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Abstract

Many interesting tasks in machine learning and computer

vision are learned by optimising an objective function de-

fined as a weighted linear combination of multiple losses.

The final performance is sensitive to choosing the correct

(relative) weights for these losses. Finding a good set of

weights is often done by adopting them into the set of hyper-

parameters, which are set using an extensive grid search.

This is computationally expensive. In this paper, we propose

a weighting scheme based on the coefficient of variations and

set the weights based on properties observed while training

the model1. The proposed method incorporates a measure

of uncertainty to balance the losses, and as a result the

loss weights evolve during training without requiring an-

other (learning based) optimisation. In contrast to many

loss weighting methods in literature, we focus on single-task

multi-loss problems, such as monocular depth estimation and

semantic segmentation, and show that multi-task approaches

for loss weighting do not work on those single-tasks. The

validity of the approach is shown empirically for depth es-

timation and semantic segmentation on multiple datasets.

1. Introduction

In a wide variety of computer vision tasks, models are

taught predictive capabilities through optimising some ob-

jective function. While for some tasks the objective function

consists of a single loss, e.g. such as cross-entropy loss for

classification, for many tasks the objective is a combination

of loss functions, e.g. a L1-loss and a Structural Similarity

loss for monocular depth estimation [14]. In general, the

final objective function Ltotal
2 is a linear combination of a

set of loss functions Li:

Ltotal =
∑

i

αi Li +R(α), (1)

1Source code available at: https://github.com/rickgroen/cov-weighting
2For clarity and consistency, the term objective function always denotes

the final learning objective for a model / task, while the term loss is used to

denote a single element in such a (composite) objective function.

where α denotes a set of weights and R(·) denotes some

regularisation on these weights.

The model performance is sensitive to choosing the cor-

rect weight values α. In literature, the weighing of different

losses is usually based on equal weighting, with the inherent

assumption that each loss should contribute equally to the

problem at hand, or by a hyper-parameter grid-search over

the loss weights α. This manual tuning of loss weights is

(still) prevalent, for example in segmentation [32, 16, 40],

depth estimation [13, 9], pose estimation [36], style trans-

fer [10, 18], and adversarial learning [20]. This is feasible

only when a small number of loss functions are combined,

when more loss functions are combined. To illustrate this

consider [38] who combine 40 losses, or [25] who combine

78 losses. In these cases, performing a grid-search would be

too expensive computationally, and a method to set α along

with model parameters θ is desirable.

Static loss weights, i.e. weights which are fixed through

training, either by equal weighting or grid-search, might not

result in optimal learning behaviour and final performance.

For example, for some learning tasks it has been shown

that it is beneficial to learn easy tasks first before the more

difficult tasks are introduced [8, 26]. Ideally, the weights α

are adapted over time to guide the learning process.

Weighting schemes for combining multiple losses has

been studied extensively in the context of multi-task learn-

ing, where multiple tasks, each with a single loss, are com-

bined. This is appealing since conceptually task-specific

information could be leveraged in related tasks to encode

a shared representation [2, 34]. Research in this context

is tremendously broad: from architectural modifications to

facilitate joint learning [28, 29, 27], to multi-task learning

from domains that do not share intrinsic commonalities [22]

and from multi-task to reinforcement learning [1, 33], to

the use of style generation methods to learn the joint data

distribution [31]. The main focus of this paper however is

on adaptive weighting schemes for multiple losses.

In multi-task settings, the weights could be determined by,

prioritising the most difficult task [15], learning the easiest

tasks first [26], estimating the aleatoric uncertainty [23, 24],

normalising the gradients [3] or finding the Pareto optimal so-
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Figure 1. (left) Loss weights throughout training for both our method (lines) and the static optimal weights (dotted); (right) Averaged loss

weights throughout training of Multi-objective optimization [35] (lines) and loss weights for GradNorm [3] (dotted).

lution to share model capacity across the different tasks [35].

In contrast to these approaches this paper focus on the single-

tasks, such as monocular depth estimation and semantic

segmentation in which multiple losses are combined and we

show that multi-task approaches do not work for these tasks.

In this paper we propose CoV-Weighting, a single-task

multi-loss weighting scheme that explicitly makes use of

the statistics inherent to the losses to estimate their relative

weighing. The method is founded on the coefficient of vari-

ation (CoV), which is the ratio of the standard deviation σ
to the mean µ and shows the extent of variability of the ob-

served losses in relation to the mean of the observed losses.

In order to compare the CoV values of the different losses,

these must have a common meaningful zero point. There-

fore the CoV is estimated based on the observed loss ratio

between the current observation and the mean value of that

loss, instead of the direct observations of the loss. This trans-

form different loss functions into a common scale and allow

for comparisons. In Figure 1 the development of the loss

weights of CoV-Weighting are shown throughout training.

To validate the proposed method, extensive experimental

evaluation across two tasks (depth prediction and semantic

segmentation) and three datasets (KITTI, CityScapes, and

PASCAL Context) is performed. The experiments show

that CoV-Weighting surpasses all multi-task loss weighting

schemes and performs on par with hand-tuned weights in a

single pass, with a learning rate optimised for the hand-tuned

weighing. After a hyper-parameter search over the learning

rate, CoV-Weighting outperforms any of all current models.

2. Method

In this paper, we introduce a weighting scheme for single-

task learning problems where the objective function is de-

fined as a linear combination of losses. Each loss quantifies

the cost with respect to a desired output or auxiliary ob-

jective, for example the pixel-wise L1 loss to measure the

reconstruction error, a cross-entropy loss for (pixel-wise)

classification, or a semantic embedding loss to capture the

classes present in an image. The goal is to find the (optimal)

set of weights α for the combination of losses, c.f . Eq. 1. In

order to find these weights, the following hypothesis is used:

Hypothesis 1 A loss term has been satisfied when its vari-

ance has decreased towards zero.

In other words, this hypothesis says that a loss with a

constant value should not be optimised any further. Variance

alone, however, is not sufficient, given that it can be expected

that a loss which has a larger (mean) magnitude, also has

a higher absolute variance. Even if the loss is relatively

less variant. Therefore, we propose to use the coefficient of

variation cL of loss L, which shows the variability of the

observed loss in relation to the (observed) mean:

cL =
σL

µL
, (2)

where µL and σL denote the mean and the standard devia-

tion of loss L. The coefficient of variation is also known as

the relative standard deviation and has the advantage that

the value is independent of the scale/magnitude in which the

observations are measured. This is relevant, given that we
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known that different losses act on different scales. Coeffi-

cient of variation decouples the loss magnitude from loss

weighting, so a loss with small magnitude may still be rel-

atively impactful when it is complex and variant; a bigger

loss that hardly values across training examples is assigned

less weight.

2.1. Loss Ratios for Coefficient of Variation

A requirement for computing a correct coefficient of vari-

ation is that the observations are derived from a ratio-scale,

that is with a unique and non-arbitrary zero value. Then, it

allows to fairly compare the uncertainty between different

series of measurements, even with different magnitudes.

Not all loss functions are measured on such a ratio-scale.

Therefore, we propose to use the loss-ratio ℓ as measurement,

instead of the loss value itself, which we define as:

ℓt =
Lt

µLt−1

, (3)

where Lt is the observed loss value at time step t, and µLt−1

is the mean of the observed losses up to time t − 1. The

loss-ratio has also been used in multi-task loss weighting

setting. In [3] the ratio of the current observation with the

first loss measurement is used ( Lt

L0

), which we found to yield

noisy and initialisation dependent ratios. In [27] the ratio of

the current observation and the previous observation is used

( Lt

Lt−1

), which we found to yield unstable ratios. Our ratio

is more robust and experimentally we explore the effect of

using a decay mean instead of the mean over all observations.

The loss ratio ℓ has the same meaningful zero point across

different loss functions: when Lt is zero ℓt = 0. Moreover

it is a relative comparison of two measurements of the loss

statistic. The weight αit is based on the coefficient of varia-

tion of the loss-ratio cℓi for loss Li at time step t:

αit =
1
zt

cℓit =
1
zt

σℓit

µℓit

, (4)

where zt is a normalising constant independent of i: zt =
∑

i cℓit . This ensures that
∑

i αit = 1, which is important

to decouple the loss weighting from the learning rate.

There are two forces that simultaneously determine the

value of the loss weights:

• The loss weights increase when the loss ratio ℓit de-

creases, that is when the loss Lit is below the mean loss

µLi
. This encourages losses that are learning quickly,

and dampens the effect on high outliers on the magni-

tude of the loss.

• The loss weights increase when the standard deviation

over the history of loss ratios σℓit increases. This en-

sures that more learning occurs when a loss-ratio is

more variant. That is, when a particular objective has

historically been more challenging, this term makes the

cost function more powerful.

Method Definition αi Main Property

Uncertainty [24] 1
σ2

i

+ log σi

Li
jointly learned

Multi-objective [35]
∑

i αi∇θs
Li = 0 gradient based

GradNorm [3]
Li(t)/Li(0)

gi(t)
separate loss

CoV-Weighting
σℓi

µℓi

observed

Table 1. Overview of the different weighting schemes considered in

this paper, with property and definition of αi. See text for details.

2.2. Robust Estimation

Using CoV-Weighting the loss weightings are inferred

directly from the history of the observed loss values. To esti-

mate the loss-ratio and the coefficient of variation robustly,

we use Welford’s algorithm [37], an online estimate, to track

the mean of L, and the mean and standard deviation of ℓ
using the following update rules:

µLt
=

(

1− 1
t

)

µLt−1
+ 1

tLt, (5)

µℓt =
(

1− 1
t

)

µℓt−1
+ 1

t ℓt, and (6)

Mℓt =
(

1− 1
t

)

Mℓt−1
+ 1

t

(

ℓt − µℓt−1

)

(ℓt − µℓt) , (7)

the standard deviation is then given by σℓt =
√

Mℓt . As-

suming converging losses and ample training iterations, the

online mean and standard deviation converge to the true

mean and standard deviation of the observed losses over the

data.

A potential downside of this approach is that variance

over time of a loss is smoothed out. Therefore we also

experiment with decaying online estimates, then t is a fixed

factor, e.g. 20 or 100, to weight the aggregated previous

observations and the current observation.

3. Relation to Other Methods

In this section CoV-Weighting is compared in-depth to

three multi-task loss weighting methods: Gradient normalisa-

tion (GradNorm) [3], Multi-objective optimisation [35], and

Uncertainty Weighting [24]. Table 1 summarises the main

differences between the multi-task loss weighting methods

and CoV-Weighting .

Uncertainty Weighting [23, 24]. Uncertainty Weighting

models the homoscedastic aleatoric uncertainty in multi-task

settings. While homoscedastic noise is not dependent on the

input data, it might be task-dependent. The observed task-

loss Li is seen as an observation from a Gaussian distribution

N (Li;σi). The final objective minimises the log-likelihood

of these Gaussian distributions:

Ltotal =
∑

i

Li

2σ2
i

+ log σi, (8)
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where the variance σ2
i is learned jointly with the model pa-

rameters. It can be shown, however, that when the optimal

variance could be used, Uncertainty Weighting results in a

parameter less log-loss:
∑

i log(Li). This means the small-

est loss has the most impact on the gradient.

Uncertainty Weighting uses the homoscedastic (data in-

dependent) noise, in the single-task multi-loss setting this

might be unsuitable since the observational noise over the

same output cannot be used to weight different losses. More-

over, in Uncertainty Weighting the loss weights increase

when the observational noise in the outputs decreases. This

naturally happens when the model is presented with more

training data. In contrast CoV-Weighting uses the variance in

the observed losses throughout training and when the noise

in a loss ratio increases the loss weight also increases.

As opposed to other methods, Uncertainty Weighting, in

the original formulation, does not satisfy
∑

i αi = 1, and

hence there is a coupling between the loss weights (which

can be arbitrarily) and the global learning rate. In [24] the

global learning rate is annealed by a power law to counteract

the exponential increase of loss weights. Unfortunately this

complicates direct comparison against other loss weighting

methods because it is exceedingly difficult to fairly control

for global learning rate.

GradNorm [3]. In GradNorm [3] gradient normalisation

is suggested to balance the gradient norms for each task at

each training iteration step at a chosen layer W . This layer

is often the last shared layer between the different tasks.

The authors argue that gradients are ideally balanced at this

shared layer. In the single-task multi-loss setting, all layers

are shared and hence GradNorm is computed at the output

layer.

To balance multiple loss terms, the weights α are learned

along the model parameters, with a separate loss function. It

can be derived, however, that the optimal weight values α

(before normalisation) equal to:

αi ∝
Li(t)/Li(0)

gi(t)
, (9)

where gi(t) denotes the norm of the gradient of the param-

eters with respect to the loss Li at the shared layer, hence

the name GradNorm. In other words, the loss ratio, between

the loss at time t and the first loss at time 0, is divided by

the current norm of the gradient. This is counter intuitive

for single-task multi-loss learning, given that their loss ra-

tio is an inverse measure: the smaller the value, the better

the loss is training. So better performing losses are slowed

down during training compared to difficult losses (where

L(t) ≈ L(0)), when they have an equal gradient norm.

Compared to the proposed loss ratio, in GradNorm the

loss ratio is based on the initial loss value. When the net-

work has just been initialised, this can be a poor estimate

to measure the velocity with which the network learns for

a specific loss. This is solved in CoV-Weighting by using

the loss ratio between the current loss and the mean of the

observed losses.

Multi-Objective Optimisation [35]. The authors of [35]

state that while multi-task learning can, in general, be ben-

eficial for all tasks, some individual tasks could compete

for model capacity. That is, the shared encodings may not

be equally informative for all tasks. Hence, the authors are

interested in finding Pareto optimal solutions for tasks us-

ing the Frank Wolve algorithm [21]. A potential issue in

single-task learning for multi-objective optimisation is that

single-task learning is inherently a single-objective optimi-

sation. That is, the optimal solution cannot be assumed to be

a Pareto optimum between the different loss functions. It is

expected that dealing with auxiliary losses will be especially

challenging for this method.

4. Experiments

In this section, the proposed method is evaluated on two

distinct scene understanding tasks: Depth estimation on

KITTI [12, 11] and CityScapes [4], and semantic segmenta-

tion on the PASCAL Context dataset [30]. The purpose of

these experiments is two-fold: First, to compare the proposed

dynamic weights to a set of static weights (equal weighting

or hand tuned). Second, to test the proposed method against

three dynamic multi-task loss weighing approaches.

To fairly compare the different methods, our code in-

cludes the proposed weighing scheme and implementations

of the baseline methods. The dynamic baselines that are

used are Uncertainty weighing [24], GradNorm [3], and

Multi-objective optimisation [35]. GradNorm requires an

additional hyper-parameter as a form of temperature scal-

ing on the loss weights (before normalisation). Preliminary

experiments show that the performance is sensitive to this

value; using grid-search it is set to 1.5 for all experiments.

It should be noted that careful tuning of this parameter is

required before performance is satisfactory, unlike with the

other baselines that are used.

4.1. Depth Estimation

In these experiments, we learn to estimate depth from

left/right image pairs by means of photo-metric reconstruc-

tion, using an estimated disparity map; depth can be in-

ferred by warping the disparity map using the camera in-

trinsics. We follow the network architecture and objective

functions of [13]. The objective function combines the L1

loss, Structural Similarity loss (SSIM), left-right consistency

loss (LR), and disparity gradient loss (DISP) to train a single

network. Following [13], the hand-tuned weights are set to

{αL1 = 0.15, αSSIM = 0.85, αLR = 1.0, αDISP = 0.1},
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ARD RMSE log δ < 1.25
lower higher

full history 0.1988 0.3118 0.6988

t = 20 0.2159 0.3479 0.7063

t = 100 0.2095 0.3498 0.7050

t = 1000 0.2037 0.3009 0.7084

Table 2. The effect of setting t to a factor that controls how much

the updates of the statistics are effected by previous statistics. A

full history is shown in e.g. Equation 5, in which t is the iteration

count. Alternatively, t could be set to a static number to allow for a

fixed decay. There is no clear benefit of using decay, hence the full

history of statistics is used in further experiments.

which are normalised such that
∑

i αi = 1.0. Besides four

different loss functions, disparity maps are regressed at four

scales. At each scale all loss functions are evaluated for both

left and right disparity maps. The full objective combines

losses from all four scales s:

Ltotal =
3

∑

s=0

∑

d∈{dleft,dright}

L(s,d) (10)

L(s,d) = αL1LL1 + αSLS + αLRLLR

+ αDISP
1

2s
LDISP , (11)

where each of the αs are the loss weights that should be auto-

matically weighted using one of the loss weighting schemes.

A total of 32 losses is used to train the networks. See supple-

mentary material for full details.

Dataset & Implementation Details Depth estimation is

evaluated on the KITTI dataset [12, 11] using the Eigen split

[6] and on the main split of the CityScapes dataset [4]. For

all methods, images are down-sampled to a resolution of

256x512 and fed to an encoder-decoder network using batch

normalisation [19]. The encoder is based on a ResNet50

[17] network; the decoder alternates bilinear interpolation

up-sampling and convolutional layers [13]. The models are

trained for 100 epochs on CityScapes and for 30 epochs on

KITTI, using an Adam optimiser with a learning rate of 1e-4

(selected based on related works). For quantitative evalu-

ation, a set of common metrics is used [6, 13]: Absolute

Relative Distance (ARD), Squared Relative Distance (SRD),

Root Mean Squared Error (RMSE), log Root Mean Squared

Error (log RMSE), and multiple accuracies δ within a thresh-

old t (δt, with t ∈ {1.25, 1.252, 1.253}). It is common for

models that are trained on CityScapes to be evaluated on

KITTI, since the quality of the ground truth disparities for

CityScapes is relatively low. In this paper, this commonly-

used evaluation strategy is also used. It means models that

are trained on KITTI or on CityScapes are all evaluated on

the improved Eigen test split [6] of the KITTI dataset.

Loss Statistic Estimation As was mentioned above, a po-

tential downside of using a full history of losses to compute

the statistics might result in over-smoothing the estimates.

See for example the update steps in Equation 5. To verify

whether this is actually the case, different parameters for t

are tested. Results are depicted in Table 2. It is concluded

that there is not a significant and apparent effect of using any

particular factor t. Other initial experimentation confirms

this conclusion. Consequently, a full history of loss statistics

is kept throughout training.

CityScapes In this set of experiments, CoV-Weighting is

compared against the models trained using a single-loss (e.g.

SSIM or L1) and against the models trained on equal &

hand-tuned weighted combination of losses. For training the

models the CityScapes dataset is used, while evaluation is

performed on the improved Eigen test split [6]. The results

are shown in Table 3.

The performances of the single-loss models show that

using auxiliary losses only will not work well for the original

task. For example, the LR loss is tasked with rewarding

symmetry in left and right disparity predictions; training

with only the LR loss results in predicting purely zero-valued

disparity maps, a perfect symmetry, albeit not valuable for

depth estimation. These auxiliary losses by themselves do

not correctly estimate depth, however they could guide or

regularise the learning process.

The performance of using only the SSIM loss is close to

the hand-tuned multi-loss counterpart. This is in line with

the conclusions reported in [14]. However, the hand-tuned

variant always outperforms the single SSIM loss model and

the equal weighted variant.

The performance of CoV-Weighting is close to the hand-

tuned weights for most of the metrics, and even outper-

forms these for RMSE log and δ < 1.253. Moreover CoV-

Weighting outperforms equal weighting on all but one met-

ric (RMSE). Combined this shows that CoV-Weighting can

adaptively set good weights for the different loss compo-

nents.

KITTI In this set of experiments, CoV-Weighting is also

compared against dynamic baselines developped for multi-

task learning: Uncertainty weighing [24], GradNorm [3],

and Multi-objective optimisation [35]. For this experiment

the models are trained on the KITTI data using the improved

Eigen train and test split. The depth estimation results are

shown in Table 4.

We observe that the single-loss model trained on SSIM

is a strong baseline, this is even more distinct than in the

CityScapes experiment in Table 3. Moreover, the hand-

tuned weights do not outperform SSIM and equal weighting

on all metrics. Most likely the set of hand tuned weights

from [13] are tuned for a (slightly) different setting and do
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ARD SRD RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

S
in

g
le

-L
o
ss DISP 2.0301 103.0575 28.9682 2.4904 0.0024 0.0055 0.0102

LR 0.7424 11.1500 17.3990 1.8043 0.0110 0.0382 0.0978

L1 0.2502 3.2033 7.3217 0.3290 0.6838 0.8650 0.9382

SSIM 0.2002 1.6460 6.4964 0.3682 0.7066 0.8678 0.9308

M
u
lt

i-

L
o
ss

Equal 0.2106 1.7460 6.6303 0.3838 0.6887 0.8580 0.9231

Hand-tuned 0.1955 1.6028 6.3803 0.3507 0.7182 0.8734 0.9336

CoV-Weighting 0.1988 1.6673 6.6989 0.3118 0.6988 0.8723 0.9426

Table 3. Performance of depth estimation models trained on CityScapes. As is common for CityScapes models, evaluation is performed on

the improved Eigen test set [6] in depth (meters). The first, second, and third best scoring methods are highlighted for each metric.

ARD SRD RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

S
in

g
le

-L
o
ss DISP 0.9040 13.5185 18.3165 2.5593 0.0000 0.0000 0.0000

LR 6.3400 442.7141 65.5198 1.9283 0.0097 0.0265 0.0507

L1 0.1132 0.8551 4.4699 0.1708 0.8700 0.9664 0.9897

SSIM 0.0901 0.5202 3.8581 0.1435 0.8991 0.9755 0.9935

M
u
lt

i-
L

o
ss

Static Weights

Equal 0.0923 0.5477 3.9856 0.1464 0.8971 0.9763 0.9936

Hand-tuned 0.0944 0.5609 3.8678 0.1469 0.8950 0.9731 0.9926

Dynamic Weights

Uncertainty [24] 1.0712 18.5936 11.7052 0.7417 0.3226 0.4760 0.5989

GradNorm [3] 0.1152 1.1530 4.7621 0.1759 0.8669 0.9642 0.9887

Multi-objective [35] 6.3400 442.7141 65.5198 1.9283 0.0097 0.0265 0.0507

CoV-Weighting 0.0912 0.5108 3.8717 0.1425 0.9023 0.9775 0.9942

Table 4. Performance of depth estimation models trained on KITTI. Evaluated on the improved Eigen test set [6] in depth (meters). The

first, second, and third best scoring methods are highlighted. CoV-Weighting outperforms all other methods on 5 out of 7 metrics.

not generalise to this setting. This shows the importance of

finding (optimal) weights for the task and dataset at hand.

From the dynamic weight methods, two of the baselines

(Uncertainty weighting and Multi-Objective optimisation)

have difficulties training for this task and have far from good

evaluation results. The third baseline, GradNorm, is able

to train a decent model, but the performance stays behind

compared to the model trained on SSIM, L1 or the model

using equal weighted combination. Finally, CoV-Weighting

shows best performance on 5 from the 7 metrics.

In Figure 1, the loss weights throughout training are

shown for hand-tuned weights, GradNorm, Multi-objective

optimisation, and CoV-Weighting for training on the

CityScapes dataset. It is clear that Multi-objective optimi-

sation underestimates the importance of SSIM and/or L1.

GradNorm assigns the most loss weight to the disparity gra-

dient loss, probably because it is the loss with the lowest

magnitude. After the disparity loss, GradNorm assigns most

weight to the L1 loss, c.f . Figure 1, this is reflected by the

performance, in Table 4, the performance of GradNorm

is just below the performance of using the L1 loss alone.

CoV-Weighting attach relatively low importance to SSIM

and high importance to the L1 loss compared to the static

weights. The weights assigned to SSIM and L1 develop

similarly. This is not surprising, since both losses measure

reconstructed image quality, whereas the other two losses

measure disparity quality. Also it gradually assigns more

weight to SSIM and L1, and less to LR.

Win rates In this experiment we evaluate the win rate [39],

the win rate indicates for how many images in the test-set a

method is beneficial compared to a baseline method. This

is implemented as a majority voting scheme over the 7 met-

rics evaluated on a single image. We show the win rates

in Table 5 of the dynamic methods compared to the static

multi-loss baselines. Since the win rate is the percentage

of images in the test set for which a method outperforms

another (baseline) method, it gives another insight in the
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Equal Hand-tuned Uncertainty [24] GradNorm [3] Multi-objective [35] CoV-Weighting

Equal - 0.4663 1.0000 0.8359 1.0000 0.4463

Hand-tuned 0.5322 - 1.0000 0.8574 1.0000 0.4356

CoV-Weighting 0.5537 0.5583 1.0000 0.8681 1.0000 -

Table 5. Win rates for methods compared to either an equal weighting or a hand-tuned baseline. Evaluated on the Eigen [6] split of KITTI.

Models in rows are tested against the models in the columns. For example, CoV-Weighting outperforms equal weighting in 55% of the cases.

usefulness of the proposed method. From the results we

observe that the three multi-task baselines are outperformed

by the equal weighted and hand-tuned weighted variants.

CoV-Weighting is favoured by over 55% of the images in the

test set over both equal weighted and hand-tuned weighted

models. This shows that our proposed method is able to

improve over the performance of hand-tuned models without

manually having to tune the loss weights.

4.2. Semantic Segmentation

The method is further evaluated on a semantic segmen-

tation task to verify how well it generalises to other tasks.

To this end, all loss weighing methods are implemented

in conjunction with a Context Encoding Network (EncNet)

[40]. The authors of [40] propose a Context Encoding mod-

ule, that jointly learns to predict the presence of semantic

classes in an image as well as the actual pixel-level class

predictions. This module leverages global contextual in-

formation to aid pixel-level prediction. Additionally, it is

possible to add another head to the penultimate layer of the

encoder network to further aid prediction. In total the ob-

jective function consists of a standard Cross-Entropy loss

(CE), a Semantic Encoding loss (SE), and an auxiliary Cross-

Entropy loss (AUX) from a separate Fully Convolutional

(FCN) head. The hand-tuned parameters α as given in [40]

are {αCE = 1.0, αSE = 0.2, αAUX = 0.2} Again, these

weights are normalised to ensure
∑

i αi = 1.0

Implementation Details The EncNet is adapted and aug-

mented with all loss weighing methods. The methods are

tested on the PASCAL Context dataset [30, 7] which uses

4998 training images and 5105 validation images. For each

image, there are annotations for up to 59 semantic classes.

The encoder network is a ResNet50 [17] network using batch

normalisation [19]; for the decoders, there is one Encoding

Context Module that is attached to the final layer of the en-

coder, and one FCN head attached to the penultimate layer

of the decoder. For optimisation, an SGD optimiser is used

with a learning rate of 1e-4, unless otherwise stated. The

network is pre-trained on ImageNet [5] and then trained for

40 epochs on PASCAL Context. For quantitative evaluation,

Pixel Accuracy (pACC) and Mean Intersection over Union

(mIoU) are used, as in [40]. Background pixels are ignored

during evaluation.

pACC mIoU

Single-Loss

CE 0.769 0.440

AUX 0.012 0.004

SE 0.010 0.001

Static Weights

Equal 0.759 0.419

Hand-tuned 0.768 0.437

Dynamic Weights

Uncertainty [24] 0.781 0.448

GradNorm [3] 0.750 0.404

Multi-objective [35] 0.012 0.003

Proposed

CoV-Weighting (γ = 10−2) 0.779 0.455

CoV-Weighting (γ = 10−3) 0.770 0.441

CoV-Weighting (γ = 10−4) 0.768 0.436

Table 6. Performance of semantic segmentation models trained on

PASCAL Context. Evaluated on 5104 images in the validation set.

The first, second, and third best scoring methods are highlighted

for each evaluation metric. CoV-Weighting is top performing when

suitable learning-rate is chosen.

Results In this experiment different models are compared

trained on a single loss, on a static weighted combination of

losses, and on the dynamic weighted combination. The re-

sults on PASCAL Context are depicted in Table 6. Similarly

as in the depth prediction task, also for semantic segmenta-

tion there is a single loss which provides a strong baseline.

For this experiment, using only the CE loss yields perfor-

mance on par with or slightly better than the hand-tuned

weights. This could be due to the more shallow encoder

network used (compared to [40]) or because the FCN head

could be replaced with another Context Encoding module

to improve performance as suggested in [40]. For this task,

multi-objective weighting yields far from satisfactory results,

probably due to attempting to assign high weight to an aux-

iliary loss with high gradient magnitude that has negative

transfer with the main loss. GradNorm on the other hand,

performs slightly worse than equal weighting. Similar to

the case of multi-objective training, a possible explanation

could be that a loss that serves purely as an auxiliary loss

receives a too high loss weighting because its gradient has a

high magnitude. Uncertainty weighting and CoV-Weighting
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Variant RMSE ↓ δ < 1.25 ↑ Loss Weights Scale Weights

σL
µL

6.6483 0.7050

µL
σL

6.6977 0.7043

σl
µl

∗ 6.6556 0.7063

µl
σl

6.7670 0.7072

Table 7. A comparison of four variants of CoV-Weighting on the CityScapes dataset. The top two rows indicate methods that have

been trained using statistics over the losses; the bottom two rows indicate methods using statistics over the loss ratios. The ∗ indicates

CoV-Weightingas used throughout the paper. The first and second best scoring methods are highlighted for each metric. For each method

the mean loss weights over the four different losses and mean loss weights over the different scales are shown; the weights are shown in the

range [0, 0.5]; the dotted horizontal lines indicate a weight of 0.25. Best seen in color.

out perform both equal weighting and hand-tuned weights.

For uncertainty weighting, it seems that this is in part due

to the unnormalised weights used, i.e.
∑

i αi can have any

value, which in turn tunes the global learning rate to a higher

value. Similarly, CoV-Weighting also benefits from a higher

learning rate for this task (γ = 10−2). Choosing a suitable

learning rate is necessary regardless of the method that is

chosen; our method does not require additional learning rate

tuning compared to any of the baseline methods.

4.3. CoV­Weighting Variations

In this final set of experiments, several variants of CoV-

Weighting3 are explored. So far, the loss weights have been

derived from the mean and variance in the observed loss

ratios σl

µl
. In this experiment the mean and variances from

the observed losses are used: σL

µL
, and the inverse-weighting

is used: µl

σl
& µL

σL
. The rationale for the inverse-weighting

is to test the hypothesis that low-variance losses should be

assigned a low weight.

For this experiment the depth estimation task on the

CityScapes dataset is used. The performance is measured in

RMSE and δ < 1.25. The results are in Table 7. For qual-

itative analysis also the weights over time for the different

losses (middle) and the different scales (right) are plotted.

From the results we first observe that all variants obtain

decent performance, albeit assigning different weights to

each of the losses and each of the scales. From this we may

conclude that for the multi-loss single task scenario multiple

3Thanks to the anonymous reviewer for this suggestion!

paths lead to good performance.

Based on the previous experiments the expectation is that

models with relatively high weights to L1 and/or SSIM will

perform the best. CoV-Weighting and the µL

σL
-variant do so.

However, per scale these methods assign different weights,

since final predictions are required at full scale, the coarser

scales act as auxiliary losses. The variant µL

σL
wrongly as-

signs high weights to losses at coarse scale, c.f . Table 7.

5. Conclusion

In this paper, CoV-Weighting has been introduced to auto-

mate tuning of loss weights specifically on single-task prob-

lems. Related methods from multi-task learning [35, 24, 3],

are shown to not always be suited in a single-task setting,

given that auxiliary losses cannot be weighed too heavily

because they by themselves do not solve the task. These

losses are often comparatively small and less complex. Con-

sequently, the losses show less variance throughout train-

ing. CoV-Weighting explicitly makes use of these statistics,

inspired by the coefficient of variation and assigns higher

weights to losses that show higher relative variance. Experi-

mentally CoV-Weighting either outperforms or performs on

par with hand-tuned defined weights and outperform these

when the optimal learning rate is used.

Future work could address CoV-Weighting in a multi-

task setting. The use of the coefficient of variation allows

to compare different one another. Since this holds also for

losses from different tasks, it would be interesting to see how

CoV-Weighting performs in multi-task learning.
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