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Abstract

National Basketball Association (NBA) players are
highly motivated and skilled experts that solve complex de-
cision making problems at every time point during a game.
As a step towards understanding how players make their
decisions, we focus on their movement trajectories during
games. We propose a method that captures the multi-modal
behavior of players, where they might consider multiple tra-
Jjectories and select the most advantageous one. The method
is built on an LSTM-based architecture predicting multi-
ple trajectories and their probabilities, trained by a multi-
modal loss function that updates the best trajectories. Ex-
periments on large, fine-grained NBA tracking data show
that the proposed method outperforms the state-of-the-art.
In addition, the results indicate that the approach generates
more realistic trajectories and that it can learn individual

playing styles of specific players.

1. Introduction

In recent years, advances in artificial intelligence and
computer vision started revolutionizing how athletic per-
formance and results are being analyzed and understood,
which includes the use of fine-grained player tracking data
during sporting events. In our research we focus on devel-
oping new methods aimed at deeper understanding of the
behavior of athletes in team sports, with a particular fo-
cus on their motion prediction. This is a particularly im-
portant task in invasion sports, such as soccer, football, or
basketball, where knowledge of how and where the play-
ers will move, especially when it comes to those from the
opposing team, is of critical importance for gaining a tacti-
cal advantage during the game [20]. Beyond this use case
the benefits of accurate motion prediction extend to other
applications, such as postgame analysis [12] or improving
TV broadcasting of games by optimizing camera movement
[4, 17]. Prediction of human trajectories can also be used to
improve tracking accuracy [18], and has recently become a
vibrant topic of research in the computer vision community
[1,8,9, 14].

Using mathematics, statistics, and artificial intelligence
to analyze sports performance is not a novel idea. It has
been famously explored in baseball [23] and applied with
great success to soccer [19], with authors uncovering use-
ful patterns that have been used to move the needle in this
highly competitive field. As these advanced tools have been
proven successful in practice, statistical analysis has been
adopted by top-performing teams regardless of the sport
they play. Today, elite teams from across the globe, such
as Golden State Warriors, New York Yankees, and Manch-
ester United, have analytics departments focusing on de-
riving knowledge from large amounts of data these teams
generate. Beyond the sports professionals, even the general
public is becoming more accepting of these complex statis-
tical tools, as exemplified by the introduction of the concept
of expected goals [26] in some postgame summaries in the
Premier League, the English top soccer division. This trend
is also exemplified by a number of research publications, as
well as high-profile conferences and workshops organized
on the topic, such as MIT Sloan SAC or KDD Sports Ana-
Iytics [3]. These are attended by both the scientific commu-
nity, world-class athletes and management of professional
sports teams, indicating the value that the artificial intelli-
gence is bringing to this multi-billion dollar industry.

In this paper we focus on movement prediction of NBA
players during offensive possessions and we assume that at
any moment players have freedom to consider several op-
tions for their movement. The trajectories depend on the
state of a possession, which includes positions and current
trajectories of the players and the ball, as well as on indi-
vidual player preferences. To predict the trajectories, we
propose an uncertainty-aware, multi-modal deep learning
model. The model is trained to predict multiple player tra-
jectories and probabilities that they will be selected. Figure
1 shows an example of such trajectories and their probabil-
ities, compared to baseline models. We provide an in-depth
discussion of Figure 1 in the Results section, and evaluate
the proposed method using player tracking data collected
during several months of an NBA season. We showcase that
with our proposed training regime, the model has the ability
of recreating distinct playing styles of individual players.
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Figure 1: Visualization of predicted trajectories with ' = 40 using several state-of-the-art methods: a) location-LSTM, b) CNN, ¢) MBT,
d) MACRO VRNN{, e) Social GANy, f) MBT; (ours), red: attackers, blue: defenders, orange: ball, grey: input history of predicted player,
yellow: prediction, green: ground truth; a video animation is included in the Supplementary Material

2. Related Work

Modeling and predicting human trajectories is an impor-
tant challenge in a number of scientific areas. Researchers
have worked on this problem to develop realistic crowd sim-
ulations [24], or to improve vehicle collision avoidance sys-
tems [16] through predicting future pedestrian movement.
When it comes to traffic applications, pedestrian behavior
was usually modeled using attracting and repulsive forces
to guide them towards a goal, while simultaneously avoid-
ing obstacles. Human pedestrian prediction was also used to
improve accuracy of tracking systems [6, 25, 31] or to study
intentions of individuals or groups of people [5, 21, 30].
The advances in deep learning led to data-driven methods,
such as Long Short-Term Memory (LSTM) networks [15]
with shared hidden states [1], multi-modal Generative Ad-
versarial Networks (GANs) [13], or inverse reinforcement
learning [18], outperforming the traditional methods. The
work by [13] is particularly related to our study, through its
use of a multi-modal loss function and by showing practical

benefits of multi-modal trajectory prediction as compared to
single trajectory predictions. Beyond pedestrian movement,
recent research on predictive modeling of vehicular trajec-
tories for self-driving car applications also contains ideas of
relevance for the current study. In particular, [7] showed
that multi-modal trajectory predictions for vehicles gener-
ate realistic real-world traffic trajectories. The multi-modal
loss function in our approach is inspired by this work, where
we adapt ideas from the self-driving domain to modeling of
movement of basketball players.

The ubiquitous use of tracking systems in professional
sports leagues like the NBA or the English Premier League
inspired researchers to analyze and model trajectories of
athletes during matches. For example, [9] used Variational
Autoencoders (VAEs) to model real-world basketball data
and showed for NBA data that the offensive player trajec-
tories are less predictable than the defense. The authors of
[22] and [28] used LSTM to predict near-optimal defensive
positions for soccer and basketball, respectively. [29] simi-
larly used variants of VAESs to generate trajectories for NBA
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players. NBA player trajectory predictions are also stud-
ied by [32] and [33], where a deep generative model based
on VAE and LSTM and trained with weak supervision was
proposed to predict trajectories for an entire team. Macro-
intents for each player were inferred, where the players tar-
get a spot on the court they want to move to. The authors
evaluate the model mostly by human expert preference stud-
ies and show they can outperform the baselines, indicating
that RNNs can capture information from observational data
in sports. However, their trajectories are usually not smooth
and no restrictions are set on the position of a player on con-
secutive time steps, such that the model may output physi-
cally unrealistic trajectories. We consider this state-of-the-
art approach in our experiments, and show that it is outper-
formed by the proposed multi-modal method.

3. Methodology
3.1. Problem Setting

Recent advancements in optical tracking have made it
possible to track the players and the ball during an NBA
game with good enough accuracy and temporal resolution
to recreate the trajectories of all ten players and the ball
during an entire basketball game. This allows us to extract
2-D location £ = [2¥y¥] of player p at time step ¢, with
p € {1,...,10}, as well as 2-D location of the ball at time
t, £2 = [z%,y?], where z-coordinate represents the length
of the field while the y-coordinate represents the width,
with the origin at the upper left corner (see Figure 1 for
illustration). Using an ordered sequence of previous L + 1
time steps we can generate historical trajectory of the p-th
playerash) = [/, ..., £7], where time steps are equally
spaced at an interval of A;. Similarly, we can generate a
historical trajectory of the ball as h? = [€2_, ... £°]. As
a convention, we will assume that the first 5 players rep-
resent the team on the offense and the last 5 players the
team on the defense. We are interested in predicting future
trajectory of p-th offensive player, represented as a vector
Ty = [€],1,..., £} ], where H is the number of future
time steps (or horizon) for which we predict the trajectory.
We will assume that the player of interest (i.e., the offen-
sive player for which we are predicting future trajectory) is
denoted by player index P.

In this paper, we processed the raw tracking data to cre-
ate labeled data set D = {(uf,77),t = 1,....T,P =

1,...,5}, where one data point is defined for each time
step and each offensive player (as indicated by the range
P =1,...,5). Here T is the total number of time steps,

input vector ul’ = {h h; ¥ h? s} is a set of historical
player and ball trajectories, where hY indicates history of
the player of interest, h, P indicates histories of all other
9 players, and s; is the shot clock defined as the time in
seconds remaining until the shot clock expires. Note that

in the input vector the history of the player of interest P
always comes first, followed by histories of their 4 team-
mates and then by 5 opposing players, ordered by a distance
to the player of interest. Output vector 77 is a future tra-
jectory of the player of interest P computed at time step
t, and objective is to build a predictor that accurately pre-
dicts their trajectory given inputs u”’. We emphasize that,
in addition to the given inputs, there are other features that
potentially might influence the observed trajectories, such
as game clock, home vs. away, foul calling, previous plays,
or player mismatch. As we demonstrate with the shot clock
feature, our approach allows for a straightforward use of
any additional feature that a modeller may deem important.
However, an in-depth feature analysis is out of scope of this
paper, and instead we focus on showing viability of the pro-
posed multi-modal predictive model. In fact, it could be
argued that a number of such features are implicitly present
in the input representation already. For example, if a team
has a large point lead with little game time remaining, they
may slow down on the offense and the observed movement
history could capture that information.

Lastly, note that an alternative to predicting a sequence
of H future locations of the offensive player is predict-
ing a sequence of their velocities. As we know the cur-
rent location at time ¢, we can convert trajectory 77 to
a velocity vector v{ = [vi,y,..., Vi, ;] using a direct
mapping of velocities to locations, computed for horizon
he{l,...,H} as

P _P P _
Vith _[Ux,t-l-h?vy,t—i-h] =

[xf-i-h - xf+h—1 yﬁrh - yﬁ,-h—l] (D
Ay ’ Ay '

Although trajectories and velocity vectors are mathemati-
cally interchangeable, a particular choice might have a sig-
nificant impact on model training. As we will demonstrate
experimentally, predicting the next location is more chal-
lenging due to the issue in normalization of coordinates.

3.2. Proposed Approach

As noted previously [32], movement of basketball play-
ers is inherently multi-modal as the players can decide be-
tween multiple plausible trajectories at any given time (e.g.,
to move towards the basket for a layup or towards a corner
for a three-point attempt). In order to account for this multi-
modality we train a predictive model that generates output
of = [flfl, e, f/fM,ﬁfl, . ,ﬁf:M], which consists of
M predicted trajectories 195 . representing M modes, as
well as M scalars ﬁf m, Fepresenting probabilities that a cor-
responding mode is selected by a player. This results in
(2H + 1) M output values, since output for each mode con-
sists of a trajectory comprising H 2-D locations and an ad-
ditional mode probability.
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3.2.1 Loss function

Given a ground-truth trajectory v and predicted trajectory
U, we first define the trajectory loss as

S S
L, 0) = v = D3, )

defined as a mean squared error (MSE) of the predicted
velocity vector. Then, in order to train a model to predict
multiple trajectories and their probabilities, we base our ap-
proach on an adaptation of the multi-modal loss function
presented in [7]. A similar loss function is used by [13] to
generate multi-modal pedestrian trajectories within a GAN
framework. In particular, we define the Multiple-Trajectory
Prediction (MTP) loss for time step ¢ and player P, com-
prising a linear combination of classification loss log p,,
and trajectory loss (2),

M
£MTP — Z §e(m — m*)(logﬁm+a£MSE(va ﬁfm))a

m=1
3)
where p,, is an output of a softmax, « is a hyper-parameter
used to trade-off the classification and trajectory losses, and
m* is the index of the winning mode that produced the tra-
jectory closest to the ground truth, computed according to a
distance function dist() defined in the next subsection,

m* = argmin dist(v!, ﬁfm). 4)

me{l,...,M}
Moreover, d. is a relaxed Kronecker delta [27] giving the
most weight to the best matching trajectory, but also a small

weight to the remaining ones,

1 — ¢, if condition cond is true,

0c(cond) = { ®)

31—, Otherwise.
Intuitively, the classification loss in (3) forces the probabil-
ity of the winning mode to 1 (thus pushing probabilities of
other modes towards zero due to the softmax), and trajec-
tory loss penalizes prediction error of the winning mode.
We note that [7] used the unrelaxed Kronecker delta (i.e.,
€ was set to 0), which only updates the closest trajectory. In
practice, this leads to problems where a randomly initialized
path is much worse than the remaining paths. Such poorly
initialized modes never get selected through (4) and do not
get a chance to improve during training. To prevent this is-
sue we use the relaxed Kronecker delta, where we start from
some small value of € that is gradually reduced towards O as
the training progresses. This phenomenon is well known in
generative models and is commonly referred to as mode col-
lapse in GANSs or posterior collapse in VAEs. Comparable
annealing remedies have been proposed in VAEs [2], but are
generally not sufficient to achieve good performance [11].
Our approach was more stable than VAE or GAN training,
and we will empirically show that we can outperform state-
of-the-art models based on each of those two methods.

3.2.2 Distance functions

As mentioned previously, m* denotes a trajectory closest
to the ground truth, however there are different closeness
measures that can be considered. For example, in [13] the
closest mode is defined simply as a path with the lowest
trajectory loss, computed as

distyrsp(V, 0m) = LB (v, D). (6)

We also considered other distance functions, as [7] con-
cluded that its choice has a large impact on the model per-
formance. Thus, we considered distance function with the
smallest overall displacement error, defined as a location er-

ror at the last time step and computed as
H

disty(V, 0m) = | > (Wien — Dipnm)l2- (D)
h=1
Lastly, we considered using the error of final player velocity
(which can be interpreted as player’s “heading”), shown in
earlier work [7] to be beneficial,

disty(Vi, Vtm) = ([Vern — Ve mml|y - 3
3.2.3 Model architecture

While [7] use the multi-modal loss function to train a CNN
model, we will show that on the NBA data LSTM network
is more effective. We use a two-layer LSTM architecture,
each with a width of 128, to encode the time-series input
of recently observed data ul’. The encoder is a fully con-
nected layer and the prediction consists of M trajectories
of a single player given as z- and y-velocities for H future
time steps, as well as M probabilities that the player will
follow the respective trajectory.

Because players differ in their positions, skills, heights,
and weights, we would expect them to run at different
speeds and along different paths. To take these differences
into account, we consider a two-stage training approach to
learn specific per-player models. To this end we first train
the proposed model on data taken from all players to learn
the average behavior of all NBA players. In the second
training phase these pre-trained networks can be used to
initialize a specialized per-player network fine-tuned on a
subset containing only that player’s data, so that individual
behavior of the player can be learned. In the experiments
we evaluate both global and per-player models.

We refer to the proposed multi-modal approach as Multi-
modal Basketball Trajectories (MBT). We evaluate differ-
ent number of modes M and investigate different distance
functions in (4), indicating these choices in the subscript.
In particular, we denote model variants as MBT 4, with
d € {MSE,l,v}, corresponding to (6), (7), and (8), re-
spectively. For example, MBT,; generates 4 paths and uses
distance function (7) during training. When using a single
mode the distance measure is not used, and we refer to the
uni-modal model as MBT;.
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4. Experiments

4.1. Experimental setting

4.1.1 Data set

We used publicly available movement data collected from
632 NBA games during the 2015-2016 season', from which
we extracted 114,294 offensive possessions. An offensive
possession starts when all players from one team cross into
the opponent’s half court, and ends when the first offensive
player leaves the half court or the game clock is paused.
Possessions shorter than 3s were discarded, resulting in
113,760 possessions. This amounts to 1.1 million seconds
of gameplay where player location is captured every 0.04s.
We downsampled the data by a factor of 3 to obtain sam-
pling rate of A; = 0.12s, corresponding to a lower bound
on human reaction time [10] during which velocity is con-
sidered constant. Furthermore, we randomly split the data
into train and test sets using 90/10 split. All inputs and out-
puts were normalized to the [—1, 1] range. To train the spe-
cialized networks that predict specific player’s movement
we extracted possessions featuring that player. The amount
of data for each player is in the order of several thousands
(e.g., for Stephen Curry there were 2,767 possessions).

4.1.2 Model training

As discussed previously, we used a 2-layer LSTM with 128
channels in each layer. To learn the general model for all
NBA players we trained LSTM in batches of 1,024 samples.
The learning rate in Adam optimizer was set to 5 - 1074,
We set hyper-parameter « in equation (3) to 1, such that the
amplitude of the two losses are about equal, and € in (5) to
0.25 which was reduced by a factor of 0.05 per epoch until
€ = 0. We used /5 regularization with the weight of A =
0.001 and an early stopping mechanism to further prevent
overfitting. To specialize the neural network for a specific
player we fine-tune the base model on data from that player
and adjust the hyper-parameters as follows. We start with
€ = 0.75 which is reduced by a factor of 0.01 per epoch
to make sure that all modes benefit from the information
contained in this smaller training set. The initial learning
rate in this case was reduced to 1075,

All training was done on a single computer with Nvidia
GeForce GTX 1080 card. It took approximately 60 minutes
to train the base model, while specializing the network on a
specific player took less than 5 minutes.

4.1.3 Accuracy measures

We report common measures used in pedestrian trajectory
prediction, final displacement error (FDE) and average dis-

Uhttps://github.com/sealneaward/nba-movement-data, last accessed
November 2020; we are not associated with the data creator in any way.

placement error (ADE) [1, 13], defined as

5
1 - P
FDE 5T Z Z ’ zf+H £t+HH2
t=1 P=1
5 H ©)
1 ~P
ADE —z7 2 2 3 [l —
t=1 P=1h=1

In other words, FDE considers the location error at the end
of the prediction horizon H, while ADE averages location
errors over the entire trajectory. We also report MSE error,
defined as in equation (2). Unlike FDE and ADE that mea-
sure trajectory prediction errors, MSE is a measure of how
accurately are the velocities predicted.

To evaluate multi-modal approaches we calculate the
metrics for each output trajectory and only choose the path
that has the smallest FDE, which is consistent with evalua-
tion procedure commonly used in the literature [13, 27].

4.1.4 Baselines

To establish an upper bound for the proposed error measures
we compared our method to a straw-man baseline. Constant
velocity (CV) baseline assumes that the player keeps mov-
ing in the last observed direction with constant speed.

Baseline CNN refers to an approach that transforms the
input to a rasterized trace image and uses a CNN encoder
(instead of LSTM) before predicting the future velocities
[7]. For the encoder, we used 5 layers with depths [64, 128,
128, 64, 32], 5x5 mask, ”same” padding, and 2x2 max
pooling. The decoder consisted of 2 densely connected lay-
ers with sizes 128 and 64.

To compare different output alternatives we trained the
same LSTM architecture used for our model to directly pre-
dict player locations, as opposed to predicting velocities.
We refer to this model as location-LSTM. We also consid-
ered Social GAN [13], the state-of-the-art in human trajec-
tory prediction. This approach uses an LSTM-based gen-
erator, coupled with a social pooling layer to account for
nearby actors. We trained this model using the code made
available by its authors?, using the same NBA data set ex-
cept that Social GAN can not use extra information such as
ball location or shot clock, therefore only the players trajec-
tories are used. GANs are notoriously hard to train, which
resulted in a training time of 28 hours for 50 epochs of train-
ing. In addition, we considered the state-of-the-art MACRO
VRNN [32], which uses programmatic weak supervision to
first predict a location that the player wants to reach and
then uses a Variational RNN (VRNN) to predict a trajec-
tory that the player will take to reach it. MACRO VRNN
also accounts for the multi-modality of the problem, with
the number of generated paths denoted in the subscript. We

Zhttps://github.com/agrimgupta92/sgan, last accessed November 2020.
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Table 1: Comparison of various models, input steps L, and modes M in terms of error metrics ADE and FDE (in feet) and MSE (in ft2/s2)

H=10 H =20 H =40
Method L M ADE FDE MSE ADE FDE MSE ADE FDE MSE
CvV 1 1 1.72 392 9.09 464 1097 16.01 11.59 26.14 20.59
CNN 10 1 276 525 1580 5.28 9.99 1748 8.15 1323 2195
location-LSTM 10 1 1.61 298 1021 343 691 15.94 6.79 12.11 29.80
MBT; 10 1 143 2098 726 332 6.92 12.36 6.59 1197 1693
MBT; 20 1 140 293 725 330 691 1241 6.59 1197 16.74
MBT; 30 1 1.39 292 746  3.33 691 12.32 6.58 11.92 16.87
Social GAN; 10 1 125 275 8.18  3.09 6.67 13.32 647 1235 17.54
MACRO VRNN; 10 1 1.70 343 13.17 446 8.66 19.85 8.48 1498 25.03
Social GANy 10 4 119 261 736 295 633 1191 6.19 11.54 15.76
MACRO VRNN; 10 4 107 198 590 3.14 5.07 11.93 6.40 854 19.29
MTPy4; 10 4 144 287 791  3.08 6.14 11.36 578 10.06 13.52
MBT4nsE 10 4 101 191 3.82 233 4.00 6.35 5.25 6.92 12.46
MBT4, 10 4 105 193 4.00  2.66 4.31 7.75 6.71 874 14.72
MBTy; 10 4 101 190 3.82 233 4.04 6.35 4.89 6.39 11.56

used models provided in [32] trained on roughly the same
amount of data. Note that training takes up to 20 hours,
as opposed to only 1 hour for our proposed method. Fi-
nally, we compare to Multiple-Trajectory Prediction (MTP)
[7] which resembles our approach, but instead uses an unre-
laxed Kronecker delta (i.e., € was set to 0) and the distance
measure from equation (7).

4.2. Results

We first compare the performance of models trained on
data containing all possessions, with results across different
error measures and time horizons presented in Table 1.

The CV model, which assumes the player will keep mov-
ing with the last observed velocity, gives relatively small
errors for short time horizons, but deteriorates quickly for
longer time horizons. The CNN model outperforms this
simple baseline at longer horizons, while the performance is
suboptimal at short horizons. Location-LSTM is compara-
ble to MBT; model in terms of ADE and FDE metrics, with
much worse MSE metric. As we will demonstrate later in
qualitative results, this difference in MSE can be explained
by the fact that location-LSTM produces trajectories that
are not physically achievable by the players.

Next we experiment with the uni-modal MBT; model
and evaluate the influence of different lengths of histori-
cal inputs L. Based on the results we confirm that the
MBT; models only marginally improve with longer input
sequences. As a result, in the remainder of the experiments
we use a value of L = 10, consistent with [32].

In the following experiment we compare different dis-
tance functions used for training MBT methods, where we
keep M fixed at 4. We see that the choice of distance func-
tion has limited effect on accuracy measures at a shorter
horizon of 1.2s. However, as the horizon increases, MBTy;
starts outperforming the competing approaches by a con-

siderable margin. Taking this result into account, in further
experiments we use the distance function defined in (8).

When we compare the proposed method to the state-of-
the-art models MACRO VRNN and Social GAN, we sepa-
rate the analysis by comparing the same number of modes.
When evaluating a single trajectory, SocialGAN outper-
forms both our approach and MACRO VRNN in ADE and
FDE. However, MBT; reaches better MSE than those ap-
proaches. When comparing multiple modes, we see that
MBTy;, MBTy, and MBT4;;sr performance is roughly
comparable at shorter horizons, but MBT,; outperforms
all other methods across all accuracy measures at longer
horizons. Quite notably, MBT,; outperforms the base-
lines with a large margin in terms of MSE velocity mea-
sure. For example, for horizon H = 40, our MBT,4; model
achieves ADE 24% and 21% smaller than MACRO VRNN,
and Social GAN,, respectively. The comparison to MTPy;
shows problems arising from using an unrelaxed Kronecker
delta during the training process. Observations of the gener-
ated paths reveals that some modes are collapsed or not all
have a non-zero probability, as the poorly initialized paths
are not trained at all.

In Figure 1 we illustrate predicted trajectories for a ran-
domly picked player. Trajectories are generated using a
single-path model that predicts locations (location-LSTM,
Figure 1la), two single-path models that predicts veloci-
ties, one based on a CNN architecture (Figure 1b) and
one based on an LSTM architecture (MBT;, Figure 1c),
one sample path of MACRO VRNN (Figure 1d), 4 sam-
pled paths of Social GAN (Figure le), and our proposed
method using 4 modes MBTy; (Figure 1f). We can see that
location-LSTM output is noisy and does not represent re-
alistic player movements. Player trajectories predicted by
the CNN and MBT; model are smoother and more realis-
tic, showing the advantage of predicting velocities instead
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Figure 2: Evaluation of predicted mode probabilities for MBT4;

of locations. While CNN and MBT; generate qualitatively
similar results, MBT; outperforms CNN in the quantitative
measures. MACRO VRNN generally produces paths that
are less smooth than competing models, explaining the high
error in MSE as discussed above. The multiple paths pre-
dicted by Social GAN are smooth and look plausible, but
lack the diversity of movement that we would expect in bas-
ketball trajectories. MBTy; predicts 4 paths that are very
distinct from each other. The highest-probability path ends
up very close to the observed final player location, while ac-
curately following the ground-truth trajectory. Other paths
produced by the multi-modal model allow for diverse move-
ments, such as an aggressive drive to the basket or support-
ing the ball-handling teammate near the center of the court.

We also evaluate the quality of inferred mode probabili-
ties produced by the MBT,; model. To this end we compare
predicted mode probabilities to empirical ones, computed as
a frequency of how often a mode of certain probability had
the lowest FDE. We bucketed inferred probabilities in 5%
bins and for each computed the empirical probability, with
the average per-bucket results presented in Figure 2. We can
see that the plot closely follows the identity line, indicating
that the predicted mode probabilities are well-calibrated.

To evaluate the hypothesis that the MBT trajectories are
more physically realistic, we calculate acceleration of pre-
dicted trajectories on the test set. The maximum accelera-
tion of MBTy; is 12.2m/ s2. We note that the ground truth
contains noisy outliers, with accelerations of up to 600m /s>
(the 99.9th percentile is 14.5m/s?). In contrast, when con-
sidering MACRO VRNN we observe accelerations of more
than 500m /s? (the 99.9th percentile is 54.86m/s?). This
indicates that in many cases the baseline trajectories are
far from being physically achievable, while the proposed
method yielded more realistic outputs.

Table 2: Prediction of specific players with and without fine-tuning
for H = 40 (4.8 seconds) using the MBT4; model

Player Fine-tuned? ADE FDE MSE
LeBron James No 4.78 6.63 9.97
LeBron James Yes 4.67 6.24 9.91
Stephen Curry No 632 7.80 1735
Stephen Curry Yes 6.09 7.51 16.62

Russell Westbrook No 5.49 7.15 1243
Russell Westbrook Yes 536 690 12.23
DeAndre Jordan No 436 6.01 12.20
DeAndre Jordan Yes 3.93 494 12.56
Andrew Bogut No 454 6.12 9.34
Andrew Bogut Yes 429 540 9.03

4.2.1 Evaluation of per-player models

In this section we compare per-player models to the base
model trained on all players, as well as the per-player mod-
els fine-tuned on players that are playing in the same posi-
tion, but are known to have distinct playing styles. We first
compare the performance of the base and per-player models
for several example players, with results presented in Table
2. The per-player models result in improved performance
across the board, as they are better capturing playing styles
of individual players.

Let us consider a specific game situation where center
DeAndre Jordan just set up a pick and roll, shown in Fig-
ure 3 and in the animated video in the Supplementary Ma-
terial. The model trained on all players predicts that the
so-called roll man will now move either towards the basket
or towards the wide open space on the right-hand side of
the court, shown in the first row of Figure 3a. Jordan is a
very dynamic and fast center who executes many successful
pick and rolls, so our model trained on his data predicts he
will drive to the basket faster and with a higher probabil-
ity than an average player in the same situation, as shown
in Figure 3b. We also compare to a model trained on data
of Andrew Bogut, a defense specialist who is not as fast as
Jordan. According to stats.nba.com®, Bogut only attempts
0.5 pick and rolls per game, while Jordan attempts 2.4. Our
model correctly predicts Bogut’s paths to be less dynamic
and gives a 25% probability that he would turn around and
focus on defending a counter attack, entirely relying on his
team mate to capitalize on the pick, as shown in Figure 3c.

The following experiment involves a situation where
Stephen Curry has possession of the ball at the top of the
circle with a defender to his right, as illustrated in Figure 4
(and in the Supplementary Material). This example shows
some limitations of our approach because in actuality Curry
first acts like he wants to drive inside, but decides to stop
and shoot the ball for a 2-pointer before starting to move
backwards. The predicted trajectories are much simpler, but
still capture some interesting options that the player may

3https://on.nba.com/ZulXVau, last accessed November 2020.
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Figure 3: Visualization of predicted trajectories for DeAndre Jordan with H = 20 (2.4s) using 3 different networks MBTy;: a) trained on
all players, b) retrained with the data of DeAndre Jordan and c) retrained with the data of Andrew Bogut
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Figure 4: Visualization of predicted trajectories for Stephen Curry with H = 20 (2.4s) using 3 different networks MBTy;: a) trained on all
players; b) retrained with the data of Stephen Curry; c) retrained with the data of Russel Westbrook

choose. The model that was trained on all players predicts
that the player may move towards the basket with about
40% probability as seen in Figure 4a, with other lower-
probability options to move along the arc, stay at the top
of the arc, or try to circle around the defender. The model
that was retrained on data of Stephen Curry shown in Fig-
ure 4b slightly adjusts the path along the arc, because Curry
often tries to shoot 3-pointers (more specifically, he had the
second-most 3-point attempts in the 2015/16 season). As a
result the model also gives him a lower probability to drive
towards the basket. We evaluate the same situation with a
network fine-tuned on data of Russell Westbrook, shown in
Figure 4c. Westbrook attempts much fewer 3-pointers than
Curry, and instead has more 2-point attempts. He is also a
very dynamic player that is excellent at driving to the bas-
ket, such that when he makes an attempt he usually gets
closer to the basket than an average player would. Thus,
when he moves along the arc our model predicts that he

will not stay behind the 3-point line, but will instead try to
get closer to the basket. We can see the model successfully
managed to capture characteristics of individual players, ad-
justing the predictions to their own playing styles.

5. Conclusion

In this paper we proposed an LSTM-based model trained
using multi-modal loss that can generate multiple paths
which accurately predict movement of NBA players. In ad-
dition, we showed that per-player fine-tuning can capture
interesting and specific behavior of different players. The
proposed approach outperformed the state-of-the-art by a
large margin, both in terms of standard prediction metrics
and velocity error that better captures trajectory realism. As
future work, we are exploring ideas to model the multi-
modal behavior of the entire team, as well as opponent’s
strategies that can counter such trajectories.
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