic space, will
be pushed towards the border of classification. This indeed
creates convenience for generating universal perturbations.

3.3. Video Attack by Appending Adversarial
Frames

Inspired by the above analyses, we propose a novel way
of attacking videos. It is named the Appending Adver-
sarial Frames (A%?F) method, which replaces a few con-
secutive frames of the target video with dummy frames,
and add perturbations only on these new frames. Here, a
dummy frame should satisfy two conditions, namely, it does
not contain any semantic information, yet it is not likely to
cause the observer doubt that the video has been manually
edited. We investigate a simple choice, that the frame is an
all-black image with texts of ‘thank you for watching’ dis-
played on it. Such a frame is commonly seen at the end
of a video, so most people may not notice it is an attacked
video'.

Mathematically, let X = {fi, fo,..., fr_ar, A},
where A € RATXWXHXC pe the appending dummy
frames without perturbations, and A be its adversarial
frames with perturbations. Thus, E = A — A is the added
adversarial perturbations.

We use A’F to find E to maximize the difference be-
tween the output from video classification models which

1Of course, we can insert frames at the beginning or in the middle of the
video, possibly with different texts (e.g., ‘welcome to watch our video’ in
the beginning), and these options have the same ability of attack. Through-
out this paper, we only perform experiments with adversarial frames added
in the end of each video.

take X and X as input:
argm}%n)\HEHp—€(1y7J(X;0)) (1)

where ||E||, is the £, norm (we select p = oo in this paper)
of E, which is used to measure the magnitude of the adver-
sarial perturbations. The parameter A is the weight applied
to balance different items in the objective function.

If the goal is to misclassify the generated adversarial
video X to a predefined label (i.e., the target label). then
we can modify the problem to minimize the difference be-
tween the target label and the prediction.

argmén)\HEHp—i—ﬁ(ly*,J(X; 0)) (2)

where y* is the targeted label.
With A’F, we develop a series of variants to overcome
different problems in various attack scenarios.

3.4. Spatial Mask Attack

It is important for us to control the perturbation to make
it more imperceptive. Su et al. [28] find that only mod-
ify one pixel can also generate adversarial examples and
Brown et al. [1] generate an adversarial patch which can
be added to a part of the original image and make it being
misclassified, etc. Those works all suggested that we can do
a part attack in our attack conditions. To the end, we apply
the idea of the spatial mask to decorate perturbations called
A?F-SM. In particular,

wgmin Mo Bl, ~£(1,3%) O

where M € {0, 1}AT*XWXHXC g the binary spatial mask
of the perturbation E, and only the region to be attacked is
set to 1. Note that the operator o denotes the element-wise
multiplication.

3.5. Transfer Attack

There are a lot of works that show the adversarial exam-
ples have the attack transferability[21, 19], [33] also show
the ability between 3DConv based models and [18] shows
they can transfer in CNN+LSTM based models. In this sec-
tion, we proposed the adaptable method focus on generating
the adversarial frames can transfer across videos and mod-
els.

Although we can compute different perturbations for dif-
ferent videos to generate a series of specific adversarial
frames with Eq. (1), it is also possible to find a video-
agnostic adversarial perturbation that can apply to any input
video for a certain video-classification method A2F-AV.

N
arg min A|[E||, — D anl(1y,,3(X.:0) @)

n=1
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Figure 2: An explanation of the mechanism of existing
methods and our attacking method. The left figure shows
the schematic of existing methods, while the right figure
shows the schema represented by our method, where v;, and
v, denote the universal perturbation generated by the two
methods, respectively. X with red dot denotes the batch of
video data and the red triangle denotes the video data after
appending the adversarial frames. As for the classification
region R;, they are showed in different shape with differ-
ent colors. The blue arrow line in the classification region
denotes the shift that is caused by the adversarial frames
appended to the video, the black dotted arrow line repre-
sents the minimal perturbation Awv; at each iteration, and
the black arrow line denotes the final universal perturbation
we computed.

where N is the total number of videos for finding the uni-
versal adversarial perturbation. The parameter v, is the
contribution of the n-th video to generate the adversarial
perturbation, and X, is the n-th adversarial video.

We can also develop a model-agnostic attack method to
generate a universal adversarial perturbation across models.
Specifically, we use an ensemble-based method A*F-AM to
solve the problem:

K

argn%ain)\HEHp _Zﬁk’g(lyk7"](x;0k)) o)
k=1

where K is the total number of models, and J(-;0}) is
the k-th model. Similar to «,, B is the weight of model
J(+5 0k).

3.6. Why is Appending-Frame Attack Effective?

In order to make the adversarial video can across the
classification boundary to a wrong decision area, it is ex-
pected that the representation in semantic space is greatly
changed while the representation in perception space is
kept. Although we empirically find that the operation of ap-
pending frames will keep the video in the original semantic
space, it provides an easy way to generate adversarial per-
turbations.

Table 1: Basic accuracy (%) of different video models.

Models UCF-101 HMDB-51
I3D-ResNet 57.7 97.2
I3D-Inception 94.9 96.8
CNN+LSTM 345 924
C3D 50.9 99.9
ResNet3D 83.7 91.6
P3D 58.8 95.2

As illustrated in Fig. 2, we show how perturbations
are generated gradually for both BA (left figure) and our
method (right figure) when the iteration goes on. At each it-
eration, the minimal perturbation Awv; is solved to reach the
classification boundary. We can see the difference between
two methods. BA can not constrain the attack orientation
as it chooses uncertain gradient ascent direction. With the
stochastic attack orientation, there comes out the possibil-
ity of canceling each attack orientation out, which of course
makes the perturbations small. As the figure shown, small
perturbations likely can not fight against or stay far away
decision boundary, and therefore consequently result in a
weak universal perturbation. However, with the setting of
appending adversarial frames, we can make the attack ori-
entation more uniform and similar, which helps a lot in
choosing a more reasonable attack orientation. As the fig-
ure shown, our method constrains the attack orientation cer-
tainly and reduces the chance of counteracting the attack
contribution, therefore our method is more likely to find
robust universal perturbations and consequently has strong
transfer ability. In what follows, we verify our hypothesis
with extensive experiments in Sec. 4.5.

As the assumption we proposed above, the key point of
the effectiveness is that we can generate the perturbations
with an constrained orientation. The adversarial perturba-
tions can be simply regarded as the sum of Av;. While a
powerful perturbation is not only comes from the length of
Awv;, but also the angular similarity between Awv; because
higher angular similarity means we can reduce the conflict-
ing between Av;. So we use cosine similarity as a mea-
sure to calculate the angular similarity trying to find out
whether our methods can maximize the similarity for gen-
erating more constrained orientation perturbations.

Vi = iAUZ

n—1
D=3 Vi Aviga|
i=1 HViHQHAU’H—lHQ

V; is the perturbations in i-th step in across videos or mod-
els settings, D denotes the total angular distance during the
perturbation generating periods.

(6)

3203



Model Accuracy with appending frame number
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Figure 3: Model accuracy w.r.t the number of appending
frames in UCF-101.

4. Experiments

In this section, we evaluate our proposed method com-
prehensively and compare our method with the state-of-the-
art white-box video attack methods.

4.1. Experimental Setting

Datasets. We use two popular benchmark datasets
for video classification: UCF-101 [27] and HMDB-51
[16].  UCF-101 is an action recognition dataset col-
lected from YouTube, which contains 13320 realistic ac-
tion videos within 101 action categories (e.g. body-motion,
sports, playing instruments, human-interaction ). Similarly,
HMDB-51 is comprised of 6849 video clips distributed
in 51 action categories including facial actions and body
movements. Each category contains at least 101 video clips.

Video Recognition Models. We consider up to six
state-of-the-art video classification models, namely, 13D-
Inception, I3D-ResNet, CNN+LSTM, C3D, ResNet3D and
P3D, as our target models to attack. I3D is an inflated
3D convolutional network. The difference between I3D-
ResNet and I3D-Inception lies at the basic 2D model in-
flated to 3D. More specifically, the I3D-Inception model
utilizes the UCF-101 dataset to fine-tune the pre-trained
model [4], while I3D-ResNet is based on the ResNet101
model trained on ImageNet. For CNN+LSTM, we use
ResNet101 pretained on ImageNet as feature extractor, and
then train LSTM with features output from ResNetl101.
P3D and Resnet3D are all implemented officially. It should
be noted that we only consider the RGB part for these
models. The accuracy of the six models on UCF-101 and
HMDB-51 can be found in Tab. 1. The accuracy gap be-
tween ours and those reported in [10, 31, 4,25, 32] is mainly
caused by the availability of different input frames at test
time.

Attack Settings. We ensure every single video to be at-
tacked is classified successfully and set to have T' = 28

Table 2: Comparison of BA and A’F with different video
classification models.

Target Model ~ Methods UCF-101 HMDB-31
FR (%) AAP FR (%) AAP
BA 100 022 100 031
BD-ResNet o 100 0.05 100 0.06
D-Incention BA 995 0.0 100 028
P AF 99.5  0.08 100 0.07
BA 100 020 100 028
CNNALSTM o 100 0.02 100 0.02
. BA 995 024 100 030
A’F 973 014 968 0.16
BA 978 025 100 030
ResNet3D A’F 95.1  0.09 100 0.07
3D BA 100 020 100 028
A’F 100 0.02 100 0.02

frames. The number of replaced frames A set to 2 and 4 in
the basic attack phase (attack a specific video under a spe-
cific model) and transferable attack phase, respectively. The
basic attack algorithm keeps the same settings with AF.
We select 500 videos from different categories in the test
dataset to evaluate the attack performance for the different
attack strategies in different attack scenarios. The parame-
ters A, & and (3 are tuned in the training phase. All of the
experiments are stopped when we find the adversarial per-
turbations or we reach the number of maximum iterations.

To quantitative evaluate attack models, we use the fol-
lowing performance measures. (i) Fooling Rate (FR): the
ratio of the generated adversarial videos that are success-
fully misclassified. (ii) Average Absolute Perturbation
(AAP): AAP = les 25:1 ZAITE:\ , where N is the num-
ber of test videos, and S is the spatial size of perturbations
(S = 224 x 224). E,, is the changed magnitude of pertur-
bation for the n-th video, and AT, is the number of adver-
sarial frames for the n-th video. Note that all of the experi-
ments are based on the video classification models classify
successfully. (iii) Difference between Intermediate Layer
(DIFF): denotes the Euclidean distance between the adver-
sarial frames and the original frames at the /-th intermediate
layer.

4.2. Attack Performance

Based on the property described in Sec 3.2, the append-
ing operation will have little or no impact on the represen-
tation in the perception space. Furthermore, it also hardly
changes the semantics of the original videos. As shown in
Fig. 3, there is only a slight drop in performance of recog-
nition models with the number of appending frames from 1
to 4.

While appending frames does not fool deep networks,
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Figure 4: TIllustration the (FR) values with different spa-
tial rates. We here report the results when spatial rates are
100%, 80%, 50%, 20%, respectively. To be simple, the spa-
tial masks are constrained to be squares. In the bottom of
the figure, the first row is example adversarial frames of at-
tacking ResNet3D and the second row is the corresponding
perturbations.

the operation, however, makes video attack become eas-
ier. Tab. 2 lists the performance of A’F. on UCF-101 and
HMDB-51. It indicates that A’F outperforms BA by a large
gap on AAP, and meanwhile remains almost the same high
FR as BA.

For example, with recognition model P3D, both A%F and
BA achieve perfect FR on UCF-101. However, the AAP of
A’F is just 0.02, while the AAP of perturbation generated
by BA [33] is up to 0.2, which is 10 times compared with
A’F. This means the proposed A’F generates high quality
adversarial videos with more imperceptible perturbations.

4.3. Attack with Spatial Mask

With aforementioned methods, each pixel of the adver-
sarial frames is perturbed as the size of the perturbations is
the same as the adversarial frames. This may increase the
risk to perceive adversarial frames. To increase the conceal-
ing chance and reduce the distance between the projection
original data in perception space, one can restrict the per-
turbation in a much smaller size. It is quite easy for us to
construct arbitrary shape perturbations by changing shapes
of spatial masks. However, to be simple, we only show the
fooling rates for square perturbations. As the Fig. 4 shown,

Table 3: Comparison of BA-AV and A?F-AV in transfer-
ability across different videos.

UCF-101 HMDB-51
FR (%) AAP FR (%) AAP
BA-AV 954 0.62 930 0.70

Target Model Methods

BD-ResNet  op av 981 052 978 0.60
b-incenion BAAY 26 034 20 025
P AZF-AV 693 125 23 084

BA-AV 18.1  0.09 69.6 0.13

CNNALSTM - op Av 471 016 457 021
. BAAV 979 0.75  98.0 0.68
A%F-AV 98.1 1.21 96.9 1.75

BAAV 452 0.65 586 049

ResNe3D  \op v 966 121 941 079
3D BAAVY 207 011 469 0.16

A’F-AV 984 0.25 974 0.15

the FR values decrease slowly when the spatial rate drops
from 100% to 50%. This means spatial mask attack is in-
deed effective for generating more imperceptible adversar-
ial frames while slightly or not hurting FR with a suitable
spatial rate. Furthermore, it is easy to understand that when
the spatial rate is too small, the generated perturbations can
not have enough ability to attack classification models. For
instance, as shown, the FR drops a lot when the spatial rate
equals to 20%.

4.4. Attack Transferability

Cross-Video Transferability. The experimental results
in Tab. 2 show that the A’F can increase the effective-
ness of adversarial perturbations for specific videos. How-
ever, we argue that a successful adversarial perturbation
should not only perform well for a specific video, but also
should hold the capability in transferring across different
videos. We evaluate the transferability of adversarial pertur-
bations across videos on UCF-101 and HMDB-51 by A%F-
AV (Eq. (4)). The performance of universal adversarial per-
turbations across videos is listed in Tab. 3. One can clearly
see that, compared with the baseline BA, AZF-AV has much
superior performance in FR. For example, with P3D as the
treat model, the FRs of BA and A2F-AV on UCF-101 are
20.7% and 98.4%, respectively. The result suggests that
our method can significantly enhance the attack ability in
transferring across different videos. Our method has larger
AAP than BA in this scenario. This is mainly because our
attack orientation is more uniform and less random, which
helps the perturbation accumulate gradually in the seman-
tic space without breaking the decision boundary of threat
models.

Cross-Model Transferability. We also evaluate the trans-
ferability of perturbations across models with A’F-AM
(Eq. (5)). To the end, we use the evaluated six models to
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Table 4: Comparison of BA-AM and A?F-AM in transferability across models on UCF-101 dataset. The first column
indicates we use the Leave-One-Out ensemble method that excludes one model to produce perturbations. For instance, ‘—13D-
ResNet’ means the corresponding ensemble model excludes I3D-ResNet. The numbers in the 3-8 columns are the fooling

rates (%) for each attacked model.

Models Method  I3D-ResNet ResNet3D P3D  I3D-Inception C3D CNN+LSTM
BA-AM 0.0 78.7 84.6 87.8 70.8 56.2
—I3D-ResNet ok Am 39.5 68.1 97.4 42.9 85.4 81.6
ResNegD | BAAM 100 0.0 84.6 87.8 70.8 38.9
A2F-AM 89.5 6.4 97.4 52.2 85.4 71.4
. BA-AM 100 0.9 15.4 87.8 72.9 58.8
A2F-AM 86.8 74.5 59.0 50.0 85.4 83.7
I3D-nception PAAM 100 83.0 97.4 0.0 73.0 61.1
A2F-AM 86.8 78.7 100 2.0 85.4 50.0
. BA-AM 100 83.0 100 90.0 0.0 64.7
A2F-AM 92.1 80.9 100 60.0 20.8 79.6
BA-AM 100 80.9 97.4 97.8 72.9 35.7
~CNNALSTM ok AM 89.5 74.5 100 55.6 85.4 77.6

explore the across models perturbations. Specifically, we
use the Leave-One-Out ensemble method that excludes one
model to produce perturbations, and then attack each model
with the generated perturbations. The corresponding results
are shown in Tab. 4. The result shows that our method have
a better performance in fooling those models. For exam-
ple, with perturbations generated by ensemble models with-
out the P3D model, the fooling rates of attacking P3D for
BA and A’F-AM are 15.4% and 59.0%, respectively. This
means the gain of our method over the baseline is over 40%
for the unseen threat model. We think the improvement may
be caused by the constrained and unified attacking orienta-
tion of our method, which makes the perturbations stay far
away from the classification boundary.

4.5. Angular Similarity

According to the equation in Eq. (6), we calculate the
angular similarity under across videos and models scene.
The total attacked video number of across videos settings
is 1000 and the ensemble strategy of across models is still
Leave-One-Out. The experimental results are shown in
Tab. 5 that the angular similarity of A%F is higher than BA
in all models under all situations. The higher similarity rep-
resents a smaller angular between each vector in the feature
subspace which can alleviate the gradient conflict and help
them towards the same direction. Refer to the results in
Tab. 3 and Tab. 4, it seems to have a positive correlation
between FR and angular similarity.

5. Conclusions

In this paper, we present an interesting idea of attack-
ing videos. We take advantage of the temporal property
of videos, i.e., changing a few ending frames of it, though

Table 5: Comparison of BA, and A’F with the Angular sim-
ilarity between perturbations.

Target Model Methods  Across Videos  Across Models
I3D-ResNet /13;‘1‘: giggf 8:83;1;3
I3D-Inception ]ABQ?: 33(9);2 88§§3
CNN+LSTM /]ffl‘; (1’;223‘1‘ 8:8;;33
GO Vb oaw oo
ResNet3D iﬁ?: ?)2(3)%3 gggﬁi
PO S e e

introducing a large perturbation in terms of the pixel-wise
metrics, can still be easily concealed, i.e., most people
would not notice that the video has been attacked. On
the other hand, by adding adversarial perturbations only on
these new frames, the perceptibility of the added noise be-
comes smaller yet the attack is verified easier to transfer
across videos and even different networks. In other words,
our method, though simple, provides an effective pipeline
of universal video attack.
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