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Abstract

This paper proposes a novel method to detect anomalies
in large datasets under a fully unsupervised setting. The
key idea behind our algorithm is to learn the representation
underlying normal data. To this end, we leverage the latest
clustering technique suitable for handling high dimensional
data. This hypothesis provides a reliable starting point for
normal data selection. We train an autoencoder from the
normal data subset, and iterate between hypothesizing nor-
mal candidate subset based on clustering and representation
learning. The reconstruction error from the learned autoen-
coder serves as a scoring function to assess the normality
of the data. Experimental results on several public bench-
mark datasets show that the proposed method outperforms
state-of-the-art unsupervised techniques and is comparable
to semi-supervised techniques in most cases.

1. Introduction

Anomaly detection refers to the identification of patterns
that do not conform to expected normal behavior [6]. It is a
critical task in diverse application domains such as fraud de-
tection [23], intrusion detection [16] and surveillance video
profiling [31, 25]. While the concept of an anomaly is in-
tuitively easy for humans to understand, it is hard to define
mathematically. Fundamentally, an anomaly is something
with insufficient similarity to the rest of the data. This simi-
larity can be computed on the basis of some feature differ-
ence. However, what makes an ideal feature representation
for the data depends on what constitutes an anomaly. This
forces anomaly detection into a chicken-or-egg problem in
which there are a pair of problems, neither of which can be
solved before the other.

To date, a number of works have attempted this problem
by training an autoencoder to create low-dimensional repre-
sentations for anomaly detection [5, 33, 35]. The anomalies
are rejected and the autoencoder retrained [22, 29]. While
this gives reasonable results, it is fundamentally dependent
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on how well the first iteration solves the problem.

We propose a solution in which anomalies can be de-
fined using approximately correct features. This is achieved
through an observation. Given a feature, anomalies approx-
imately correspond to instances of high variance distribu-
tions. Such instances can be identified using a distribution-
clustering [19] framework. This hypothesis provides a re-
liable starting point for normal data selection. We train
an autoencoder from the normal data subset obtained from
distribution-clustering, and iterate between hypothesizing
normal candidate subset and representation learning. The
reconstruction error serves as a scoring function to assess
the normality of the data. The proposed framework does not
rely on any training labels. Instead, it iteratively distills out
anomalous data and improves the learned representation of
normal data by incorporating clustering techniques into the
process. Our method works with the least assumption on the
data itself and does not use any label information, even in the
training phase. The only assumption is that the anomalies
are not statistically dominant in the entire dataset; and for
this exact reason they are anomalies by nature.

We extensively assess the broad applicability of the pro-
posed model on network intrusion, image and video data.
Empirical results show that the proposed method outper-
forms the existing state-of-art approaches in terms of both
accuracy and robustness to the percentage of anomalous
data.

2. Related Works

Existing anomaly detection methods can be grouped into
three categories.

Reconstruction-based method These methods assume
that anomalies are in-compressible and thus cannot be ef-
fectively reconstructed from low-dimensional projections.
Classical methods like Principle Component Analysis(PCA)
[13] and Robust-PCA [4] are motivated by this assumption.
In recent works, different forms of deep autoencoder are
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proposed to analyze the reconstruction error. Xia et al. [30]
show that by introducing a regularizing term to a convolu-
tional autoencoder, the anomalies tend to produce a bigger
reconstruction error. Variational Autoencoder (VAE) [1] and
Generative Adversarial Networks (GANs) [26] have also
been introduced to perform reconstruction-based anomaly
detection. These methods demonstrate promising results
when the anomaly ratio is fairly low. Although the recon-
struction of anomalous samples, based on a reconstruction
scheme optimized for normal data, tends to generate a higher
error, a significant amount of anomalous samples could
mislead the autoencoders to learn the correlations in the
anomalous data instead. Pidhorskyi et al. have [24] adopted
Adversarial Autoencoder [20] for generative probabilistic
novelty detection. These methods, although claimed as un-
supervised, require pre-isolation/identification of classes of
normal data in the training phase, as normal data is needed
to describe the inliner distribution. For example, In GAN
methods [26, 24], label information is used to feed normal
data into the discriminator during training.

Density estimation, representation learning and cluster-
ing Motivated by the assumption that anomalies occur less
frequently, these algorithms treat anomalies as low-density
regions in some feature space. Clustering analysis, such
as Robust-KDE [14], is often used for density estimation
and anomaly detection. Unfortunately, due to the curse of
dimensionality, these methods are less applicable to analyz-
ing high-dimensional data, where density estimation is a
challenge in itself.

A two-step approach is normally adopted to counter this
issue, where dimensionality reduction is conducted first,
followed by clustering analysis as a separate step. One draw-
back of this approach is that dimensionality reduction is
trained without the guidance from the subsequent clustering
analysis; hence the key information for clustering analysis
could be lost during dimensionality reduction. Recently,
Ionescu et al. [12] proposed to train autoencoders on tracked
objects in videos to detect anomalous events. The latent
representations from autoencoders are clustered, followed
by a one-versus-rest classifier to discriminate between the
formed clusters. There are also works that jointly learn di-
mensionality reduction and clustering components based on
deep autoencoder [33, 35]. Notably, DAGMM [35] utilizes
an autoencoder to generate a low-dimensional representation
and its reconstruction error, which is further fed into an esti-
mation network based on Gaussian Mixture Model(GMM).
However, as its autoencoder was trained on the whole dataset,
it is vulnerable to a high percentage of anomalous samples
and may learn wrong correlations. In contrast, our proposed
method addresses this issue by first finding a normal can-
didate subset to train an autoencoder and then iterating be-
tween representation learning and refinement of the normal

candidate.

One-class classification One-class SVM [9, 5] is widely
used. Under this framework, a discriminative boundary
surrounding the normal instances is learned by algorithms.
However, when dimensionality goes higher, such techniques
often suffer from suboptimal performance due to the curse of
dimensionality. OCNN [5] attempts to circumvent this prob-
lem by using an autoencoder for dimensionality reduction.
However, OCNN requires training data with relatively low
anomaly ratio, in order to obtain an optimized NN model to
differentiate anomalies from single-class normal data. Zenati
et al. [32] use GAN to learn a generative model from the
normal data, and leverage the latent representation of the
generator input or from the encoder in the discriminator
learning. Label information of the normal data is required
for training.

3. Problem Formulation

Let X = {x;},i =1,..., N, x € R¥ be the set of input
data points that contains a certain percentage of anomaly.
The goal of anomaly detection is to learn a scoring function
h(x), h : RF — R, to classify samples x; based on some
threshold A:

0, ifh(x;) <A

1, if h(x;) > A o

Yi =

where y; are the labels. y; = 0 indicates x; is normal and
y; = 1 indicates anomalous.

An overview of the proposed end-to-end anomaly detec-
tion system is presented in Fig. 1. The major component of
this system is an autoencoder that learns a low-dimensional
representation of the input data that are often of high di-
mensions, to enable simplified modeling of the underlying
distribution of the data. Under a fully unsupervised setting,
the only information we are given is the set of input data
X, without any label information. As an initialization, we
leverage the latest clustering technique for high-dimensional
data [19] to provide soft supervisory signals.

Since our input data is unlabelled, we derive a “training”
set Strqin, Where Sy.q: C X based on the following:

Sirain = C(Xa pO) ()

where C represents a selection process based on clustering
output, and py represents the percentage of anomaly, it con-
trols which are the clusters to be accepted into the “train-
ing” set. In our experiments, we compute the threshold as
the (100 — po)*" percentile of cluster variance, and accept
clusters with variance smaller than this threshold. The as-
sumption here is that clusters with large variance are likely
to contain anomalous members.
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Figure 1: Flow-chart of the proposed end-to-end anomaly
detection system.

3.1. Scoring Function Learning

The autoencoder network provides two sources of fea-
tures: (1) a low-dimensional representation of the original
input data; and (2) the reconstruction error by comparing
the input with its decoded counter-part. Using the training
set S¢rain = {S1,82, -, s}, the autoencoder learns the
encoding function f,,:

Z. = fen(s§ Gen)7 Vs € Straz"ru Zc. € Rkb" (3)

where ©.,, are the learned parameters for the encoder. z.
are known as the bottle-neck features of dimension ky,,.
Similarly, for the decoding part, we have:

X, — fde(zc; ede)7 (4)

where O, are the learned parameters for decoding. x’ are
the reconstructed features.

Upon training, we have a learned autoencoder with op-
timized parameters {O.,, O 4. }. We apply the encoder net-
work on the entire input set X to produce a new set of
features Z = {z1, 22, -+ ,zn }. Each data point in this set
is formed by concatenating the bottle-neck feature with the
reconstruction error:

z =z 2], z€E RFon+1 5)

where the reconstruction error z, is measured in terms of
cosine similarity between x and its decoded counter-part:

T’
x!'x ) ©)

—d A -1
zr = d(x,x) = cos (leX,H

{5 normalization is applied on each data point z. The
inclusion of reconstruction loss helps to make anomalous
data points more distinguishable. Z is now of a much lower
dimension than the input data X. Hence, traditional clus-
tering techniques such as Gaussian Mixture Model would
suffice for subsequent training set selection. To ensure the
initial training set can capture most of the normal samples,
we adopt a more conservative cluster variance threshold.

With the new encoding scheme, the entire input set X is
now represented as Z. We can “re-label” the training set X
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(b) Clustering result of MNIST
(digit ’4’ forms the normal
group): cluster 5, 10, 15, 20, 25,
30, 35, 40, 45, 50 with increas-
ing cluster variance.

10 (“airplanes” class forms the
normal group) : cluster 5, 10, 15,
20, 25, 30, 35, 40, 45, 50, with
increasing cluster variance.

Figure 2: Results from Distribution Clustering.
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Figure 3: F1, AUROC, AUPRC scores for 20 iterations on
KDDCUP dataset, with 20% anomaly.

by using Z as a proxy, and an assumed anomaly percentage
p to determine the threshold. Similar to the initial training
set selection, we select members that belong to low-variance
clusters in Z. The process of Training set selection — Au-
toencoder training — New feature computation is performed
iteratively. The training set is updated as follows:

zZ,t ., =C(Z' p), ()
Stiaim = {x; :Vz; € Z1/ )}, ®)

where the superscript ¢ here refers to the t* iteration.

Finally, the training process terminates when there is no
change in the set of selected normal samples between two
successive iterations. After the last iteration, ¢ = tp, we
obtain the autoencoder parameters {O%r, ©'F }, and use it
to construct the scoring function:

h(x) = d(x,x/) = d(X, fae(fen(x; (—)ZI:L); @tdi))a 9

where x’ is the result of going through the encoding-
decoding process according to the trained autoencoder.

3.2. Algorithm

The proposed framework is summarized in Algorithm
1. We obtain an initial split of the data into normal and
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abnormal subsets through clustering (i.e. GMM for KDD-
CUP data and Distribution Clustering [19] for image and
video data). Candidate normal samples are then passed into
the autoencoder for representation learning. All examples’
memberships are re-evaluated based on its low-dimensional
representation every r epochs, where the new normal can-
didates are fed into the autoencoder for learning. Finally,
when there is no change in all samples’ memberships, an
encoder that learns the low-dimensional projection of the
normal data is finalized, and its reconstruction loss will be
used for scoring

Initialization We use Distribution Clustering [19] to make
an educated guess about the normal data subset for image
and video data. Selected clustering outputs for CIFAR-10
and MNIST datasets are shown in Fig. 2. Observe that as
cluster variance increases, the samples’ appearance become
more anomalous.

Convergence Assuming a p% anomaly percentage, our
algorithm starts with a tight cut-off, accepting clusters with
variances below (100 — po)*" percentile as an initial training
set, where pg > p. This ensures the initial training set is as
pure as possible. Our assumption is that given partial normal
data, the autoencoder would be able to learn a representation
and generalize well on the “unseen” normal data that was
discarded, and progressively recover them as iterations go on.
Empirically, we plotted the AUROC, AUPRC and F-score
for 20 iterations for the KDDCUP experiment, presented
in Fig. 3 . It demonstrates the convergence as iteration
progresses. The same behavior was observed throughout our
experiments on other datasets.

4. Experiments
4.1. Baseline Methods

On the topic of anomaly detection, there are different ter-
minologies concerning the nature of supervision: (a) Algo-
rithm uses label information of the normal class for training
(label information could be used in part, or all of the stages
of an algorithm); (b) No training labels are given, algorithm
treats the entire dataset with both normal and anomalous
classes as input. For the purpose of this paper, we term type
(a) semi-supervised and type (b) unsupervised. We evaluate
our method against the following state-of-the-art methods:

OC-NN(semi-supervised) One-class neural networks
(OC-NN) [5] contains 2 major components: a deep autoen-
coder and a feed-forward convolutional network. The deep
encoder is trained on normal data for representation learning.
The trained encoder, with its parameters frozen, is subse-
quently used as the input layers of a feed-forward network
with 1 extra hidden layer. Variants of OC-NN employ dif-
ferent activation functions (i.e. linear, sigmoid, relu) in the

Algorithm 1 Deep end-to-end Unsupervised Anomaly De-
tection

Input: X = {x;},7 =1,2..., N: set of normal and anoma-
lous input examples.  r: number of epochs required
for re-evaluation of the membership of the entire input
set X.  po and p: thresholds for initial and subsequent
training set selection, respectively

Output: Reconstruction-based anomaly score function
h(x) and trained autoencoder {©'r "},

1: procedure GET_DECISION_SCORE(X, , p, fen, fae)
2: Strain < C(X, po) > Run clustering, select
instances from low-variance clusters

3: L = {k : VXj € Strain} > L is the set of indices of
selected normal training samples

4: Lol .= ()
s:  while setdiff(L°'¢, L) # () do
6: for each epoch do
7: if ((CurrentEpoch + 1) modr) == 0
then > Re-evaluate normality every r epochs
8: Z.  fen(X,0cn) > Bottle-neck
features
9: X' fde(zca 6de)
10: Z, + d(X,X’) > Reconstruction error
11: Z <« [Z;;Z,]
12: Strain < C(Z,p) > Get new training
set according to threshold p
13: Lol =L
14: L < Strain > Update set of indices for
training samples
15: else
16: Train fey, fge ON Sirqin to obtain
{G)en; ®de}
17: end for
18: end while
19: O =0, ©F =04
20: Output h(x) according to finalized autoencoder

{OL:, ©!F} base on Eq. (9)

en’

21: end procedure

hidden layer. We report the best score attained among all
possible activation functions in our experiments.
OC-SVM(unsupervised) One-class support vector ma-
chine (OC-SVM) [9] is a kernel-based method for anomaly
detection. The algorithm searches for best-performing hyper-
parameters v (kernel coefficient) and v (upper bound of the
fraction of training errors and lower bound of the fraction of
support vectors) to obtain the optimal AUROC [3].
DAGMM(unsupervised) Deep autoencoding Gaussian
mixture model (DAGMM) [35], comprised of one compres-
sion net and one estimation net, is a method based on rep-
resentation learning. The compression network provides
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low-dimensional representations of input samples and the
reconstruction error features. They are fed into the estima-
tion network, which functions as a Gaussian Mixture Model,
to predict the mixture membership for each sample. We
modify the original DAGMM algorithm by adding a small
value to the diagonal elements of the covariance matrix. The
model achieves better results than the reported score from
the original work.

Deep anomaly detection using geometric transforma-
tions(semi-supervised) This method [11] employs a deep
neural model to identify out-of-distribution samples of im-
age data, given only the examples from the normal class. A
series of geometric transformations are applied to the nor-
mal class to create a multi-class dataset. A deep neural net,
trained using this dataset, is then employed to discriminate
the transformations applied. Subsequently, given an unseen
instance, the model applies each transformation on it and
assigns membership scores. The final normality score is de-
termined based on the combined log-likelihood of softmax
response vectors.

4.2. Datasets

We employ five benchmark datasets, namely, KDDCUP,
MNIST, CIFAR-10, CatVsDog and UCF-Crime, to evaluate
our proposed method, together with other methods described
above.

e KDDCUP: The KDDCUP network intrusion dataset
[18] contains samples of 41 dimensions. Similar to [35],
categorical features are prepared by applying one-hot encod-
ing. 20% of the ”normal” samples form the minority group,
while the rest 80% are treated as attackers”. As “normal”
samples are the minorities, they are treated as anomalies

e MINIST: The MNIST dataset [17] consists of 60,000
gray-scale 28 x 28 images of handwritten digits from O to
9. We formulate an anomaly detection task as per described
in [5] and [34], where 4,859 images of digit 4 are randomly
sampled as normal instances and 265 images are evenly
sampled from all other categories as anomalies.

e CIFAR-10: The CIFAR-10 dataset [15] contains
60,000 color images of size 32x32 from 10 classes. We
formulate an anomaly detection task with 5050 examples
from class airplane (category 0) being the normal group and
450 images evenly sampled from the rest of the categories
as anomalous instances.

e CatVsDog: The CatVsDog dataset consists of dogs
and cats images of varying sizes, which are extracted from
the ASIRRA dataset [8] following the settings specified in
[11]. 12,500 images of dogs and 2,500 images of cats are
sampled to form an anomaly detection task. The cat images
are treated as anomalies.

e UCF-Crime: The UCF-Crime dataset [27] contains
1,900 long and untrimmed videos captured from CCTV cam-
eras. It covers 13 categories of real-world crimes under

diverse conditions, e.g., indoor and outdoor, day and night
times. Example crime categories include fighting, burglary,
etc. In both the training and testing sets, videos are of dif-
ferent lengths and anomalies happens at various temporal
locations. Videos within the same category may contain
diverse background scenes. Some of the videos may have
multiple anomaly events.

4.3. Evaluations

We adopt Area Under the curve of the Receiver Operating
Characteristic (AUROC) as the main evaluation metric to
measure the discrimination power of different models. AU-
ROC is a standard method to assess the effectiveness of a
classifier [10]. It can be interpreted as the probability that an
anomalous instance is assigned to a higher anomaly score
than a normal instance [7]. In this section, we compare the
performance of our method against other baseline methods.

KDDCUP: Network Intrusion Data In this experiment,
we divide the KDDCUP dataset following the setting in [35].
50% of the data is reserved for testing by random sampling.
From the remaining 50% of the data reserved for training,
we take all samples from the normal class and mix them with
different percentages of samples from the anomaly class to
form the training set. Parameters for this experiment (see
Algorithm 1) are set to: pg = 35%, p = 30%, r = 10.
Table 2 and 3 reports the AUROC and AUPRC of OC-
SVM, DAGMM and our model on the KDDCUP dataset
after 200 epochs, with anomaly percentage in training set be-
ing 5%, 10% and 20%, respectively. It can be observed that
an increase in the percentage of anomalous data undermines
the detection performance of OC-SVM and DAGMM more
severely, while our method remains robust to such changes.
Figure 4 shows the Receiver Operating Characteristic
(ROC) curves of different models when the anomaly percent-
age of the training data is 20%. In our unsupervised setting
where no prior knowledge of normal class is known, our
method is clearly more robust to contaminated training data.

Image Data In table 4, we compare the AUROC scores ob-
tained from OC-NN, OC-SVM, DAGMM, Geometric Trans-
formation and our model, based on multiple image datasets.
It should be noted that Geometric Transformation approach
trains on data from the normal class only (hence classified as
semi-supervised). Our method, on the other hand, does not
require label information. Unless otherwise specified, we
use NetVLAD [2] as feature representation for all the image
datasets.

The parameters used (refer to Algorithm 1) for each image
dataset are as follows: MNIST (py = 25%, p = 20%, r =
5), CIFAR-10 (pg = 15%, p = 10%, r = 5) and CatVsDog
(po = 25%, p = 20%, r = 10). Detailed parameters for the
experiments are presented in the appendix.
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Table 1: Summary statistics of datasets.

Dataset Normal Class Input Dimension # Instances Anomaly Percentage (%)
KDDcup attack 1x120 494,021 20

MNIST digit 4 2828 5,124 5

CIFAR-10 airplane (category 0) 32x32 5,500 8

CatVsDog dog 128x128 15,000 17
UCF-Crime non-crime scenes varying dep. on video <35

Table 2: AUROC (in %) of different models with different
anomaly percentage based on KDDCUP dataset. Our pro-
posed method is much more immune to increase in anomaly
percentage.

Anomaly
Percentage (%) OC-SVM  DAGMM Ours
5 96.8+0.5 96.6+1.1 982+1.0
10 89.7+0.1 88.6+2.0 984+0.8
20 61.6+0.1 795+20 935+1.1

Table 3: AUPRC (in %) of different models with different
anomaly percentage based on KDDCUP dataset. Our pro-
posed method is much more immune to increase in anomaly
percentage.

Anomaly
Percentage (%) OC-SVM  DAGMM Ours
5 77.8+0.1 754+0.7 945£0.1
10 68.1+£0.1 53.4+£27 939+£0.1
20 454+0.0 40.7£28 90.3+0.5

e
o

True Positive Rate
e
-

——— Our model, auc=0.934
—— DAGMM, auc=0.795
— O0C-5VM, auc=0.616

o
N

e
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0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4: ROC comparison of our proposed mothod,
DAGMM, and OC-SVM. Results are obtained based on
the KDDCUP dataset, with 20% anomaly.

Results in Table 4 demonstrate an outstanding perfor-
mance of our method over other unsupervised approaches.
In addition, on CIFAR-10, the performance of our proposed
algorithm is comparable to that of Geometric Transforma-
tion, a semi-supervised method. In the last column of Table 4,

we report results obtained using distribution clustering alone.
The combination of distribution clustering and autoencoder
significantly improves discrimination against anomalies. De-
tails of the network parameters used in the experiments are
reported in the supplementary material.

We make several key observations based on the results
in Table 4. Unlike all other methods that tend to perform
better on simpler datasets (e.g. MNIST), the advantage of
our method becomes more evident on datasets with higher
complexity. Notably, our method outperforms other unsuper-
vised approaches on CIFAR-10 and CatVsDog. The shortfall
of our method on MNIST dataset could be due to the adop-
tion of NetVLAD feature extractor (4096-d feature vectors),
which may not be an ideal choice of feature representation
since the images are pre-aligned and hence of low dimen-
sionality. We repeat the same experiment using raw image
pixel values from MNIST. It shows improved AUROC score,
suggesting that raw feature is a better representation.

While our method is able to produce results comparable
to semi-supervised approaches, the gap is wider on CatVs-
Dog dataset as compared to CIFAR-10. We attribute this to
the high noise level in the CatVsDog dataset. For example,
some images consist of both dog and cats. Moreover, train-
ing on normal data (with augmentation through geometric
transformation) gives Geometric Transform a natural advan-
tage. According to [8], ASIRRA dataset, from which the
CatVsDog is extracted, is deemed extremely challenging for
computers. Sample images of the dataset are presented in
the supplementary material.

Video Data We apply the proposed approach on UCF-
Crime dataset [27], with features extracted using C3D [28]
descriptor. In default C3D settings, every 16-frame segment
is aggregated to generate | feature vector.

In [27], although the AUROC score of each video cate-
gory is not reported, the AUROC averaged across the en-
tire test set of UCF-Crime dataset is 75.4%. It is achieved
by adopting a weakly-supervised method called multiple
instance learning (MIL). We applied our method on each
crime category by combining all test videos in each category
as a single dataset for training. The results are tabulated
in Table 5. Our method is able to score 72.9%, losing by
just a small margin of 2.5% to [27]. We note that crimes
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Table 4: AUROC in %. Highest score among all methods and highest score among all unsupervised methods are highlighted.
On complex datasets such as CIFAR-10 and CatVsDog, our proposed method has higher performance gain among all
unsupervised methods. The last column presents results obtained using distribution clustering alone.

OC-NN Geom. Transform.| DAGMM OC-SVM Ours Distrib.
Dataset  (semi-supervised) (semi-supervised) | (unsupervised) (unsupervised) (unsupervised) Clust. only
MNIST 70.0 98.2 50.3 90.2 82.4 £ 1.8 (raw) / 70.5 £+ 2.1 (NetVLAD) 63.3
CIFAR-10 63.8 73.3 49.0 69.7 73.6 0.6 48.7
CatVsDog 50.8 88.3 434 56.2 78.0+1.2 56.1

Table 5: AUROC for each crime scene category UCF-Crime.

Crime Scene No. of videos AUROC (%)
Abuse 2 66.4
Arrest 5 63.2
Arson 9 65.6
Assault 3 76.9
Burglary 13 76.8
Explosion 21 72.8
Fighting 5 76.4
Road Accidents 23 79.5
Robbery 5 78.1
Shooting 23 73.3
Shoplifting 21 63.5
Stealing 5 73.3
Vandalism 5 83.5

Ave. over all categories: 73.0

Average 10.77 Ave. over all videos: 72.9

Table 6: Performance comparison based on AUROC scores
on selected videos with DAGMM [35]

Crime scene # Video selected Ours DAGMM

Arrest 2 70.6 522
Arson 3 67.8 60.1
Burglary 4 79.2 67.4
Fighting 3 717.1 57.0

such as “shoplifting” has subtle actions that are less dis-
tinguishable from normal behavior, hence the AUROC is
lower. Despite being fully unsupervised (without label in-
formation), our method is as effective as its semi-supervised
competitor, demonstrating its strength in handling complex
and high-dimensional data.

To benchmark against DAGMM, the state-of-the-art un-
supervised method, we conducted another evaluation on 12
randomly selected videos from 4 categories. This experi-
ment takes individual video file as input, instead of taking
all test videos within a category as one single dataset as in
the previous experiment. As both methods need a sufficient

amount of feature vectors for training, we selected videos
with at least 65 feature vectors (i.e. 1040 frames). The AU-
ROC scores on 4 randomly selected video categories, using
our method and DAGMM, are reported in Table 6. Detailed
parameter settings for this experiment are reported in the
supplementary material.

We also plotted the segment-wise anomaly scores against
ground truth in Fig. 5. A good correspondence between the
ground truth and our anomaly scores can be observed, where
frames with anomalous events under the orange lines are
assigned to higher anomaly scores. Our method significantly
out-performs DAGMM.

Run Time Excluding feature extraction and clustering pro-
cess, on a single NVIDIA Tesla P100 GPU, our method takes
4 minutes 20 seconds on average to complete the CIFAR-10
experiment described above (consisting of 5,500 instances).
This timing is averaged over 5 runs.

4.4. Ablation Study

Initialization To examine the effect of adopting distri-
bution clustering as the initialization method for high-
dimensional data, a variety of other mainstream clustering
methods, including K-means, HDBSCAN [21] and Gaussian
Mixture Model (GMM) are used to replace the distribution
clustering component in the initial normal subset selection.
We compare results on the CIFAR-10 task.

For K-means and GMM, the number of clus-
ters/components is set to 20, which is consistent with the
setting of the GMM employed in the proposed model. For
HDBSCAN, the minimum size of a cluster is set to 5, that
follows the setting as distribution clustering. Table 8§ reports
the AUROC scores obtained from CIFAR-10 anomaly de-
tection task with different clustering techniques. The results
demonstrate that using distribution clustering initialization
provides better supervisory signals and leads to favorable
performance.

To further understand the effectiveness of distribution
clustering, we tabulated the AUROC achieved using distri-
bution clustering alone, for the experiments on image data
(refer to right-most column of Table 4). Surprisingly, this
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Ground truth anomaly pecentages are shown on the left column.

G.T. p (%)
Dataset ‘ % 5 10 15 20 25 30 35 40 45 50
MNIST (raw)| 5 42.7+1.0 558+ 1.4 63.0 £ 1.3 70.5+2.1 70.3+0.8 70.2+ 1.5 71.2+ 1.0 73.7+0.3 70.0+ 1.9 711+ 15
Cifar10 8 728+0.7 73.6+0.6 71.9+0.7 70.9+0.5 67.5+0.5 71.6+0.4 69.0+0.3 68.8+ 1.0 66.0 = 1.0 64.0+0.9
CatVsDog | 17 604+1.7 66.5+2.1 74.0+4.4 780+ 1.2 740425 70.1 +3.2 69.5+2.7 62.4+4.0 60.3+ 1.6 61.0+ 3.3

Table 8: Comparison on initialization methods on CIFAR-
10.

Clustering method AUROC
K-means 60.3
HDBSCAN 61.2
GMM 50.0
Distribution Clustering 73.6

result is even better than those of DAGMM and OC-NN on
the challenging CatVsDog dataset.

Influence of Anomaly Percentage p is the assumed
anomaly percentage that serves as a threshold for normal can-
didate selection from the clustering output. Table 7 shows
the AUROC scores with varying p values. We observe that,
except for the MNIST dataset, a small overestimation above
the ground truth values have little impact on performance.
AUROC scores degrade gracefully as p increases to be more
than 10% above the ground truth. This implies the autoen-
coder was still able to generalize well on the “unseen” nor-
mal data that was discarded.

5. Discussion and Conclusion

This paper presents an end-to-end method for anomaly de-
tection under a fully unsupervised setting. The key insight of
our algorithm is to model normal data. We first leverage dis-
tribution clustering technique to make an educated guess on
the normal data. By incorporating clustering to provide su-
pervisory signals, we iterate between hypothesizing normal
candidate subset and representation learning. This frame-
work iteratively distills out anomalous data and improves
the learned representation of normal data. Extensive exper-
iments on benchmark datasets demonstrate our proposed
method outperforms existing unsupervised approaches and
is comparable to semi-supervised solutions in most cases.

Limitations and future work: Using only an autoen-
coder may be insufficient to handle highly complex patterns
and hence falls short on difficult dataset such as CatVsDog.
For future work, we seek to explore more sophisticated gen-
erative frameworks for representation learning.
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