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Abstract

This paper investigates the problem of generating ad-

versarial examples for video classification. We project all

videos onto a semantic space and a perception space, and

point out that adversarial attack is to find a counterpart

which is close to the target in the perception space but far

from the target in the semantic space. Based on this for-

mulation, we notice that conventional attacking methods

mostly used Euclidean distance to measure the perception

space, but we propose to make full use of the property of

videos and assume a modified video with a few consecu-

tive frames replaced by dummy contents (e.g., a black frame

with texts of ‘thank you for watching’ on it) to be close to

the original video in the perception space though they have

a large Euclidean gap. This leads to a new attack approach

which only adds perturbations on the newly-added frames.

We show its high success rates in attacking six state-of-the-

art video classification networks, as well as its universality,

i.e., transferring well across videos and models.

1. Introduction

Deep neural networks, while being powerful in learning

from complicated visual data, are vulnerable to small noise

known as adversarial perturbations. Researchers designed

a lot of attacking algorithms to add imperceptible perturba-

tions onto well-trained neural networks so that the predic-

tion is dramatically destroyed. Successful scenarios include

image classification [17, 22, 20], object detection and se-

mantic segmentation [34], super-resolution [8], visual ques-

tion answering [35], image captioning [8], etc. Researchers

conjectured that adversaries are closely related to the work-

ing mechanism as well as explainability of deep neural net-

works [30, 11], and both adversarial attack and defense have

been attracting attentions in both academia and industry.

Compared to adversarial attacks for visual recognition

Adversarial	Video	with	Appending	Adversarial	Frames

Original	Video	with	Appending	Frames

Appending	Frames

Appending	Adversarial	Frames

BenchPress	

Perturbation
Surfing

Original	Video

BenchPress	

GroundTruth:BenchPress

GroundTruth:BenchPress

GroundTruth:BenchPress

Attacking Frames

Figure 1: We generate adversarial examples for video clas-

sification by replacing the ending part of the input clip with

a few dummy frames, i.e., black images with texts of ‘thank

you for watching’. The video clip was originally (correctly)

recognized as ‘BenchPress’. While adding dummy frames

alone does not alter the classification result, adding slight

perturbations on them changes the prediction to ‘Surfing’ (a

success attack).

on still images, the same topic on video data has been

fewer investigated. There exist a few video-based attack

methods [33, 15, 18], but they mostly added perturba-

tions to individual video frames, as if video is a kind of

high-dimensional data with no internal structures. Having

ignored the property that video is a sequence of images

and neighboring frames are closely correlated, these attack

methods suffer either high perceptibility or limited transfer-

ability across videos or models.

This paper studies this problem from a new perspective.

We first define two spaces named semantic space and per-

ception space, respectively, where the former is determin-
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istic provided the target model (e.g., for video classifica-

tion) but the latter involves human perception which is quite

subjective and difficult to depict, i.e., defining the distance

between two elements in the space. For image-based adver-

sarial attack, people often use the l2 distance to approximate

the perception space, but we notice that video-based attack

can benefit from an intriguing property: if some consecutive

frames of a video are replaced by some dummy contents

(e.g., a black frame with texts of ‘thank you for watching’

on it), people may not perceive that it is a attack. In other

words, the perception space has an intriguing property that

lies in its subspaces (e.g., a few consecutive frames): the

points that correspond to the original and dummy clips have

nearly a zero distance in the subspace.

Making full use of this observation, we present a novel

video attack method named appending adversarial frames

(A2F) and demonstrate its effectiveness on the video clas-

sification task. As shown in Fig. 1, the idea is very sim-

ple: given a target video, we first replace a few consecu-

tive frames (e.g., in the end of the video) by dummy frames,

and then add adversarial perturbations only to these dummy

frames. Note that the first step often does not fool the deep

network, but pushes the target video towards the classifica-

tion border, so that the second step can achieve the attack

with very small perturbations. From the conventional per-

spective, A2F has large perceptibility (measured in the Eu-

clidean space), but unless educated beforehand, people may

not notice that the black frames come from manual editing.

Compared to a regular attack, our approach enjoys three-

fold benefits. First, a high success rate. Note that the

dummy frames do not contain any semantic information,

i.e., lying close to the semantic border, so that pushing

it towards any class requires much fewer efforts and thus

easier to accomplish. Second, a low perceptibility, e.g.,

in terms of pixel-level difference or the number of itera-

tions, which is for the same reason. Third and most impor-

tantly, a strong ability in transferring across different sce-

narios. Since the perturbations are added beyond these com-

mon, class-agnostic frames, we shall expect that the noise

is highly associated to the target class, and thus it produces

the same classification result when moved to a new video

or even a new classification network. This paves the way

of universal adversarial attack which is believe to be more

challenging yet threatening for real-world scenarios.

We evaluate our approach on two popular video classifi-

cation datasets, namely, UCF101 [27] and HMDB51 [16].

We select six victim models from a wide range of

video classification methods, including CNN+LSTM [10],

C3D [31], ResNet3D [12], P3D [25], and I3D [4] on both

ResNet [13] and Inception [29]. We start with white-box

attacks, in which the parameters of the victim models are

known to the attacker, and then transfer the perturbations

computed on each video to other unseen models, i.e., black-

box attacks. Our approach enjoys superior success rate

while the perturbations added to the dummy frames are

much smaller than that added by the baseline approaches

to the original video frames.

The main contributions of this paper are as follows:

• We provide a new insight that understands adversar-

ial attacks in the semantic and perception spaces, from

which we point out that video attack should be consid-

ered differently from image attack, since the percep-

tion space can be decomposed according to individual

frames.

• We propose to append adversarial frames to videos and

demonstrate that the idea is effective in different sce-

narios, including having a high success rate and being

less perceptible to observers.

• We further discuss different application scenarios of

A2F, with the most important one being black-box at-

tack, i.e., transferring the attack across different target

videos and victim models, which we show the promise

of A2F being a universal attack method.

2. Related Work

Video Recognition. The power of deep learning ar-

chitectures is not only shown in image classification (Im-

ageNet [9]), but also shown in video recognition. There are

many successful video recognition models. For instance,

Donahue et al. [10] proposed a class of recurrent long-term

models that can be jointly trained to learn temporal dy-

namics and convolutional perceptual representations, and

demonstrated superior performance on recognition and de-

scription of images and videos. Tran et al. [31] addressed

the problem of learning spatio tempora features for videos

using 3D ConvNets. Noting that the training of 3D Con-

vNets is computationally extensive, Carreira et al. [4] in-

troduced a two-stream Inflated 3D (I3D) ConvNets, which

built upon on 2D kernels but inflated filters and pooling

kernels into 3D. Another representative strategy to reduce

training cost was proposed in [25], which simulated 3D con-

volutions with 2D convolutions on spatial domain plus 1D

convolutions on adjacent feature maps in time. Recently,

Hara et al. [12] examined the architectures of various 3D

CNNs from relatively shallow networks to very deep ones

on current video datasets.

Adversarial Attacks on Images. There are fruitful at-

tack methods in the literature. Among the first to intro-

duce adversarial examples against deep neural networks

was [30]. After that, Goodfellow et al. [11] used the sign

of the gradient to propose a fast attack method called Fast

Gradient Sign Method (FGSM). FGSM seeks the direction

that can maximize the classification errors to update each

pixel. The subsequent method I-FGSM [17] extends FGSM

by more iterations, and can generate adversarial examples
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in the physical world. In [20], an iterative method called

Projection Gradient Descent (PGD) was proposed. PGD

makes the perturbations project back to the ǫ-ball which

center is the original data when perturbations over the ǫ-

ball. Moosavi et al. [22] proposed DeepFool to find the clos-

est distance from the original input to the decision boundary

of adversarial examples. Moosavi et al. [21] analyzed uni-

versal perturbations and its relationship between different

classification regions of decision boundary. Liu et al. [19]

studied the transferability of both non-targeted and targeted

adversarial examples, and proposed an ensemble-based ap-

proaches to generate adversarial examples with stronger

transferability. Sabour et al. [26] performed a targeted at-

tack by minimizing the distance of the representation of

intermediate neural network layers instead of the output

layer. There also exists other methods for white-box attack,

e.g. Jacobian-based Saliency Map Attack (JSMA) [24] and

Elastic net attack (EAD) [6]. Except the white-box image

attack, some black-box attack methods e.g. Zeroth-order

optimization attack (ZOO) [7] used a black-box method to

estimate the adversarial gradient. HopSkipJumpAttack [5],

which estimated the gradient direction using binary infor-

mation at the decision boundary, is also a family of black-

box algorithms. Naseer et al. [23] indicate that we can en-

hance adversarial transferability by maximize distortions in

the network feature space.

Adversarial Attacks on Videos. There are several at-

tack methods proposed for generating video adversarial ex-

amples. Wei et al. [33] claimed that they were the first

to explore the adversarial examples in videos. In their pa-

per, they mainly investigated the sparsity and propagation of

adversarial perturbations across video frames. Recently,Li

Sabour et al. [18] showed that we can use a Generative

Adversarial Networks (GANs) like architecture to generate

perturbations in real-time video classifier. Jiang et al. [15]

was the first work on black-box video attacks against video

recognition models. In this paper, we use an optimization

based method to find adversarial perturbations. Being dif-

ferent from previous works that add perturbations to the

original videos, we append the adversarial frames to the

original videos. To our knowledge, we are the first to pro-

pose to append adversarial frames to videos. Furthermore,

to make the attack comparison more reasonable, we modify

the attacking method [33] to be adaptive attacks [3, 2, 14]

when evaluating on the effectiveness of our method.

3. Our Approach

3.1. Adversarial Attack, Semantic and Perception
Spaces

We use J(·;θ) to denote the threat model with θ indi-

cating network parameters. We always consider the threat

model as a deep neural network, which means the classifier

J(·;θ) is a complicated yet differentiable function. Let X

be the input video. Without loss of generality, we assume

X ∈ R
T×W×H×D, where T denotes the number of frames,

and W , H , and D denote the width, height, and the number

of channels of each frame, respectively. From the conven-

tional perspective, the goal of adversarial attack is to find an

adversarial example, X̂, which shares the same dimension-

ality with X, looks identical to X, but J(X;θ) and J(X̂;θ)
are very different, e.g., after hard quantization, classified

into different classes.

Here, we provide an alternative formulation of this prob-

lem. We assume that the threat model, J(X;θ), defines a

C-dimensional semantic space so that each video can be

projected onto the space, i.e., being assigned with a class

distribution. In addition, we also project each video onto

a perception space, in which the distance between two el-

ements, say, X and X̂, indicates how people can perceive

that X̂ is a perturbed counterpart of X. Given a fixed threat

model, the semantic space is mostly deterministic, where

we use ℓ(1y,J(X̂;θ)) (1y is a one-hot vector with the y-

th class being 1, and y is the dominant class of J(X̂;θ))

to measure the distance between X and X̂, where ℓ(·, ·) is

the cross-entropy loss function. However, the perception

space is subjective and difficult to depict – one cannot easily

come up with a standard of perceptibility, and researchers

mostly used the Euclidean space to approximate the percep-

tion space, i.e., the distance between X and X̂ is measured

by ‖X̂−X‖2.

This formulation leads to the so-called basic attack (BA)

method, which was introduced in [33] and follow-up ap-

proaches later [15, 18] added frame-level constraints to it.

These methods all adding their perturbations to original

frames, which is difficult in some situations as manipulat-

ing the original videos needs a high authority. As for the at-

tack transferability, these methods almost perform not well

when attacking across models. From the semantic under-

standing perspective, this is because the orientations of per-

turbations in different models are always random, while a

primary across models settings will not be able to constrain

the perturbations to a specific orientation.

On the other hand, we argue that the internal structure

of the video should be considered in generating effective

adversarial attacks, yet the BA method does not make full

use of it, but simply regard the video as an arbitrary type

of high-dimensional data. This motivates us to find a better

solution.

3.2. An Intriguing Property of the Video Perception
Space

The key is to notice that for video attack, the percep-

tion space has an intriguing property which has not been ex-

ploited. Note that video allows the scenario to be switched

sparsely, which means that one can replace a consecutive
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part of a video with another, yet this operation may not be

perceived by the observer if the semantics of the original

clip and the replacement do not heavily conflict with each

other. Note that this property does not hold for still images,

as one often expects an image to have pixel-level continu-

ity, e.g., most observers are sensitive to the change that an

image patch is replaced by another.

This assumption changes the conventional definition of

the perception space. We no longer measure it solely by the

Euclidean distance, but allow some ‘shortcut connections’

in the space. Specifically, let a set of consecutive frames

define a subspace, then we assume that all video clips in

the subspace, without heavy semantic conflict, have a zero

distance in the perception space. Note that this is a com-

plementary depiction of the perception space. Though not

complete, it is sufficient in generating video-based adver-

sarial examples efficiently, as shown in later parts.

We make a side comment here. The essence is to make

use of the internal structure of video data (each frame can

be a relatively individual semantic unit) and thus investigate

the perception space from its subspaces. Such decomposi-

tion also affects the semantic space, which we shall see in

Section 3.6 that if the replaced frames do not contain se-

mantic information, the video, in the semantic space, will

be pushed towards the border of classification. This indeed

creates convenience for generating universal perturbations.

3.3. Video Attack by Appending Adversarial
Frames

Inspired by the above analyses, we propose a novel way

of attacking videos. It is named the Appending Adver-

sarial Frames (A2F) method, which replaces a few con-

secutive frames of the target video with dummy frames,

and add perturbations only on these new frames. Here, a

dummy frame should satisfy two conditions, namely, it does

not contain any semantic information, yet it is not likely to

cause the observer doubt that the video has been manually

edited. We investigate a simple choice, that the frame is an

all-black image with texts of ‘thank you for watching’ dis-

played on it. Such a frame is commonly seen at the end

of a video, so most people may not notice it is an attacked

video1.

Mathematically, let X̂ = {f1, f2, . . . , fT−∆T ,∆},

where ∆ ∈ R
∆T×W×H×C be the appending dummy

frames without perturbations, and ∆̂ be its adversarial

frames with perturbations. Thus, E = ∆̂ −∆ is the added

adversarial perturbations.

We use A
2
F to find E to maximize the difference be-

tween the output from video classification models which

1Of course, we can insert frames at the beginning or in the middle of the

video, possibly with different texts (e.g., ‘welcome to watch our video’ in

the beginning), and these options have the same ability of attack. Through-

out this paper, we only perform experiments with adversarial frames added

in the end of each video.

take X̂ and X as input:

argmin
E

λ||E||p − ℓ(1y,J(X̂;θ)) (1)

where ||E||p is the ℓp norm (we select p = ∞ in this paper)

of E, which is used to measure the magnitude of the adver-

sarial perturbations. The parameter λ is the weight applied

to balance different items in the objective function.

If the goal is to misclassify the generated adversarial

video X̂ to a predefined label (i.e., the target label). then

we can modify the problem to minimize the difference be-

tween the target label and the prediction.

argmin
E

λ||E||p + ℓ(1y∗ ,J(X̂;θ)) (2)

where y∗ is the targeted label.

With A2F, we develop a series of variants to overcome

different problems in various attack scenarios.

3.4. Spatial Mask Attack

It is important for us to control the perturbation to make

it more imperceptive. Su et al. [28] find that only mod-

ify one pixel can also generate adversarial examples and

Brown et al. [1] generate an adversarial patch which can

be added to a part of the original image and make it being

misclassified, etc. Those works all suggested that we can do

a part attack in our attack conditions. To the end, we apply

the idea of the spatial mask to decorate perturbations called

A2F-SM. In particular,

argmin
E

λ||M ◦E||p − ℓ(1y,J(X̂)) (3)

where M ∈ {0, 1}∆T×W×H×C is the binary spatial mask

of the perturbation E, and only the region to be attacked is

set to 1. Note that the operator ◦ denotes the element-wise

multiplication.

3.5. Transfer Attack

There are a lot of works that show the adversarial exam-

ples have the attack transferability[21, 19], [33] also show

the ability between 3DConv based models and [18] shows

they can transfer in CNN+LSTM based models. In this sec-

tion, we proposed the adaptable method focus on generating

the adversarial frames can transfer across videos and mod-

els.

Although we can compute different perturbations for dif-

ferent videos to generate a series of specific adversarial

frames with Eq. (1), it is also possible to find a video-

agnostic adversarial perturbation that can apply to any input

video for a certain video-classification method A2F-AV.

argmin
E

λ||E||p −

N∑

n=1

αnℓ(1yn
,J(X̂n;θ)) (4)
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Figure 2: An explanation of the mechanism of existing

methods and our attacking method. The left figure shows

the schematic of existing methods, while the right figure

shows the schema represented by our method, where vb and

vo denote the universal perturbation generated by the two

methods, respectively. X with red dot denotes the batch of

video data and the red triangle denotes the video data after

appending the adversarial frames. As for the classification

region Ri, they are showed in different shape with differ-

ent colors. The blue arrow line in the classification region

denotes the shift that is caused by the adversarial frames

appended to the video, the black dotted arrow line repre-

sents the minimal perturbation ∆vi at each iteration, and

the black arrow line denotes the final universal perturbation

we computed.

where N is the total number of videos for finding the uni-

versal adversarial perturbation. The parameter αn is the

contribution of the n-th video to generate the adversarial

perturbation, and X̂n is the n-th adversarial video.

We can also develop a model-agnostic attack method to

generate a universal adversarial perturbation across models.

Specifically, we use an ensemble-based method A2F-AM to

solve the problem:

argmin
E

λ||E||p −

K∑

k=1

βkℓ(1yk
,J(X̂;θk)) (5)

where K is the total number of models, and J(·;θk) is

the k-th model. Similar to αn, βk is the weight of model

J(·;θk).

3.6. Why is Appending­Frame Attack Effective?

In order to make the adversarial video can across the

classification boundary to a wrong decision area, it is ex-

pected that the representation in semantic space is greatly

changed while the representation in perception space is

kept. Although we empirically find that the operation of ap-

pending frames will keep the video in the original semantic

space, it provides an easy way to generate adversarial per-

turbations.

Table 1: Basic accuracy (%) of different video models.

Models UCF-101 HMDB-51

I3D-ResNet 57.7 97.2

I3D-Inception 94.9 96.8

CNN+LSTM 34.5 92.4

C3D 50.9 99.9

ResNet3D 83.7 91.6

P3D 58.8 95.2

As illustrated in Fig. 2, we show how perturbations

are generated gradually for both BA (left figure) and our

method (right figure) when the iteration goes on. At each it-

eration, the minimal perturbation ∆vi is solved to reach the

classification boundary. We can see the difference between

two methods. BA can not constrain the attack orientation

as it chooses uncertain gradient ascent direction. With the

stochastic attack orientation, there comes out the possibil-

ity of canceling each attack orientation out, which of course

makes the perturbations small. As the figure shown, small

perturbations likely can not fight against or stay far away

decision boundary, and therefore consequently result in a

weak universal perturbation. However, with the setting of

appending adversarial frames, we can make the attack ori-

entation more uniform and similar, which helps a lot in

choosing a more reasonable attack orientation. As the fig-

ure shown, our method constrains the attack orientation cer-

tainly and reduces the chance of counteracting the attack

contribution, therefore our method is more likely to find

robust universal perturbations and consequently has strong

transfer ability. In what follows, we verify our hypothesis

with extensive experiments in Sec. 4.5.

As the assumption we proposed above, the key point of

the effectiveness is that we can generate the perturbations

with an constrained orientation. The adversarial perturba-

tions can be simply regarded as the sum of ∆vi. While a

powerful perturbation is not only comes from the length of

∆vi, but also the angular similarity between ∆vi because

higher angular similarity means we can reduce the conflict-

ing between ∆vi. So we use cosine similarity as a mea-

sure to calculate the angular similarity trying to find out

whether our methods can maximize the similarity for gen-

erating more constrained orientation perturbations.

Vi =
n∑

i=1

∆vi

D =

n−1∑

i=1

|Vi ·∆vi+1|

||Vi||2||∆vi+1||2

(6)

Vi is the perturbations in i-th step in across videos or mod-

els settings, D denotes the total angular distance during the

perturbation generating periods.
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frames in UCF-101.

4. Experiments

In this section, we evaluate our proposed method com-

prehensively and compare our method with the state-of-the-

art white-box video attack methods.

4.1. Experimental Setting

Datasets. We use two popular benchmark datasets

for video classification: UCF-101 [27] and HMDB-51

[16]. UCF-101 is an action recognition dataset col-

lected from YouTube, which contains 13320 realistic ac-

tion videos within 101 action categories (e.g. body-motion,

sports, playing instruments, human-interaction ). Similarly,

HMDB-51 is comprised of 6849 video clips distributed

in 51 action categories including facial actions and body

movements. Each category contains at least 101 video clips.

Video Recognition Models. We consider up to six

state-of-the-art video classification models, namely, I3D-

Inception, I3D-ResNet, CNN+LSTM, C3D, ResNet3D and

P3D, as our target models to attack. I3D is an inflated

3D convolutional network. The difference between I3D-

ResNet and I3D-Inception lies at the basic 2D model in-

flated to 3D. More specifically, the I3D-Inception model

utilizes the UCF-101 dataset to fine-tune the pre-trained

model [4], while I3D-ResNet is based on the ResNet101

model trained on ImageNet. For CNN+LSTM, we use

ResNet101 pretained on ImageNet as feature extractor, and

then train LSTM with features output from ResNet101.

P3D and Resnet3D are all implemented officially. It should

be noted that we only consider the RGB part for these

models. The accuracy of the six models on UCF-101 and

HMDB-51 can be found in Tab. 1. The accuracy gap be-

tween ours and those reported in [10, 31, 4, 25, 32] is mainly

caused by the availability of different input frames at test

time.

Attack Settings. We ensure every single video to be at-

tacked is classified successfully and set to have T = 28

Table 2: Comparison of BA and A2F with different video

classification models.

Target Model Methods
UCF-101 HMDB-51

FR (%) AAP FR (%) AAP

I3D-ResNet
BA 100 0.22 100 0.31

A2F 100 0.05 100 0.06

I3D-Inception
BA 99.5 0.20 100 0.28

A2F 99.5 0.08 100 0.07

CNN+LSTM
BA 100 0.20 100 0.28

A2F 100 0.02 100 0.02

C3D
BA 99.5 0.24 100 0.30

A2F 97.3 0.14 96.8 0.16

ResNet3D
BA 97.8 0.25 100 0.30

A2F 95.1 0.09 100 0.07

P3D
BA 100 0.20 100 0.28

A2F 100 0.02 100 0.02

frames. The number of replaced frames ∆ set to 2 and 4 in

the basic attack phase (attack a specific video under a spe-

cific model) and transferable attack phase, respectively. The

basic attack algorithm keeps the same settings with A2F.

We select 500 videos from different categories in the test

dataset to evaluate the attack performance for the different

attack strategies in different attack scenarios. The parame-

ters λ, α and β are tuned in the training phase. All of the

experiments are stopped when we find the adversarial per-

turbations or we reach the number of maximum iterations.

To quantitative evaluate attack models, we use the fol-

lowing performance measures. (i) Fooling Rate (FR): the

ratio of the generated adversarial videos that are success-

fully misclassified. (ii) Average Absolute Perturbation

(AAP): AAP = 1

N×S

∑N

n=1

∑
|En|

∆Tn

, where N is the num-

ber of test videos, and S is the spatial size of perturbations

(S = 224 × 224). En is the changed magnitude of pertur-

bation for the n-th video, and ∆Tn is the number of adver-

sarial frames for the n-th video. Note that all of the experi-

ments are based on the video classification models classify

successfully. (iii) Difference between Intermediate Layer

(DIFF): denotes the Euclidean distance between the adver-

sarial frames and the original frames at the l-th intermediate

layer.

4.2. Attack Performance

Based on the property described in Sec 3.2, the append-

ing operation will have little or no impact on the represen-

tation in the perception space. Furthermore, it also hardly

changes the semantics of the original videos. As shown in

Fig. 3, there is only a slight drop in performance of recog-

nition models with the number of appending frames from 1

to 4.

While appending frames does not fool deep networks,
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Figure 4: Illustration the (FR) values with different spa-

tial rates. We here report the results when spatial rates are

100%, 80%, 50%, 20%, respectively. To be simple, the spa-

tial masks are constrained to be squares. In the bottom of

the figure, the first row is example adversarial frames of at-

tacking ResNet3D and the second row is the corresponding

perturbations.

the operation, however, makes video attack become eas-

ier. Tab. 2 lists the performance of A2F. on UCF-101 and

HMDB-51. It indicates that A2F outperforms BA by a large

gap on AAP, and meanwhile remains almost the same high

FR as BA.

For example, with recognition model P3D, both A2F and

BA achieve perfect FR on UCF-101. However, the AAP of

A2F is just 0.02, while the AAP of perturbation generated

by BA [33] is up to 0.2, which is 10 times compared with

A2F. This means the proposed A2F generates high quality

adversarial videos with more imperceptible perturbations.

4.3. Attack with Spatial Mask

With aforementioned methods, each pixel of the adver-

sarial frames is perturbed as the size of the perturbations is

the same as the adversarial frames. This may increase the

risk to perceive adversarial frames. To increase the conceal-

ing chance and reduce the distance between the projection

original data in perception space, one can restrict the per-

turbation in a much smaller size. It is quite easy for us to

construct arbitrary shape perturbations by changing shapes

of spatial masks. However, to be simple, we only show the

fooling rates for square perturbations. As the Fig. 4 shown,

Table 3: Comparison of BA-AV and A2F-AV in transfer-

ability across different videos.

Target Model Methods
UCF-101 HMDB-51

FR (%) AAP FR (%) AAP

I3D-ResNet
BA-AV 95.4 0.62 93.0 0.70

A2F-AV 98.1 0.52 97.8 0.60

I3D-Inception
BA-AV 2.6 0.34 2.0 0.25

A2F-AV 69.3 1.25 2.3 0.84

CNN+LSTM
BA-AV 18.1 0.09 69.6 0.13

A2F-AV 47.1 0.16 45.7 0.21

C3D
BA-AV 97.9 0.75 98.0 0.68

A2F-AV 98.1 1.21 96.9 1.75

ResNet3D
BA-AV 45.2 0.65 58.6 0.49

A2F-AV 96.6 1.21 94.1 0.79

P3D
BA-AV 20.7 0.11 46.9 0.16

A2F-AV 98.4 0.25 97.4 0.15

the FR values decrease slowly when the spatial rate drops

from 100% to 50%. This means spatial mask attack is in-

deed effective for generating more imperceptible adversar-

ial frames while slightly or not hurting FR with a suitable

spatial rate. Furthermore, it is easy to understand that when

the spatial rate is too small, the generated perturbations can

not have enough ability to attack classification models. For

instance, as shown, the FR drops a lot when the spatial rate

equals to 20%.

4.4. Attack Transferability

Cross-Video Transferability. The experimental results

in Tab. 2 show that the A2F can increase the effective-

ness of adversarial perturbations for specific videos. How-

ever, we argue that a successful adversarial perturbation

should not only perform well for a specific video, but also

should hold the capability in transferring across different

videos. We evaluate the transferability of adversarial pertur-

bations across videos on UCF-101 and HMDB-51 by A2F-

AV (Eq. (4)). The performance of universal adversarial per-

turbations across videos is listed in Tab. 3. One can clearly

see that, compared with the baseline BA, A2F-AV has much

superior performance in FR. For example, with P3D as the

treat model, the FRs of BA and A2F-AV on UCF-101 are

20.7% and 98.4%, respectively. The result suggests that

our method can significantly enhance the attack ability in

transferring across different videos. Our method has larger

AAP than BA in this scenario. This is mainly because our

attack orientation is more uniform and less random, which

helps the perturbation accumulate gradually in the seman-

tic space without breaking the decision boundary of threat

models.

Cross-Model Transferability. We also evaluate the trans-

ferability of perturbations across models with A2F-AM

(Eq. (5)). To the end, we use the evaluated six models to
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Table 4: Comparison of BA-AM and A2F-AM in transferability across models on UCF-101 dataset. The first column

indicates we use the Leave-One-Out ensemble method that excludes one model to produce perturbations. For instance,‘−I3D-

ResNet’ means the corresponding ensemble model excludes I3D-ResNet. The numbers in the 3-8 columns are the fooling

rates (%) for each attacked model.

Models Method I3D-ResNet ResNet3D P3D I3D-Inception C3D CNN+LSTM

−I3D-ResNet
BA-AM 0.0 78.7 84.6 87.8 70.8 56.2

A2F-AM 39.5 68.1 97.4 42.9 85.4 81.6

−ResNet3D
BA-AM 100 0.0 84.6 87.8 70.8 38.9

A2F-AM 89.5 6.4 97.4 52.2 85.4 71.4

−P3D
BA-AM 100 80.9 15.4 87.8 72.9 58.8

A2F-AM 86.8 74.5 59.0 50.0 85.4 83.7

−I3D-Inception
BA-AM 100 83.0 97.4 0.0 73.0 61.1

A2F-AM 86.8 78.7 100 2.0 85.4 50.0

−C3D
BA-AM 100 83.0 100 90.0 0.0 64.7

A2F-AM 92.1 80.9 100 60.0 20.8 79.6

−CNN+LSTM
BA-AM 100 80.9 97.4 97.8 72.9 35.7

A2F-AM 89.5 74.5 100 55.6 85.4 77.6

explore the across models perturbations. Specifically, we

use the Leave-One-Out ensemble method that excludes one

model to produce perturbations, and then attack each model

with the generated perturbations. The corresponding results

are shown in Tab. 4. The result shows that our method have

a better performance in fooling those models. For exam-

ple, with perturbations generated by ensemble models with-

out the P3D model, the fooling rates of attacking P3D for

BA and A2F-AM are 15.4% and 59.0%, respectively. This

means the gain of our method over the baseline is over 40%
for the unseen threat model. We think the improvement may

be caused by the constrained and unified attacking orienta-

tion of our method, which makes the perturbations stay far

away from the classification boundary.

4.5. Angular Similarity

According to the equation in Eq. (6), we calculate the

angular similarity under across videos and models scene.

The total attacked video number of across videos settings

is 1000 and the ensemble strategy of across models is still

Leave-One-Out. The experimental results are shown in

Tab. 5 that the angular similarity of A2F is higher than BA

in all models under all situations. The higher similarity rep-

resents a smaller angular between each vector in the feature

subspace which can alleviate the gradient conflict and help

them towards the same direction. Refer to the results in

Tab. 3 and Tab. 4, it seems to have a positive correlation

between FR and angular similarity.

5. Conclusions

In this paper, we present an interesting idea of attack-

ing videos. We take advantage of the temporal property

of videos, i.e., changing a few ending frames of it, though

Table 5: Comparison of BA, and A2F with the Angular sim-

ilarity between perturbations.

Target Model Methods Across Videos Across Models

I3D-ResNet
BA 0.2968 0.0319

A2F 2.1971 0.0997

I3D-Inception
BA 0.0015 0.0269

A2F 0.8986 0.0620

CNN+LSTM
BA 0.0234 0.0184

A2F 1.3571 0.0808

C3D
BA 0.0982 0.0255

A2F 0.4389 0.0838

ResNet3D
BA 0.0325 0.0088

A2F 0.6019 0.0406

P3D
BA 0.0018 0.0182

A2F 0.9837 0.0648

introducing a large perturbation in terms of the pixel-wise

metrics, can still be easily concealed, i.e., most people

would not notice that the video has been attacked. On

the other hand, by adding adversarial perturbations only on

these new frames, the perceptibility of the added noise be-

comes smaller yet the attack is verified easier to transfer

across videos and even different networks. In other words,

our method, though simple, provides an effective pipeline

of universal video attack.
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