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Abstract

Many interesting tasks in machine learning and computer
vision are learned by optimising an objective function de-
fined as a weighted linear combination of multiple losses.
The final performance is sensitive to choosing the correct
(relative) weights for these losses. Finding a good set of
weights is often done by adopting them into the set of hyper-
parameters, which are set using an extensive grid search.
This is computationally expensive. In this paper, we propose
a weighting scheme based on the coefficient of variations and
set the weights based on properties observed while training
the model'. The proposed method incorporates a measure
of uncertainty to balance the losses, and as a result the
loss weights evolve during training without requiring an-
other (learning based) optimisation. In contrast to many
loss weighting methods in literature, we focus on single-task
multi-loss problems, such as monocular depth estimation and
semantic segmentation, and show that multi-task approaches
for loss weighting do not work on those single-tasks. The
validity of the approach is shown empirically for depth es-
timation and semantic segmentation on multiple datasets.

1. Introduction

In a wide variety of computer vision tasks, models are
taught predictive capabilities through optimising some ob-
jective function. While for some tasks the objective function
consists of a single loss, e.g. such as cross-entropy loss for
classification, for many tasks the objective is a combination
of loss functions, e.g. a L1-loss and a Structural Similarity
loss for monocular depth estimation [14]. In general, the
final objective function L, is a linear combination of a
set of loss functions £;:

Liotar = » i Li + R(cv), @)

I'Source code available at: https:/github.com/rickgroen/cov-weighting

2For clarity and consistency, the term objective function always denotes
the final learning objective for a model / task, while the term loss is used to
denote a single element in such a (composite) objective function.
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where « denotes a set of weights and R(-) denotes some
regularisation on these weights.

The model performance is sensitive to choosing the cor-
rect weight values a. In literature, the weighing of different
losses is usually based on equal weighting, with the inherent
assumption that each loss should contribute equally to the
problem at hand, or by a hyper-parameter grid-search over
the loss weights . This manual tuning of loss weights is
(still) prevalent, for example in segmentation [32, 16, 40],
depth estimation [13, 9], pose estimation [36], style trans-
fer [10, 18], and adversarial learning [20]. This is feasible
only when a small number of loss functions are combined,
when more loss functions are combined. To illustrate this
consider [38] who combine 40 losses, or [25] who combine
78 losses. In these cases, performing a grid-search would be
too expensive computationally, and a method to set « along
with model parameters 0 is desirable.

Static loss weights, i.e. weights which are fixed through
training, either by equal weighting or grid-search, might not
result in optimal learning behaviour and final performance.
For example, for some learning tasks it has been shown
that it is beneficial to learn easy tasks first before the more
difficult tasks are introduced [8, 26]. Ideally, the weights o
are adapted over time to guide the learning process.

Weighting schemes for combining multiple losses has
been studied extensively in the context of multi-task learn-
ing, where multiple tasks, each with a single loss, are com-
bined. This is appealing since conceptually task-specific
information could be leveraged in related tasks to encode
a shared representation [2, 34]. Research in this context
is tremendously broad: from architectural modifications to
facilitate joint learning [28, 29, 27], to multi-task learning
from domains that do not share intrinsic commonalities [22]
and from multi-task to reinforcement learning [1, 33], to
the use of style generation methods to learn the joint data
distribution [31]. The main focus of this paper however is
on adaptive weighting schemes for multiple losses.

In multi-task settings, the weights could be determined by,
prioritising the most difficult task [15], learning the easiest
tasks first [26], estimating the aleatoric uncertainty [23, 24],
normalising the gradients [3] or finding the Pareto optimal so-
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Figure 1. (left) Loss weights throughout training for both our method (lines) and the static optimal weights (dotted); (right) Averaged loss
weights throughout training of Multi-objective optimization [35] (lines) and loss weights for GradNorm [3] (dotted).

lution to share model capacity across the different tasks [35].
In contrast to these approaches this paper focus on the single-
tasks, such as monocular depth estimation and semantic
segmentation in which multiple losses are combined and we
show that multi-task approaches do not work for these tasks.

In this paper we propose CoV-Weighting, a single-task
multi-loss weighting scheme that explicitly makes use of
the statistics inherent to the losses to estimate their relative
weighing. The method is founded on the coefficient of vari-
ation (CoV), which is the ratio of the standard deviation o
to the mean p and shows the extent of variability of the ob-
served losses in relation to the mean of the observed losses.
In order to compare the CoV values of the different losses,
these must have a common meaningful zero point. There-
fore the CoV is estimated based on the observed loss ratio
between the current observation and the mean value of that
loss, instead of the direct observations of the loss. This trans-
form different loss functions into a common scale and allow
for comparisons. In Figure 1 the development of the loss
weights of CoV-Weighting are shown throughout training.

To validate the proposed method, extensive experimental
evaluation across two tasks (depth prediction and semantic
segmentation) and three datasets (KITTI, CityScapes, and
PASCAL Context) is performed. The experiments show
that CoV-Weighting surpasses all multi-task loss weighting
schemes and performs on par with hand-tuned weights in a
single pass, with a learning rate optimised for the hand-tuned
weighing. After a hyper-parameter search over the learning
rate, CoV-Weighting outperforms any of all current models.

2. Method

In this paper, we introduce a weighting scheme for single-
task learning problems where the objective function is de-
fined as a linear combination of losses. Each loss quantifies
the cost with respect to a desired output or auxiliary ob-
jective, for example the pixel-wise L1 loss to measure the
reconstruction error, a cross-entropy loss for (pixel-wise)
classification, or a semantic embedding loss to capture the
classes present in an image. The goal is to find the (optimal)
set of weights a for the combination of losses, c.f. Eq. 1. In
order to find these weights, the following hypothesis is used:

Hypothesis 1 A loss term has been satisfied when its vari-
ance has decreased towards zero.

In other words, this hypothesis says that a loss with a
constant value should not be optimised any further. Variance
alone, however, is not sufficient, given that it can be expected
that a loss which has a larger (mean) magnitude, also has
a higher absolute variance. Even if the loss is relatively
less variant. Therefore, we propose to use the coefficient of
variation ¢, of loss £, which shows the variability of the
observed loss in relation to the (observed) mean:

e =%, @

2
where po and o, denote the mean and the standard devia-
tion of loss L. The coefficient of variation is also known as
the relative standard deviation and has the advantage that
the value is independent of the scale/magnitude in which the
observations are measured. This is relevant, given that we
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known that different losses act on different scales. Coeffi-
cient of variation decouples the loss magnitude from loss
weighting, so a loss with small magnitude may still be rel-
atively impactful when it is complex and variant; a bigger
loss that hardly values across training examples is assigned
less weight.

2.1. Loss Ratios for Coefficient of Variation

A requirement for computing a correct coefficient of vari-
ation is that the observations are derived from a ratio-scale,
that is with a unique and non-arbitrary zero value. Then, it
allows to fairly compare the uncertainty between different
series of measurements, even with different magnitudes.

Not all loss functions are measured on such a ratio-scale.
Therefore, we propose to use the loss-ratio ¢ as measurement,
instead of the loss value itself, which we define as:

Ly

by = ; 3
KL,y

where L; is the observed loss value at time step ¢, and piz, ,
is the mean of the observed losses up to time ¢t — 1. The
loss-ratio has also been used in multi-task loss weighting
setting. In [3] the ratio of the current observation with the
first loss measurement is used (f—;), which we found to yield
noisy and initialisation dependent ratios. In [27] the ratio of
the current observation and the previous observation is used
( ijl ), which we found to yield unstable ratios. Our ratio
is more robust and experimentally we explore the effect of
using a decay mean instead of the mean over all observations.

The loss ratio ¢ has the same meaningful zero point across
different loss functions: when L; is zero £; = 0. Moreover
it is a relative comparison of two measurements of the loss
statistic. The weight a;+ is based on the coefficient of varia-
tion of the loss-ratio ¢y, for loss £; at time step ¢:

i =1 e, = L 25, 4)
ey,
where z; is a normalising constant independent of ¢: z; =
> ;i ce,,- This ensures that ) _, a;; = 1, which is important
to decouple the loss weighting from the learning rate.
There are two forces that simultaneously determine the
value of the loss weights:

e The loss weights increase when the loss ratio ¢;; de-
creases, that is when the loss £;; is below the mean loss
iz, This encourages losses that are learning quickly,
and dampens the effect on high outliers on the magni-
tude of the loss.

e The loss weights increase when the standard deviation
over the history of loss ratios oy,, increases. This en-
sures that more learning occurs when a loss-ratio is
more variant. That is, when a particular objective has
historically been more challenging, this term makes the
cost function more powerful.

Method
Uncertainty [24] L+ 1057@
Multi-objective [35] >, a; Vg, L£; = 0 gradient based

Definition o; Main Property

jointly learned

GradNorm [3] %{f{(o) separate loss
CoV-Weighting Z‘; observed

Table 1. Overview of the different weighting schemes considered in
this paper, with property and definition of ;. See text for details.

2.2. Robust Estimation

Using CoV-Weighting the loss weightings are inferred
directly from the history of the observed loss values. To esti-
mate the loss-ratio and the coefficient of variation robustly,
we use Welford’s algorithm [37], an online estimate, to track
the mean of £, and the mean and standard deviation of ¢
using the following update rules:

pe, = (1= ) peos + Lo )
e, = (1 - %) fe, ., + %ft, and (6)
Mft = (1 - %) Met—l + % (gt - N@t_1> (gt - /Mt) ) (7)

the standard deviation is then given by oy, = /Mj,. As-
suming converging losses and ample training iterations, the
online mean and standard deviation converge to the true
mean and standard deviation of the observed losses over the
data.

A potential downside of this approach is that variance
over time of a loss is smoothed out. Therefore we also
experiment with decaying online estimates, then ¢ is a fixed
factor, e.g. 20 or 100, to weight the aggregated previous
observations and the current observation.

3. Relation to Other Methods

In this section CoV-Weighting is compared in-depth to
three multi-task loss weighting methods: Gradient normalisa-
tion (GradNorm) [3], Multi-objective optimisation [35], and
Uncertainty Weighting [24]. Table 1 summarises the main
differences between the multi-task loss weighting methods
and CoV-Weighting .

Uncertainty Weighting [23, 24]. Uncertainty Weighting
models the homoscedastic aleatoric uncertainty in multi-task
settings. While homoscedastic noise is not dependent on the
input data, it might be task-dependent. The observed task-
loss £; is seen as an observation from a Gaussian distribution
N (L;;0;). The final objective minimises the log-likelihood
of these Gaussian distributions:

L;
£total = Z 20_72 + log T4, (8)
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where the variance o7 is learned jointly with the model pa-
rameters. It can be shown, however, that when the optimal
variance could be used, Uncertainty Weighting results in a
parameter less log-loss: ), log(L;). This means the small-
est loss has the most impact on the gradient.

Uncertainty Weighting uses the homoscedastic (data in-
dependent) noise, in the single-task multi-loss setting this
might be unsuitable since the observational noise over the
same output cannot be used to weight different losses. More-
over, in Uncertainty Weighting the loss weights increase
when the observational noise in the outputs decreases. This
naturally happens when the model is presented with more
training data. In contrast CoV-Weighting uses the variance in
the observed losses throughout training and when the noise
in a loss ratio increases the loss weight also increases.

As opposed to other methods, Uncertainty Weighting, in
the original formulation, does not satisfy ZZ a; = 1, and
hence there is a coupling between the loss weights (which
can be arbitrarily) and the global learning rate. In [24] the
global learning rate is annealed by a power law to counteract
the exponential increase of loss weights. Unfortunately this
complicates direct comparison against other loss weighting
methods because it is exceedingly difficult to fairly control
for global learning rate.

GradNorm [3]. In GradNorm [3] gradient normalisation
is suggested to balance the gradient norms for each task at
each training iteration step at a chosen layer V. This layer
is often the last shared layer between the different tasks.
The authors argue that gradients are ideally balanced at this
shared layer. In the single-task multi-loss setting, all layers
are shared and hence GradNorm is computed at the output
layer.

To balance multiple loss terms, the weights v are learned
along the model parameters, with a separate loss function. It
can be derived, however, that the optimal weight values o
(before normalisation) equal to:

L;(t)/Li(0)
gi(t)

where g;(t) denotes the norm of the gradient of the param-
eters with respect to the loss £; at the shared layer, hence
the name GradNorm. In other words, the loss ratio, between
the loss at time t and the first loss at time 0, is divided by
the current norm of the gradient. This is counter intuitive
for single-task multi-loss learning, given that their loss ra-
tio is an inverse measure: the smaller the value, the better
the loss is training. So better performing losses are slowed
down during training compared to difficult losses (where
L(t) = L£(0)), when they have an equal gradient norm.
Compared to the proposed loss ratio, in GradNorm the
loss ratio is based on the initial loss value. When the net-
work has just been initialised, this can be a poor estimate

€))

%

to measure the velocity with which the network learns for
a specific loss. This is solved in CoV-Weighting by using
the loss ratio between the current loss and the mean of the
observed losses.

Multi-Objective Optimisation [35]. The authors of [35]
state that while multi-task learning can, in general, be ben-
eficial for all tasks, some individual tasks could compete
for model capacity. That is, the shared encodings may not
be equally informative for all tasks. Hence, the authors are
interested in finding Pareto optimal solutions for tasks us-
ing the Frank Wolve algorithm [21]. A potential issue in
single-task learning for multi-objective optimisation is that
single-task learning is inherently a single-objective optimi-
sation. That is, the optimal solution cannot be assumed to be
a Pareto optimum between the different loss functions. It is
expected that dealing with auxiliary losses will be especially
challenging for this method.

4. Experiments

In this section, the proposed method is evaluated on two
distinct scene understanding tasks: Depth estimation on
KITTI [12, 11] and CityScapes [4], and semantic segmenta-
tion on the PASCAL Context dataset [30]. The purpose of
these experiments is two-fold: First, to compare the proposed
dynamic weights to a set of static weights (equal weighting
or hand tuned). Second, to test the proposed method against
three dynamic multi-task loss weighing approaches.

To fairly compare the different methods, our code in-
cludes the proposed weighing scheme and implementations
of the baseline methods. The dynamic baselines that are
used are Uncertainty weighing [24], GradNorm [3], and
Multi-objective optimisation [35]. GradNorm requires an
additional hyper-parameter as a form of temperature scal-
ing on the loss weights (before normalisation). Preliminary
experiments show that the performance is sensitive to this
value; using grid-search it is set to 1.5 for all experiments.
It should be noted that careful tuning of this parameter is
required before performance is satisfactory, unlike with the
other baselines that are used.

4.1. Depth Estimation

In these experiments, we learn to estimate depth from
left/right image pairs by means of photo-metric reconstruc-
tion, using an estimated disparity map; depth can be in-
ferred by warping the disparity map using the camera in-
trinsics. We follow the network architecture and objective
functions of [13]. The objective function combines the L1
loss, Structural Similarity loss (SSIM), left-right consistency
loss (LR), and disparity gradient loss (DISP) to train a single
network. Following [13], the hand-tuned weights are set to
{aL1 = 0.15, QASSIM = 0.85, LR = 1.0, aprsp = 0.1},
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ARD RMSE log 0 <1.25
lower higher
full history 0.1988 0.3118 0.6988
=20 0.2159 0.3479 0.7063
t=100 0.2095 0.3498 0.7050
t=1000 0.2037 0.3009 0.7084

Table 2. The effect of setting 7 to a factor that controls how much
the updates of the statistics are effected by previous statistics. A
full history is shown in e.g. Equation 5, in which ¢ is the iteration
count. Alternatively, ¢ could be set to a static number to allow for a
fixed decay. There is no clear benefit of using decay, hence the full
history of statistics is used in further experiments.

which are normalised such that ) . o; = 1.0. Besides four
different loss functions, disparity maps are regressed at four
scales. At each scale all loss functions are evaluated for both
left and right disparity maps. The full objective combines
losses from all four scales s:

3
Etotal = Z Z

s=0de{dicst,drignt}

L(s,d) (10

Lsa)=ar1lpr +asls +arrLrr

1
+aprsp gﬁDISPa (11)

where each of the as are the loss weights that should be auto-
matically weighted using one of the loss weighting schemes.
A total of 32 losses is used to train the networks. See supple-
mentary material for full details.

Dataset & Implementation Details Depth estimation is
evaluated on the KITTI dataset [12, 11] using the Eigen split
[6] and on the main split of the CityScapes dataset [4]. For
all methods, images are down-sampled to a resolution of
256x512 and fed to an encoder-decoder network using batch
normalisation [19]. The encoder is based on a ResNet50
[17] network; the decoder alternates bilinear interpolation
up-sampling and convolutional layers [13]. The models are
trained for 100 epochs on CityScapes and for 30 epochs on
KITTI, using an Adam optimiser with a learning rate of /e-4
(selected based on related works). For quantitative evalu-
ation, a set of common metrics is used [6, 13]: Absolute
Relative Distance (ARD), Squared Relative Distance (SRD),
Root Mean Squared Error (RMSE), log Root Mean Squared
Error (log RMSE), and multiple accuracies ¢ within a thresh-
old 7 (&;, with t € {1.25,1.25%,1.253}). It is common for
models that are trained on CityScapes to be evaluated on
KITTI, since the quality of the ground truth disparities for
CityScapes is relatively low. In this paper, this commonly-
used evaluation strategy is also used. It means models that
are trained on KITTI or on CityScapes are all evaluated on
the improved Eigen test split [6] of the KITTI dataset.

Loss Statistic Estimation As was mentioned above, a po-
tential downside of using a full history of losses to compute
the statistics might result in over-smoothing the estimates.
See for example the update steps in Equation 5. To verify
whether this is actually the case, different parameters for ¢
are tested. Results are depicted in Table 2. It is concluded
that there is not a significant and apparent effect of using any
particular factor ¢. Other initial experimentation confirms
this conclusion. Consequently, a full history of loss statistics
is kept throughout training.

CityScapes In this set of experiments, CoV-Weighting is
compared against the models trained using a single-loss (e.g.
SSIM or L1) and against the models trained on equal &
hand-tuned weighted combination of losses. For training the
models the CityScapes dataset is used, while evaluation is
performed on the improved Eigen test split [6]. The results
are shown in Table 3.

The performances of the single-loss models show that
using auxiliary losses only will not work well for the original
task. For example, the LR loss is tasked with rewarding
symmetry in left and right disparity predictions; training
with only the LR loss results in predicting purely zero-valued
disparity maps, a perfect symmetry, albeit not valuable for
depth estimation. These auxiliary losses by themselves do
not correctly estimate depth, however they could guide or
regularise the learning process.

The performance of using only the SSIM loss is close to
the hand-tuned multi-loss counterpart. This is in line with
the conclusions reported in [14]. However, the hand-tuned
variant always outperforms the single SSIM loss model and
the equal weighted variant.

The performance of CoV-Weighting is close to the hand-
tuned weights for most of the metrics, and even outper-
forms these for RMSE log and § < 1.253. Moreover CoV-
Weighting outperforms equal weighting on all but one met-
ric (RMSE). Combined this shows that CoV-Weighting can
adaptively set good weights for the different loss compo-
nents.

KITTI In this set of experiments, CoV-Weighting is also
compared against dynamic baselines developped for multi-
task learning: Uncertainty weighing [24], GradNorm [3],
and Multi-objective optimisation [35]. For this experiment
the models are trained on the KITTI data using the improved
Eigen train and test split. The depth estimation results are
shown in Table 4.

We observe that the single-loss model trained on SSIM
is a strong baseline, this is even more distinct than in the
CityScapes experiment in Table 3. Moreover, the hand-
tuned weights do not outperform SSIM and equal weighting
on all metrics. Most likely the set of hand tuned weights
from [13] are tuned for a (slightly) different setting and do
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ARD SRD RMSE RMSElog 4§ <125 §<1.252 § < 1.253
lower is better higher is better
g DISP 2.0301 103.0575  28.9682 2.4904 0.0024 0.0055 0.0102
~ LR 0.7424 11.1500 17.3990 1.8043 0.0110 0.0382 0.0978
) L1 0.2502 3.2033 7.3217 0.3290 0.6838 0.8650 0.9382
ﬁ SSIM 0.2002 1.6460 6.4964 0.3682 0.7066 0.8678 0.9308
N, Equal 0.2106 1.7460 6.6303 0.3838 0.6887 0.8580 0.9231
E é Hand-tuned 0.1955 1.6028 6.3803 0.3507 0.7182 0.8734 0.9336
= CoV-Weighting  0.1988 1.6673 6.6989 0.3118 0.6988 0.8723 0.9426

Table 3. Performance of depth estimation models trained on CityScapes. As is common for CityScapes models, evaluation is performed on
the improved Eigen test set [6] in depth (meters). The first, second, and third best scoring methods are highlighted for each metric.

ARD SRD RMSE RMSElog d<125 §<1.252 §<1.253
lower is better higher is better
% DISP 0.9040 13.5185 18.3165 2.5593 0.0000 0.0000 0.0000
— LR 6.3400  442.7141  65.5198 1.9283 0.0097 0.0265 0.0507
%;0 L1 0.1132 0.8551 4.4699 0.1708 0.8700 0.9664 0.9897
A SSIM 0.0901 0.5202 3.8581 0.1435 0.8991 0.9755 0.9935
Static Weights
Equal 0.0923 0.5477 3.9856 0.1464 0.8971 0.9763 0.9936
" Hand-tuned 0.0944 0.5609 3.8678 0.1469 0.8950 0.9731 0.9926
é Dynamic Weights
& Uncertainty [24] 1.0712 18.5936 11.7052 0.7417 0.3226 0.4760 0.5989
g GradNorm [3] 0.1152 1.1530 4.7621 0.1759 0.8669 0.9642 0.9887
Multi-objective [35]  6.3400  442.7141 65.5198 1.9283 0.0097 0.0265 0.0507
CoV-Weighting 0.0912 0.5108 3.8717 0.1425 0.9023 0.9775 0.9942

Table 4. Performance of depth estimation models trained on KITTI. Evaluated on the improved Eigen test set [6] in depth (meters). The
first, second, and third best scoring methods are highlighted. CoV-Weighting outperforms all other methods on 5 out of 7 metrics.

not generalise to this setting. This shows the importance of
finding (optimal) weights for the task and dataset at hand.

From the dynamic weight methods, two of the baselines
(Uncertainty weighting and Multi-Objective optimisation)
have difficulties training for this task and have far from good
evaluation results. The third baseline, GradNorm, is able
to train a decent model, but the performance stays behind
compared to the model trained on SSIM, L1 or the model
using equal weighted combination. Finally, CoV-Weighting
shows best performance on 5 from the 7 metrics.

In Figure 1, the loss weights throughout training are
shown for hand-tuned weights, GradNorm, Multi-objective
optimisation, and CoV-Weighting for training on the
CityScapes dataset. It is clear that Multi-objective optimi-
sation underestimates the importance of SSIM and/or L1.
GradNorm assigns the most loss weight to the disparity gra-
dient loss, probably because it is the loss with the lowest
magnitude. After the disparity loss, GradNorm assigns most
weight to the L1 loss, c.f. Figure 1, this is reflected by the

performance, in Table 4, the performance of GradNorm
is just below the performance of using the L1 loss alone.
CoV-Weighting attach relatively low importance to SSIM
and high importance to the L1 loss compared to the static
weights. The weights assigned to SSIM and L1 develop
similarly. This is not surprising, since both losses measure
reconstructed image quality, whereas the other two losses
measure disparity quality. Also it gradually assigns more
weight to SSIM and L1, and less to LR.

Win rates In this experiment we evaluate the win rate [39],
the win rate indicates for how many images in the test-set a
method is beneficial compared to a baseline method. This
is implemented as a majority voting scheme over the 7 met-
rics evaluated on a single image. We show the win rates
in Table 5 of the dynamic methods compared to the static
multi-loss baselines. Since the win rate is the percentage
of images in the test set for which a method outperforms
another (baseline) method, it gives another insight in the
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Equal Hand-tuned  Uncertainty [24] GradNorm [3] Multi-objective [35] CoV-Weighting
Equal - 0.4663 1.0000 0.8359 1.0000 0.4463
Hand-tuned 0.5322 - 1.0000 0.8574 1.0000 0.4356
CoV-Weighting 0.5537 0.5583 1.0000 0.8681 1.0000 -

Table 5. Win rates for methods compared to either an equal weighting or a hand-tuned baseline. Evaluated on the Eigen [6] split of KITTI.
Models in rows are tested against the models in the columns. For example, CoV-Weighting outperforms equal weighting in 55% of the cases.

usefulness of the proposed method. From the results we
observe that the three multi-task baselines are outperformed
by the equal weighted and hand-tuned weighted variants.
CoV-Weighting is favoured by over 55% of the images in the
test set over both equal weighted and hand-tuned weighted
models. This shows that our proposed method is able to
improve over the performance of hand-tuned models without
manually having to tune the loss weights.

4.2. Semantic Segmentation

The method is further evaluated on a semantic segmen-
tation task to verify how well it generalises to other tasks.
To this end, all loss weighing methods are implemented
in conjunction with a Context Encoding Network (EncNet)
[40]. The authors of [40] propose a Context Encoding mod-
ule, that jointly learns to predict the presence of semantic
classes in an image as well as the actual pixel-level class
predictions. This module leverages global contextual in-
formation to aid pixel-level prediction. Additionally, it is
possible to add another head to the penultimate layer of the
encoder network to further aid prediction. In total the ob-
jective function consists of a standard Cross-Entropy loss
(CE), a Semantic Encoding loss (SE), and an auxiliary Cross-
Entropy loss (AUX) from a separate Fully Convolutional
(FCN) head. The hand-tuned parameters « as given in [40]
are {acp = 1.0,asp = 0.2,a4yx = 0.2} Again, these
weights are normalised to ensure ) . o; = 1.0

Implementation Details The EncNet is adapted and aug-
mented with all loss weighing methods. The methods are
tested on the PASCAL Context dataset [30, 7] which uses
4998 training images and 5105 validation images. For each
image, there are annotations for up to 59 semantic classes.
The encoder network is a ResNet50 [17] network using batch
normalisation [19]; for the decoders, there is one Encoding
Context Module that is attached to the final layer of the en-
coder, and one FCN head attached to the penultimate layer
of the decoder. For optimisation, an SGD optimiser is used
with a learning rate of /e-4, unless otherwise stated. The
network is pre-trained on ImageNet [5] and then trained for
40 epochs on PASCAL Context. For quantitative evaluation,
Pixel Accuracy (pACC) and Mean Intersection over Union
(mloU) are used, as in [40]. Background pixels are ignored
during evaluation.

pACC mloU

Single-Loss

CE 0.769  0.440

AUX 0.012  0.004

SE 0.010 0.001
’ Static Weights

Equal 0.759 0.419

Hand-tuned 0.768  0.437
‘ Dynamic Weights

Uncertainty [24] 0.781  0.448

GradNorm [3] 0.750  0.404

Multi-objective [35] 0.012  0.003
] Proposed

CoV-Weighting (v = 10=2)  0.779  0.455

CoV-Weighting (y = 1073)  0.770  0.441

CoV-Weighting (y = 10~%)  0.768  0.436

Table 6. Performance of semantic segmentation models trained on
PASCAL Context. Evaluated on 5104 images in the validation set.
The first, second, and third best scoring methods are highlighted
for each evaluation metric. CoV-Weighting is top performing when
suitable learning-rate is chosen.

Results In this experiment different models are compared
trained on a single loss, on a static weighted combination of
losses, and on the dynamic weighted combination. The re-
sults on PASCAL Context are depicted in Table 6. Similarly
as in the depth prediction task, also for semantic segmenta-
tion there is a single loss which provides a strong baseline.
For this experiment, using only the CE loss yields perfor-
mance on par with or slightly better than the hand-tuned
weights. This could be due to the more shallow encoder
network used (compared to [40]) or because the FCN head
could be replaced with another Context Encoding module
to improve performance as suggested in [40]. For this task,
multi-objective weighting yields far from satisfactory results,
probably due to attempting to assign high weight to an aux-
iliary loss with high gradient magnitude that has negative
transfer with the main loss. GradNorm on the other hand,
performs slightly worse than equal weighting. Similar to
the case of multi-objective training, a possible explanation
could be that a loss that serves purely as an auxiliary loss
receives a too high loss weighting because its gradient has a
high magnitude. Uncertainty weighting and CoV-Weighting
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Variant RMSE | § < 1.251 Loss Weights Scale Weights
9L g <
i 6.6483  0.7050 .
UL 66977 07043 ><:__'7 =
;’75 * 6.6556  0.7063 ,}\\J 77777777777777777777 e
w = e
05 6.7670  0.7072 |-
— sSIM  —— LR —— DISP — Full 2 — 14 — 18

Table 7. A comparison of four variants of CoV-Weighting on the CityScapes dataset. The top two rows indicate methods that have
been trained using statistics over the losses; the bottom two rows indicate methods using statistics over the loss ratios. The * indicates
CoV-Weightingas used throughout the paper. The first and second best scoring methods are highlighted for each metric. For each method
the mean loss weights over the four different losses and mean loss weights over the different scales are shown; the weights are shown in the
range [0, 0.5]; the dotted horizontal lines indicate a weight of 0.25. Best seen in color.

out perform both equal weighting and hand-tuned weights.
For uncertainty weighting, it seems that this is in part due
to the unnormalised weights used, i.e. Zz a; can have any
value, which in turn tunes the global learning rate to a higher
value. Similarly, CoV-Weighting also benefits from a higher
learning rate for this task (7 = 10~2). Choosing a suitable
learning rate is necessary regardless of the method that is
chosen; our method does not require additional learning rate
tuning compared to any of the baseline methods.

4.3. CoV-Weighting Variations

In this final set of experiments, several variants of CoV-
Weighting® are explored. So far, the loss weights have been
derived from the mean and variance in the observed loss
ratios "—i In this experiment the mean and variances from
the observed losses are used: Z—i, and the inverse-weighting
is used: £t & L. The rationale for the inverse-weighting
is to test the hypothesis that low-variance losses should be
assigned a low weight.

For this experiment the depth estimation task on the
CityScapes dataset is used. The performance is measured in
RMSE and § < 1.25. The results are in Table 7. For qual-
itative analysis also the weights over time for the different
losses (middle) and the different scales (right) are plotted.

From the results we first observe that all variants obtain
decent performance, albeit assigning different weights to
each of the losses and each of the scales. From this we may
conclude that for the multi-loss single task scenario multiple

3Thanks to the anonymous reviewer for this suggestion!

paths lead to good performance.

Based on the previous experiments the expectation is that
models with relatively high weights to L1 and/or SSIM will
perform the best. CoV-Weighting and the g—i—variant do so.
However, per scale these methods assign different weights,
since final predictions are required at full scale, the coarser
scales act as auxiliary losses. The variant g‘—i wrongly as-
signs high weights to losses at coarse scale, c.f. Table 7.

5. Conclusion

In this paper, CoV-Weighting has been introduced to auto-
mate tuning of loss weights specifically on single-task prob-
lems. Related methods from multi-task learning [35, 24, 3],
are shown to not always be suited in a single-task setting,
given that auxiliary losses cannot be weighed too heavily
because they by themselves do not solve the task. These
losses are often comparatively small and less complex. Con-
sequently, the losses show less variance throughout train-
ing. CoV-Weighting explicitly makes use of these statistics,
inspired by the coefficient of variation and assigns higher
weights to losses that show higher relative variance. Experi-
mentally CoV-Weighting either outperforms or performs on
par with hand-tuned defined weights and outperform these
when the optimal learning rate is used.

Future work could address CoV-Weighting in a multi-
task setting. The use of the coefficient of variation allows
to compare different one another. Since this holds also for
losses from different tasks, it would be interesting to see how
CoV-Weighting performs in multi-task learning.
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