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Abstract

In this work, we address the problem of learning an en-

semble of specialist networks using multimodal data, while

considering the realistic and challenging scenario of pos-

sible missing modalities at test time. Our goal is to lever-

age the complementary information of multiple modalities

to the benefit of the ensemble and each individual network.

We introduce a novel Distillation Multiple Choice Learn-

ing framework for multimodal data, where different modal-

ity networks learn in a cooperative setting from scratch,

strengthening one another. The modality networks learned

using our method achieve significantly higher accuracy

than if trained separately, due to the guidance of other

modalities. We evaluate this approach on three video action

recognition benchmark datasets. We obtain state-of-the-art

results in comparison to other approaches that work with

missing modalities at test time. 1

1. Introduction

Humans perceive the environment by processing a com-

bination of modalities. Such modalities can include audio,

touch and sight, with each modality being distinct from and

complementary to the others. Deep learning methods may

likewise benefit from multimodal data. In this paper, we

explore how to leverage the complementary nature of mul-

timodal data at training time, in order to learn a better clas-

sifier that takes as input only RGB data for inference.

One popular way to train multimodal deep learning mod-

els is to train one network per modality, and mean pool all

the network predictions for inference. This is a sub-optimal

use of multimodal training data, as modalities do not ex-

1Work performed at Boston University. Code available at https:

//github.com/ncgarcia/DMCL

Figure 1: Distillation Multiple Choice Learning (DMCL) allows mul-

tiple modalities to cooperate and strengthen one another. For each training

sample, the modality specialist m that achieves the lowest loss ℓ distills

knowledge to strengthen other modality specialists. At test time, any sub-

set of available modalities can be used by DMCL to make predictions.

change information while training. For example, consider-

ing the task of action recognition, some actions are easier

to discriminate using certain modalities over others: the ac-

tion “open a box” may be confused with “fold paper” when

solely relying on the RGB modality, while it is easily clas-

sified using depth data [24].

This suggests that an ensemble of networks could use

multimodal data in a more efficient way, e.g. by encourag-

ing the network trained with a given modality to focus on

the set of classes or samples that maximizes its discrimi-

native power. In this case, each network is referred to as

a specialist network, as it only sees part of the dataset and

specializes in that part of the problem. Assuming that all

modalities are available, the ensemble should be able to fuse

the specialists’ predictions and produce a single output.

The problem of multimodal fusion becomes more chal-

lenging when some modalities are not available at test time.

This is particularly problematic if the training process en-

courages the specialization of each modality network of the
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ensemble. In this case, a missing modality means that the

ensemble loses the ability to correctly classify the corre-

sponding part of the task assigned to this specialist.

In this paper, we propose a novel method that is at the

intersection of MCL framework and Knowledge Distilla-

tion [16, 28], called Distillation Multiple Choice Learn-

ing (DMCL). DMCL addresses two practical dimensions of

multimodal learning: a) leveraging the complementarity of

multiple modalities, and b) being robust to missing modali-

ties at test-time.

We take inspiration from the Multiple Choice Learning

(MCL) framework, which is a popular way to train an en-

semble of RGB networks [21, 19, 40]. This method chooses

the best performing network of the ensemble to backpropa-

gate the task loss. However, extending it to multiple modal-

ities is not straightforward. Networks that are trained us-

ing different modalities learn at different speeds. Conse-

quently, the network that learns faster in the beginning of

the training dominates the traditional MCL algorithm, and

is encouraged to remain dominant throughout the training.

We extend MCL to a) address such challenges associated

with multimodal data, and b) deal with modalities that may

be missing at test time.

The case of a missing modality at test time is related to

learning using Privileged Information [42] and Knowledge

Distillation [16]. This type of approaches is usually struc-

tured as a two-step process: training a teacher network, and

then using its knowledge to train a student network. The

teacher network has usually a larger capacity, or has access

to more data than the student. For example, consider the

problem of learning a model for action recognition using a

multimodal dataset composed of RGB, depth, and optical

flow videos. In practice, it is reasonable to assume that only

RGB modality is present for test inference: depth sensors

are expensive and optical-flow computation incurs runtime

cost that may not meet real-time budget. At the same time,

depth and optical flow can provide valuable information on

the samples or classes that it perform better, and that could

be distilled to the RGB network [37][3].

We build on these ideas to develop a model that learns

from multimodal data, exploiting the strength of each

modality in a cooperative setting as the training proceeds.

This is summarized in Figure 1. Furthermore, our proposed

model is able to account for one or more missing modalities

at test time. Our main contributions are:

• We conduct a deep evaluation of the MCL framework

in the context of multimodal learning and give insights

on how multiple modalities behave in such ensemble

learning methods.

• We propose DMCL, a MCL framework designed

for multimodal data where modalities cooperate to

strengthen one another. Moreover, DMCL is able to

account for missing modalities at test time.

• We present competitive to or state-of-art results for

multimodal action recognition using privileged infor-

mation on three video action recognition benchmark

datasets.

2. Related Work

Generalized Distillation. The Generalized Distillation

[28] framework gives a unifying perspective on Knowledge

Distillation (KD) [16] and Learning Using Privileged Infor-

mation (LUPI) [42]. KD was first proposed as a way to

transfer knowledge from a large ensemble of networks to

a single small capacity network [16]. It uses the smoothed

ensemble’s probability distribution as a soft target to train

the lighter network, in addition to the ground truth target.

LUPI refers to the setting where some information avail-

able at training time is not be available at test time [42]. The

privileged information can be provided by a ”teacher” net-

work, for example, a model previously trained on another

dataset or modalities. The ”student” network leverages the

additional information to learn a better model to be used at

test time.

These ideas have been applied in many creative ways

to a variety of domains such as network compression [2],

language tasks [7], defending from adversarial attacks [30],

transfer labels across domains [12], unifying classifiers us-

ing unlabeled data [43], using distillation without a pre-

trained teacher [48][47], and others [8]. Inspired by these

ideas, we extend the MCL algorithm for multimodal tasks,

allowing knowledge transfer between modalities in a coop-

erative learning setting via KD.

Video Action Recognition. Video action recognition has

a vast body of literature, with deep learning breaking accu-

racy scores every year [6][22][27][26]. We focus on multi-

modal deep learning methods in a privileged information

setting, i.e. using fewer modalities at test time. A more

comprehensive review is presented in [45][15][18]. The

combination of RGB and Optical Flow is one of the most

popular ways to capture appearance and temporal infor-

mation for video tasks [37]. Some interesting works use

modules specifically developed to learn motion features,

which are then incorporated in models that use RGB only

[39][20][32][49][4][38]. Due to the specificity of these

modules, these architectures can be difficult to adapt to

incorporate other kind of features or modalities, such as

depth. Other methods learn an additional hallucination net-

work to mimic the features of a missing modality [9][10][4].

These works use all data of all modalities indiscriminately,

and learning the additional hallucination network requires a

pre-trained network. Our method learns by exploring the

multimodal data asymmetrically via the MCL algorithm,

which leverages the strengths of each modality, without the
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Figure 2: Distillation Multiple Choice Learning (DMCL) In the Forward Pass, we calculate the classification cross-entropy losses ℓ for each modality

and identify the teacher network - in this case, the Depth network. In the Backward Pass, we compute the soft targets of the teacher, SD , and use them as an

extra supervision signal for the student networks. The loss for the student networks ℓGD refers to the Generalized Distillation loss, defined on Eq. 3. The

loss for the teacher network D uses the normal logits, i.e. soft targets with temperature T = 1. At test time, we are able to cope with missing modalities.

The final prediction is obtained by averaging the predictions of the available modalities.

need of a pre-training step or an additional network at test

time. The important work Luo et al. [29] uses distillation to

transfer knowledge across modalities. This approach con-

sists in learning a graph to mediate the strength of the im-

itation loss between modalities. The graph is learned af-

ter a pre-training stage in which the modality networks are

trained separately. Our method moves towards a system that

exploits the complementary nature of multimodal data since

the beginning of the training process, i.e. with randomly ini-

tialized networks.

Ensemble Methods. A comprehensive review about en-

semble methods is well presented in [35]. The most rele-

vant method to ours is the Multiple Choice Learning (MCL)

framework. Guzman-Rivera et al. [13] proposed MCL to

optimize the oracle accuracy of an ensemble of models. Lee

et al. [21] proposed Stochastic MCL, an adaptation of MCL

to an ensemble of neural networks that learn via stochastic

gradient descent. Each network of the ensemble trained via

Stochastic MCL produces a set of diverse outputs. The in-

ability to output a single prediction compromises its use in

real applications. Lee et al. [19] addressed this issue with

Confident MCL. The main idea is to avoid confident predic-

tions for the classes not assigned to a given specialist. This

allows for the sum of all ensemble’s networks outputs to get

a single prediction. Tian et al. [40] also addressed this issue

by training an additional network to estimate the weight of

the outputs of each specialist. While [19] and [40] propose

ways to get a single prediction out of the ensemble, they

do not address how such methods can be used with multi-

modal data. We draw inspiration on these works to address

this issue within the MCL framework.

3. Method: Training Multimodal Specialists

Our goal is to learn an ensemble of multimodal special-

ists that leverages the specific strengths of each modality

to the benefit of the ensemble. This is accomplished by

setting a cooperative learning strategy where stronger net-

works teach weaker networks through knowledge distilla-

tion. For a given data point at training time, we identify

the best-performing network as a teacher for the remaining

networks in the ensemble.

3.1. Distillation Multiple Choice Learning

Algorithm 1 describes our method DMCL. Let

D = {(xi, yi)}
N be a multimodal dataset having N train-

ing samples. Each sample xi represents the data for the M
modalities available, xi = {x1

i , . . . , x
M
i }, and yi represents

its label.

Our ensemble is composed of a set of M net-

works f , each using as input a different modality

f1(x1
i ), . . . , f

M (xM
i )). The MCL algorithm maximizes the

ensemble accuracy, often referred to as oracle accuracy. The

oracle accuracy assumes that we can choose the correct pre-

diction out of the set of outputs produced by each network.

This translates to the minimization of the ensemble loss L,

which is defined as the lowest of the individual networks’

loss values, calculated for a given data point.

Formally, MCL minimizes the ensemble loss L with re-

spect to a specific task loss ℓ(yi, ŷi) for each network pre-

diction ŷi = fm(xm
i ) for a specific modality m:

L(D) =
N∑

i=1

min
m∈{1,...,M}

ℓ(yi, f
m(xm

i )). (1)

In practice, we get all the networks’ predictions for each

sample of the batch. We calculate the loss ℓcriterion for

each network and sample (line 5, Algorithm 1). In this

case, ℓcriterion corresponds to the standard cross-entropy

loss. The network with the lowest loss value is designated

as the winner network, and the others are set to be loser

networks. The loss and gradient updates for a network de-

pend on whether it is a winner or loser network (lines 10-14,

Algorithm 1). In our proposed privileged-information for-

mulation, we view the winner network as a teacher, and the

loser networks as students.

DMCL function of update winner and

update losers of Algorithm 1 define how the teacher
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network distills information to the student networks,

strengthening them. DMCL updates teachers with respect

to the cross-entropy training loss computed using the

ground-truth label. The loser networks are updated using a

distillation loss, which aims to transfer knowledge from the

winner network.

Knowledge Distillation. Matching the students’ with the

teachers’ soft targets is one way to transfer knowledge from

one model to another. Soft targets are a smoothed probabil-

ity distribution than the originally produced by the modality

network fm:

smi = σ(fm
i (xm

i )/T ), (2)

where σ is the softmax function, fm
i are the logits, and T

is a scalar value. The default temperature T value is set

to 1 for models that do not incorporate distillation. Setting

T to a higher value produces a smoother probability distri-

bution that reveals valuable information about the relative

probabilities between classes, which has shown to improve

knowledge transfer and generalization of the new model. In

practice, very small probability values become more evident

with higher temperatures.

The Generalized Distillation (GD) [28] method consists

of three sequential steps: (1) learn the teacher network; (2)

fix the teacher and compute the soft target for all samples;

(3) use the teacher’s soft targets as additional targets to the

ground truth to learn student networks. The Generalized

Distillation loss is defined as:

ℓGD(i) = (1− λ)ℓ(yi, σ(f(xi)))

+λℓ(si, σ(f(xi))), λ ∈ [0, 1]
(3)

In contrast, we use distillation in an online fashion in the

context of the MCL framework. The role of teacher / stu-

dent network is assigned to the winner / loser network re-

spectively, for each sample of the batch. The soft targets are

computed using the winner network output, which is used

to compute the loss and update the loser networks. We do

not pretrain teachers as per conventional distillation, i.e. all

networks are randomly initialized. In DMCL, teachers and

students learn together in a cooperative setting.

This cooperative setting is beneficial in two ways: It

gives loser networks the opportunity to build good repre-

sentations even if they are not the argmin chosen network;

And it still enables networks to specialize in parts of the

problem.

Missing modalities. Our training method encourages each

network to learn using ground truth labels for its specialty

samples (those obtaining lowest loss), and from the other

specialist networks for samples otherwise. By doing so,

each specialist incorporates knowledge related to all sam-

ples/classes of the task. This enables each network to clas-

sify any sample at test time, therefore rendering the ensem-

ble able to account for missing modalities.

Algorithm 1: DMCL

Input: Dataset D = {(xi, yi)}
N
i , and randomly initialized networks

f1, . . . , fM parameterized by θ1, . . . , θM

Output: M trained networks f1, . . . , fM

1 for step← 1 to convergence do

2 Sample batch B ⊂ D

3 for m← 1 to M do

4 Forward Pass:

5 ℓmcriterion = cross entropy (yi, ŷ
m)

6 end

7 for i← 1 to |B| do

8 // Backward Pass:

9 // Update winner network m∗

10 m∗ ← argmin
m∈{1,...,M}

{ℓmcriterion}

11 θm∗
= update winner (θm∗

, xm∗

i , yi, f )

12 // Update loser networks mc

13 mc ← {1, ...,M} \ {m∗}

14 θmc
= update losers (θmc

, xmc

i , yi, f )

15 end

16 end

17 return f1, . . . , fM

18 // Function Definitions

19 Function update winner(θm∗
, xm∗

i , yi, f):

20 // Compute the gradient w.r.t. cross-entropy loss;

21 ∇
θm

∗ ℓ =
∂ℓ(yi,f

m∗
(xm∗

i ))

∂θm
∗ ;

22 // Update parameters of the winner network;

23 θm∗
← θm∗

− η∇
θm

∗ ℓ ;

24 return θm∗
;

25 Function update losers(θmc
, xmc

i , yi, f):

26 // Compute soft targets of fm∗
using Eq. 2;

27 sm
∗

i = σ(fm∗

i (xm∗

i )/T );

28 // Compute soft targets of fmc
using Eq. 2;

29 sm
c

i = σ(fmc

i (xmc

i )/T );

30 // Compute the gradient w.r.t. GD loss using Eq. 3;

31 ∇
θm

c ℓGD =
∂ℓGD(yi,f

mc
,sm

∗

i ,sm
c

i )

∂θm
c ;

32 // Update parameters of the loser networks;

33 θmc
← θmc

− η∇
θm

c ℓGD ;

34 return θmc
;

3.2. Relationship to other MCL methods

The general framework for MCL is described in lines 1-

17 of Algorithm 1. The main idea is to enable each of the

networks of the ensemble to specialize in different parts of

the problem. This algorithm was first devised for RGB en-

sembles. Two recent instances of MCL are Stochastic MCL

(SMCL) [21] and Confident MCL (CMCL) [19]. These

methods differentiate from each other and from the gen-

eral MCL framework in two fundamental ways: 1) the cri-

terion loss used to decide whether a network is a winner

or a loser (line 10, Algorithm 1), and 2) how winner and

loser models are updated (line 11 and 14, Algorithm 1). In

SMCL, ℓcriterion corresponds to the task loss, e.g. standard

cross-entropy for classification. The winner model is up-

dated with respect to that same loss, while the loser models

are not updated. This update scheme is also used in [40]. In

CMCL, the ℓcriterion corresponds to the task loss plus an

additional loss that measures how well the other networks
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predict the uniform distribution, for the given sample. The

winner model is updated as in the SMCL method and the

loser models are updated with respect to the KL divergence

between its predictions and the uniform distribution.

Neither variations of MCL satisfy our problem state-

ment. SMCL does not result in a single prediction. While

CMCL does result in a single prediction by averaging the

predictions, it does not account for the idiosyncrasies of

multimodal data. The first aspect has to do with heteroge-

neous training dynamics resulting from having multimodal

data as input. Figure 3(right) shows the cross-entropy loss

of three networks independently trained for action recog-

nition, using RGB (blue), optical flow (orange), and depth

(green). Optical flow learns at a much faster speed than the

other modalities. This results in an undesired effect when

using CMCL: the optical flow network repeatedly achieves

the lowest loss. This behavior is reinforced by the argmin

operator and the update scheme of CMCL, that does not al-

low useful gradients to pass to the loser networks. Even-

tually, the optical flow network ends up winning for all

the training samples, which renders the other networks and

modalities useless. The second challenge is the probable

overfitting. The current training update scheme dictates that

only the winner network gets useful gradients to build good

representations for the given task, which reduces the data

used to train each network. To address this and prevent

overfitting, CMCL proposes to share the lower layers of

the feature encoders. This is not feasible when the differ-

ent networks are learning from different modalities as their

representations/domains are significantly different.

DMCL addresses these issues for multimodal data by us-

ing a cooperative learning setting where the ensemble net-

works teach each other via Knowledge Distillation. At the

same time, DMCL leverages the ensemble learning strategy

of the traditional MCL framework, where models special-

ize depending on their performance with respect to a given

input.

4. Experiments

In this section, we present the action recognition bench-

mark datasets we use to evaluate our approach. We then

present the architecture and setup of our experiments. We

analyze the performance of our DMCL in comparison to

other MCL training strategies. We give insight into why

other MCL training strategies fall short for multimodal data.

We then demonstrate our privileged information state-of-

the-art results and conclude with a discussion of our exper-

imental results.

4.1. Datasets

We test DMCL on three video action recognition datasets

that offer RGB and depth data. We augment the three

datasets with optical flow frames obtained using the imple-

mentation available at [31], based on Liu et al. [23].

Northwestern-UCLA (NW-UCLA). This dataset [44]

features ten people performing ten actions, captured simul-

taneously at three different viewpoints. We follow the cross-

view protocol suggested by the authors in [44], using two

views for training and the remaining for testing.

UWA3DII. This dataset [33] features ten subjects per-

forming thirty actions for four different trials, each trial cor-

responding to a different viewpoint. As suggested in [33],

we follow the cross-view protocol using two views for train-

ing and two for testing.

NTU120. The very recent NTU RGB+D 120 dataset

[36] is one of the largest multimodal dataset for video ac-

tion recognition. It consists of a total of 114,480 trimmed

video clips of 106 subjects performing 120 classes, includ-

ing single person and two-person actions, across 155 dif-

ferent viewpoints and 96 background scenes. We follow

the cross-subject evaluation protocol proposed in the orig-

inal paper, using fifty three subjects for training and the

remaining for testing. We also create three versions of

NTU120, which we refer to as NTU120mini, that contains

50% sampled training data from the 120 classes. We note

that NTU120 and NTU120mini share the same test data.

When results are reported on NTU120mini they are aver-

aged over the three runs. We also evaluate our method on

the smaller less recent version of this dataset, NTU60 [36],

that has 60 classes, in order to compare against state-of-the-

art reported results.

4.2. Architecture and Setup

Each modality network is implemented as the

R(2+1)D-18 architecture proposed in [41]. This ar-

chitecture is based on a Resnet-18 network [14], modified

such that a 1D temporal convolution is added after every

2D convolution, thus giving the network the ability to

learn spatiotemporal features. The factorization of a 3D

convolution into a combination of 2D + 1D convolution has

shown to be more effective for video classification tasks.

The ensemble of modality networks is simultaneously

trained following Algorithm 1.

The input of each modality network is a clip of eight

frames of the corresponding modality. For each training

step, a video is split into eight equal parts and we randomly

sample a frame from each of them. Each training input

frame is a crop of dimension [224,224,3], cropped around a

randomly shifted center, for each video. We also use other

data augmentation techniques such as random horizontal

flipping and random color distortions. The networks are

trained from scratch for all the experiments, using SGD op-

timizer with Momentum 0.9, and an initial learning rate of

10−3. At test time, we sample ten clips per video, each clip

consisting of eight frames randomly sampled, centered, and
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Table 1: Comparing MCL methods. We compare the performance of SMCL [21] and CMCL [19] with our proposed DMCL on the NWUCLA,

UWA3DII, and NTU120 datasets. We also compare against independently trained modality networks. For each method we present the accuracy of the RGB

modality network, the sum of all modality network predictions (
∑

), and the oracle accuracy (Φ). For each row, corresponding to one dataset, we highlight

in bold the best result using RGB only at test time. Using our DMCL methods results in better RGB networks for three out of four datasets.

Independent SMCL [21] CMCL [19] Our DMCL

RGB
∑

Φ RGB
∑

Φ RGB
∑

Φ RGB
∑

Φ

NWUCLA 87.53 93.79 97.86 24.83 49.00 86.79 11.13 84.73 89.65 93.64 93.28 97.64

UWA3DII 73.74 89.75 95.52 25.19 60.70 88.51 22.28 31.90 83.89 78.39 89.50 94.96

NTU120mini 79.66 86.57 92.11 26.67 62.22 86.19 29.61 5.28 86.29 81.25 86.23 91.71

NTU120 84.86 89.74 94.36 22.31 5.54 79.81 22.37 5.06 85.20 84.31 88.46 93.21

with no data augmentation techniques. The final prediction

for each video is the average of the ten clip predictions. We

have experimented with different values of temperature T
and hyperparameter λ, and found that T={2,5} and λ={1,

0.5} works best, with little accuracy variations. Further de-

tails related to hyperparameters are given in the supplemen-

tary material.

4.3. Results

In this section, we demonstrate how DMCL leverages

multiple modalities to learn an RGB network that outper-

forms an independently trained RGB classifier - our base-

line, and other MCL training strategies. All MCL strate-

gies are trained using the same training process as our

method, including data augmentation techniques, optimizer,

and number of steps, and are considered as ablation experi-

ments of our method. We then demonstrate state-of-the-art

privileged information results.

Comparison vs. MCL variants. Table 1 shows the

action classification performance on the three video action

recognition benchmark datasets for MCL variants and inde-

pendently trained modality networks. We present the clas-

sification accuracy using the RGB modality, the sum of pre-

dictions of RGB, Flow, and Depth modalities (Σ), and the

oracle accuracy (Φ). An oracle Φ is assumed to have the

ability to select the modality that gives the best prediction

among the ensemble. Our DMCL approach performs bet-

ter than modalities trained independently, i.e. without MCL,

and better than SMCL and CMCL variants. While Table 1

focuses on improvement with regard to the RGB modality,

we provide similar results for Depth and Optical Flow in the

supplementary material. We note that the effect of knowl-

edge distillation is more visible in the three smaller datasets.

Table 1 also shows that combining the predictions of

three modalities (Σ) generally improves accuracy. The fact

that the oracle accuracy (Φ) is significantly higher than Σ
indicates that, for some cases, at least one modality pre-

dicted the correct class, however, the sum of predictions

(Σ) resulted in an incorrect prediction. However, the gap

between Σ and Φ is lower for DMCL compared to the other

approaches. This indicates that DMCL combines modal-

Figure 3: (Left) Accuracy of a KNN classifier with varying k on the

NWUCLA dataset. Classified features are computed using randomly ini-

tialized networks for each modality. Although all features are randomly

generated, optical flow random features tend to achieve a significantly

higher accuracy. This helps to explain why optical flow networks learn

faster than other modalities. (Right) The cross-entropy loss of three

networks independently trained for action recognition on the UWA3DII

dataset, using RGB (blue), depth (green), and optical flow (orange). These

plots are averaged over three runs. We observe that for the first 10K steps,

the training loss of the optical flow network is consistently lower, resulting

in a winner-takes-all behavior in traditional MCL algorithms. However, in

DMCL, the winner network also teaches the loser networks, strengthening

the other modality networks and avoiding this behavior.

ity predictions in a more optimal fashion to improve overall

accuracy. The low accuracies of SMCL and CMCL are due

to artifacts created by the use of multimodal data, which

we investigate in the next section. We have checked the

implementation of these methods on RGB-only ensembles,

which lead to similar results to those reported in the original

papers.

Learning speed for different modalities. One of the

goals of this paper is to investigate and bring new insights

on multimodal learning. In a MCL setting, having a spe-

cific modality learn at a faster pace compared to others of-

ten leads to an imbalance of the number of data points each

modality network is presented with at training time. Net-

works specializing in different modalities typically do not
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Table 2: Selecting the right teacher network is important. We present the action recognition classification accuracy on the NWUCLA and UWA3DII

datasets for three scenarios, where: modality networks are trained independently; a random teacher is assigned for every sample to guide the other modality

networks; and DMCL, where the best-performing teacher (lowest loss) is selected to guide other modality networks. For each column, corresponding to a

test modality, we highlight in bold the best result across the three scenarios.

Dataset NWUCLA UWA3DII

Test Modality RGB Depth Flow Σ Φ RGB Depth Flow Σ Φ

Independent 87.53 80.30 89.58 93.79 97.86 73.74 77.09 89.66 89.75 95.52

Random Teacher 89.57 57.81 89.43 86.93 95.71 71.07 79.07 85.03 84.47 92.60

Our DMCL 93.64 83.29 91.07 93.28 97.64 78.39 81.87 88.26 88.51 94.59

share a backbone of parameters due to the very different na-

ture of the inputs - in contrast to the SMCL and CMCL vari-

ants where there is a shared backbone. As a consequence,

if a modality network dominates the training process, i.e.

being the one to consistently achieve the lowest loss for

training batches, it will be presented with significantly more

training data compared to the other modality networks. We

observed that optical flow often dominates the ensemble

training process particularly when training using CMCL.

This is depicted in Figure 3(right) where the training loss

curves of the independently trained networks for Optical

Flow, Depth, and RGB are shown over the training steps.

Namely, looking at the first steps of the curve we see that

Optical Flow curve is consistently lower than Depth, which

in turn has lower values than RGB. This is consistent with

what we find during training of CMCL, where the RGB net-

work is often ignored, the Depth network learns from a few

samples and overfits early, and the Optical Flow network

sees the vast majority of the samples.

We further investigate why optical flow dominates the

learning process in our action recognition setting. We com-

pute random features extracted from a randomly initialized

untrained network for each of the modalities using the same

architecture described previously. We then run a kNN clas-

sifier using the random features. Figure 3(left) shows re-

sults of this experiment on the NWUCLA dataset for k =
1, 5, 10, 50, 120. The accuracy of the random features of the

optical flow modality is almost twice that achieved using

Depth and RGB. The fact that the kNN classifier achieves

such good performance compared to the other modalities

suggests that Optical Flow data naturally clusters better per

class. From the perspective of a deep neural network learn-

ing process, this could be interpreted as a better initializa-

tion, thus speeding the initial stage of learning.

Leveraging Teacher Strength. In this section, we ab-

late the mechanism by which the teacher role is determined.

The teacher role is assigned to the network that achieves the

lowest loss for each sample of the batch, therefore being

in the best position to guide/strengthen the other networks.

To verify this claim, we train our model with a random as-

signment of a teacher for each sample of the batch. This

can be thought of as a randomized distillation process. We

then compare the overall action recognition classification

accuracy of both approaches in Table 2. Choosing the right

network as teacher consistently achieves better performance

compared to a randomly assigned teacher, for every modal-

ity. This is in-line with work that combines distillation and

graphs, where distillation has a specific direction specified

by the direction of the edges [29]. It is interesting to note

that random teacher assignment may result in better perfor-

mance than individual modality networks, e.g. for NWU-

CLA the RGB individual network accuracy is 87.53% vs.

89.57% for a random teacher assignment. These may be

related to the known regularization effect of knowledge dis-

tillation, that has been empirically shown to lead to better

performance [16, 7].

State-of-the-art Comparisons. We now compare

DMCL to state-of-the-art privileged information methods,

and modality baselines, for the task of human action recog-

nition from videos. Table 3 shows results for the UWA3DII

and NWUCLA datasets. The top part of the table presents

modality baselines for methods that use the same number

of modalities in training and testing, including our individu-

ally trained modality networks. The bottom part of the table

refers to methods that have missing modalities at test time.

Our DMCL using RGB only for testing achieves higher ac-

curacy compared to all baselines that use RGB at training

and testing, and compared to all state-of-the-art privileged

information methods that use RGB at test time, including

those that use additional hallucination networks at test time,

achieving an absolute improvement of 4.7% for UWA3DII

and 6.1% for NWUCLA. Similarly, our DMCL outperforms

all baselines when the only available modality is Depth by

4.8% absolute improvement and the state-of-the-art method

by 1.3% on UWA3DII.

Table 4 presents results on three versions of the NTU

dataset: NTU60, NTU120mini, and the full NTU120. We

see that the distillation effect is much more visible in the

case of less data. For example, for NTUmini, we achieve

an absolute improvement of 1.6% over the baseline for the

RGB modality, and of 6% for NTU60. Our best modal-

ity network for NTU60 achieves 85.65% compared to the

89.5% of [29] that uses twice the number of modalities we

use for training and an additional graph network module.
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Table 3: Accuracy for UWA3DII and NWUCLA dataset. The first part of the table refers to methods that use unsupervised feature learning (*) or that

use the same number of modalities for training and testing. The second part of the table refers to methods that use more modalities for training than for

testing. Methods that use RGB+ at test time use an additional network that mimics the missing modality. For each column, corresponding to one dataset,

we highlight in colored bold the best result and in normal colored font the second best between our method and the baselines. Each color corresponds to a

different test modality. To conduct a fair comparison with baseline methods, this table presents results for the most common view setting for UWA3DII and

NWUCLA. Other view settings follow the same trend and results are presented in the supplementary material.

Method
Training

Modalities

Testing

Modalities
UWA3DII NWUCLA

M
o
d
a
li

ty
B

a
se

li
n

es

R-NKTM [34] Syn* RGB 66.3 78.1

Action Tubes [11] RGB RGB 33.7 61.5

Long-term RCNN [5] RGB RGB 74.5 64.7

Baseline (RGB) RGB RGB 73.74 87.52

MVDI+CNN [46] D D 68.3 84.2

Baseline (D) D D 77.09 80.30

Baseline (F) F F 89.66 89.58∑
(RGB, D, F) RGB, D, F RGB, D, F 89.75 93.9

P
ri

vi
le

g
ed

In
fo

.

Hoffman et al. [17] RGB, D RGB+ 66.67 83.30

Garcia et al. [9] RGB, D RGB+ 73.23 86.72

ADMD [10] RGB, D RGB+ - 91.64

DMCL RGB, D, F RGB 78.39 93.64

DMCL RGB, D, F D 81.87 83.29

DMCL RGB, D, F F 88.26 91.07

Table 4: NTU Datasets. The test sets for NTU120mini and NTU120 are the same. For each column, corresponding to one dataset, we highlight in bold

the best result and in normal colored font the second best between our method and the baselines. Each color corresponds to a different test modality. The

approximated values are inferred from a plot in [24]. We note that the effect of the distillation method is more visible on the smaller scale versions NTU60

and NTU120mini of the dataset.

Method
Training

Modalities

Testing

Modalities
NTU60 NTU120mini NTU120

M
o
d
a
li

ty
B

a
se

li
n

es

ST-LSTM [25] Skeleton (S) Skeleton (S) 69.2 ∼ 50.0 55.7

VGG [24] RGB RGB - ∼ 40.0 58.5

Baseline (RGB) RGB RGB 77.59 79.66 84.86

VGG [24] D D - ∼ 20.0 48.7

Baseline (D) D D 78.97 78.67 83.32

Baseline (F) F F 81.43 84.21 86.72

VGG [24] RGB, D RGB, D - - 61.9

VGG [24] RGB, D, S RGB, D, S - - 64.0∑
(RGB, D, F) RGB, D, F RGB, D, F 87.25 86.57 89.74

P
ri

vi
le

g
ed

In
fo

.

Garcia et al. [10] RGB, D RGB 73.11 - -

ADMD [9] RGB, Depth RGB 73.4 - -

Luo et al. [29] RGB, F, D, S1,2,3 RGB 89.5 - -

DMCL RGB, D, F RGB 83.61 81.25 84.31

DMCL RGB, D, F D 80.56 78.98 82.22

DMCL RGB, D, F F 85.65 84.45 86.44

5. Conclusions

MCL is a powerful way for training ensembles of net-

works, originally proposed for RGB data. We demonstrate

undesirable behaviors of this framework when naively ap-

plied to multimodal data. We propose DMCL that extends

MCL frameworks to leverage the complementary informa-

tion offered by the multimodal data to the benefit of the en-

semble. The cooperative learning is enabled via knowledge

distillation that allows the ensemble networks to exchange

information and learn from each other. We demonstrate that

modality networks trained using our DMCL achieve com-

petitive to or state-of-the-art results compared to the privi-

leged information literature, and significantly higher accu-

racy compared to independently trained modality networks

for human action recognition in videos.
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