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Abstract

This paper proposes a novel method to detect anomalies

in large datasets under a fully unsupervised setting. The

key idea behind our algorithm is to learn the representation

underlying normal data. To this end, we leverage the latest

clustering technique suitable for handling high dimensional

data. This hypothesis provides a reliable starting point for

normal data selection. We train an autoencoder from the

normal data subset, and iterate between hypothesizing nor-

mal candidate subset based on clustering and representation

learning. The reconstruction error from the learned autoen-

coder serves as a scoring function to assess the normality

of the data. Experimental results on several public bench-

mark datasets show that the proposed method outperforms

state-of-the-art unsupervised techniques and is comparable

to semi-supervised techniques in most cases.

1. Introduction

Anomaly detection refers to the identification of patterns

that do not conform to expected normal behavior [6]. It is a

critical task in diverse application domains such as fraud de-

tection [23], intrusion detection [16] and surveillance video

profiling [31, 25]. While the concept of an anomaly is in-

tuitively easy for humans to understand, it is hard to define

mathematically. Fundamentally, an anomaly is something

with insufficient similarity to the rest of the data. This simi-

larity can be computed on the basis of some feature differ-

ence. However, what makes an ideal feature representation

for the data depends on what constitutes an anomaly. This

forces anomaly detection into a chicken-or-egg problem in

which there are a pair of problems, neither of which can be

solved before the other.

To date, a number of works have attempted this problem

by training an autoencoder to create low-dimensional repre-

sentations for anomaly detection [5, 33, 35]. The anomalies

are rejected and the autoencoder retrained [22, 29]. While

this gives reasonable results, it is fundamentally dependent

on how well the first iteration solves the problem.

We propose a solution in which anomalies can be de-

fined using approximately correct features. This is achieved

through an observation. Given a feature, anomalies approx-

imately correspond to instances of high variance distribu-

tions. Such instances can be identified using a distribution-

clustering [19] framework. This hypothesis provides a re-

liable starting point for normal data selection. We train

an autoencoder from the normal data subset obtained from

distribution-clustering, and iterate between hypothesizing

normal candidate subset and representation learning. The

reconstruction error serves as a scoring function to assess

the normality of the data. The proposed framework does not

rely on any training labels. Instead, it iteratively distills out

anomalous data and improves the learned representation of

normal data by incorporating clustering techniques into the

process. Our method works with the least assumption on the

data itself and does not use any label information, even in the

training phase. The only assumption is that the anomalies

are not statistically dominant in the entire dataset; and for

this exact reason they are anomalies by nature.

We extensively assess the broad applicability of the pro-

posed model on network intrusion, image and video data.

Empirical results show that the proposed method outper-

forms the existing state-of-art approaches in terms of both

accuracy and robustness to the percentage of anomalous

data.

2. Related Works

Existing anomaly detection methods can be grouped into

three categories.

Reconstruction-based method These methods assume

that anomalies are in-compressible and thus cannot be ef-

fectively reconstructed from low-dimensional projections.

Classical methods like Principle Component Analysis(PCA)

[13] and Robust-PCA [4] are motivated by this assumption.

In recent works, different forms of deep autoencoder are

3636



proposed to analyze the reconstruction error. Xia et al. [30]

show that by introducing a regularizing term to a convolu-

tional autoencoder, the anomalies tend to produce a bigger

reconstruction error. Variational Autoencoder (VAE) [1] and

Generative Adversarial Networks (GANs) [26] have also

been introduced to perform reconstruction-based anomaly

detection. These methods demonstrate promising results

when the anomaly ratio is fairly low. Although the recon-

struction of anomalous samples, based on a reconstruction

scheme optimized for normal data, tends to generate a higher

error, a significant amount of anomalous samples could

mislead the autoencoders to learn the correlations in the

anomalous data instead. Pidhorskyi et al. have [24] adopted

Adversarial Autoencoder [20] for generative probabilistic

novelty detection. These methods, although claimed as un-

supervised, require pre-isolation/identification of classes of

normal data in the training phase, as normal data is needed

to describe the inliner distribution. For example, In GAN

methods [26, 24], label information is used to feed normal

data into the discriminator during training.

Density estimation, representation learning and cluster-

ing Motivated by the assumption that anomalies occur less

frequently, these algorithms treat anomalies as low-density

regions in some feature space. Clustering analysis, such

as Robust-KDE [14], is often used for density estimation

and anomaly detection. Unfortunately, due to the curse of

dimensionality, these methods are less applicable to analyz-

ing high-dimensional data, where density estimation is a

challenge in itself.

A two-step approach is normally adopted to counter this

issue, where dimensionality reduction is conducted first,

followed by clustering analysis as a separate step. One draw-

back of this approach is that dimensionality reduction is

trained without the guidance from the subsequent clustering

analysis; hence the key information for clustering analysis

could be lost during dimensionality reduction. Recently,

Ionescu et al. [12] proposed to train autoencoders on tracked

objects in videos to detect anomalous events. The latent

representations from autoencoders are clustered, followed

by a one-versus-rest classifier to discriminate between the

formed clusters. There are also works that jointly learn di-

mensionality reduction and clustering components based on

deep autoencoder [33, 35]. Notably, DAGMM [35] utilizes

an autoencoder to generate a low-dimensional representation

and its reconstruction error, which is further fed into an esti-

mation network based on Gaussian Mixture Model(GMM).

However, as its autoencoder was trained on the whole dataset,

it is vulnerable to a high percentage of anomalous samples

and may learn wrong correlations. In contrast, our proposed

method addresses this issue by first finding a normal can-

didate subset to train an autoencoder and then iterating be-

tween representation learning and refinement of the normal

candidate.

One-class classification One-class SVM [9, 5] is widely

used. Under this framework, a discriminative boundary

surrounding the normal instances is learned by algorithms.

However, when dimensionality goes higher, such techniques

often suffer from suboptimal performance due to the curse of

dimensionality. OCNN [5] attempts to circumvent this prob-

lem by using an autoencoder for dimensionality reduction.

However, OCNN requires training data with relatively low

anomaly ratio, in order to obtain an optimized NN model to

differentiate anomalies from single-class normal data. Zenati

et al. [32] use GAN to learn a generative model from the

normal data, and leverage the latent representation of the

generator input or from the encoder in the discriminator

learning. Label information of the normal data is required

for training.

3. Problem Formulation

Let X = {xi}, i = 1, . . . , N , x ∈ R
k be the set of input

data points that contains a certain percentage of anomaly.

The goal of anomaly detection is to learn a scoring function

h(x), h : Rk �→ R, to classify samples xi based on some

threshold λ:

yi =

{

0, if h(xi) < λ

1, if h(xi) ≥ λ
(1)

where yi are the labels. yi = 0 indicates xi is normal and

yi = 1 indicates anomalous.

An overview of the proposed end-to-end anomaly detec-

tion system is presented in Fig. 1. The major component of

this system is an autoencoder that learns a low-dimensional

representation of the input data that are often of high di-

mensions, to enable simplified modeling of the underlying

distribution of the data. Under a fully unsupervised setting,

the only information we are given is the set of input data

X, without any label information. As an initialization, we

leverage the latest clustering technique for high-dimensional

data [19] to provide soft supervisory signals.

Since our input data is unlabelled, we derive a “training”

set Strain, where Strain ⊂ X based on the following:

Strain = C(X, p0) (2)

where C represents a selection process based on clustering

output, and p0 represents the percentage of anomaly, it con-

trols which are the clusters to be accepted into the “train-

ing” set. In our experiments, we compute the threshold as

the (100− p0)
th percentile of cluster variance, and accept

clusters with variance smaller than this threshold. The as-

sumption here is that clusters with large variance are likely

to contain anomalous members.
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Figure 1: Flow-chart of the proposed end-to-end anomaly

detection system.

3.1. Scoring Function Learning

The autoencoder network provides two sources of fea-

tures: (1) a low-dimensional representation of the original

input data; and (2) the reconstruction error by comparing

the input with its decoded counter-part. Using the training

set Strain = {s1, s2, · · · , sM}, the autoencoder learns the

encoding function fen:

zc = fen(s; Θen), ∀s ∈ Strain, zc ∈ R
kbn (3)

where Θen are the learned parameters for the encoder. zc

are known as the bottle-neck features of dimension kbn.

Similarly, for the decoding part, we have:

x
′ = fde(zc; Θde), (4)

where Θde are the learned parameters for decoding. x′ are

the reconstructed features.

Upon training, we have a learned autoencoder with op-

timized parameters {Θen,Θde}. We apply the encoder net-

work on the entire input set X to produce a new set of

features Z = {z1, z2, · · · , zN}. Each data point in this set

is formed by concatenating the bottle-neck feature with the

reconstruction error:

z = [zc; zr] , z ∈ R
kbn+1, (5)

where the reconstruction error zr is measured in terms of

cosine similarity between x and its decoded counter-part:

zr = d(x,x′) = cos−1

(

x
T
x
′

‖ x ‖‖ x′ ‖

)

(6)

ℓ2 normalization is applied on each data point z. The

inclusion of reconstruction loss helps to make anomalous

data points more distinguishable. Z is now of a much lower

dimension than the input data X. Hence, traditional clus-

tering techniques such as Gaussian Mixture Model would

suffice for subsequent training set selection. To ensure the

initial training set can capture most of the normal samples,

we adopt a more conservative cluster variance threshold.

With the new encoding scheme, the entire input set X is

now represented as Z. We can “re-label” the training set X

(a) Clustering result of CIFAR-

10 (“airplanes” class forms the

normal group) : cluster 5, 10, 15,

20, 25, 30, 35, 40, 45, 50, with

increasing cluster variance.

(b) Clustering result of MNIST

(digit ’4’ forms the normal

group): cluster 5, 10, 15, 20, 25,

30, 35, 40, 45, 50 with increas-

ing cluster variance.

Figure 2: Results from Distribution Clustering.
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Figure 3: F1, AUROC, AUPRC scores for 20 iterations on

KDDCUP dataset, with 20% anomaly.

by using Z as a proxy, and an assumed anomaly percentage

p to determine the threshold. Similar to the initial training

set selection, we select members that belong to low-variance

clusters in Z. The process of Training set selection → Au-

toencoder training → New feature computation is performed

iteratively. The training set is updated as follows:

Z
t+1

train = C(Zt, p), (7)

S
t+1

train = {xj : ∀zj ∈ Z
t+1

train}, (8)

where the superscript t here refers to the tth iteration.

Finally, the training process terminates when there is no

change in the set of selected normal samples between two

successive iterations. After the last iteration, t = tF , we

obtain the autoencoder parameters {ΘtF
en,Θ

tF
de}, and use it

to construct the scoring function:

h(x) = d(x,x′) = d(x, fde(fen(x; Θ
tF
en); Θ

tF
de )), (9)

where x
′ is the result of going through the encoding-

decoding process according to the trained autoencoder.

3.2. Algorithm

The proposed framework is summarized in Algorithm

1. We obtain an initial split of the data into normal and
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abnormal subsets through clustering (i.e. GMM for KDD-

CUP data and Distribution Clustering [19] for image and

video data). Candidate normal samples are then passed into

the autoencoder for representation learning. All examples’

memberships are re-evaluated based on its low-dimensional

representation every r epochs, where the new normal can-

didates are fed into the autoencoder for learning. Finally,

when there is no change in all samples’ memberships, an

encoder that learns the low-dimensional projection of the

normal data is finalized, and its reconstruction loss will be

used for scoring

Initialization We use Distribution Clustering [19] to make

an educated guess about the normal data subset for image

and video data. Selected clustering outputs for CIFAR-10

and MNIST datasets are shown in Fig. 2. Observe that as

cluster variance increases, the samples’ appearance become

more anomalous.

Convergence Assuming a p% anomaly percentage, our

algorithm starts with a tight cut-off, accepting clusters with

variances below (100− p0)
th percentile as an initial training

set, where p0 > p. This ensures the initial training set is as

pure as possible. Our assumption is that given partial normal

data, the autoencoder would be able to learn a representation

and generalize well on the “unseen” normal data that was

discarded, and progressively recover them as iterations go on.

Empirically, we plotted the AUROC, AUPRC and F-score

for 20 iterations for the KDDCUP experiment, presented

in Fig. 3 . It demonstrates the convergence as iteration

progresses. The same behavior was observed throughout our

experiments on other datasets.

4. Experiments

4.1. Baseline Methods

On the topic of anomaly detection, there are different ter-

minologies concerning the nature of supervision: (a) Algo-

rithm uses label information of the normal class for training

(label information could be used in part, or all of the stages

of an algorithm); (b) No training labels are given, algorithm

treats the entire dataset with both normal and anomalous

classes as input. For the purpose of this paper, we term type

(a) semi-supervised and type (b) unsupervised. We evaluate

our method against the following state-of-the-art methods:

OC-NN(semi-supervised) One-class neural networks

(OC-NN) [5] contains 2 major components: a deep autoen-

coder and a feed-forward convolutional network. The deep

encoder is trained on normal data for representation learning.

The trained encoder, with its parameters frozen, is subse-

quently used as the input layers of a feed-forward network

with 1 extra hidden layer. Variants of OC-NN employ dif-

ferent activation functions (i.e. linear, sigmoid, relu) in the

Algorithm 1 Deep end-to-end Unsupervised Anomaly De-

tection

Input: X = {xi}, i = 1, 2..., N : set of normal and anoma-

lous input examples. r: number of epochs required

for re-evaluation of the membership of the entire input

set X. p0 and p: thresholds for initial and subsequent

training set selection, respectively

Output: Reconstruction-based anomaly score function

h(x) and trained autoencoder {ΘtF
en,Θ

tF
de},

1: procedure GET DECISION SCORE(X, r, p, fen, fde)

2: Strain ← C(X, p0) ⊲ Run clustering, select

instances from low-variance clusters

3: L = {k : ∀xk ∈ Strain} ⊲ L is the set of indices of

selected normal training samples

4: L
old := ∅

5: while setdiff(Lold,L) �= ∅ do

6: for each epoch do

7: if ((CurrentEpoch + 1) mod r) == 0
then ⊲ Re-evaluate normality every r epochs

8: Zc ← fen(X,Θen) ⊲ Bottle-neck

features

9: X
′ ← fde(Zc,Θde)

10: Zr ← d(X,X′) ⊲ Reconstruction error

11: Z ← [Zc;Zr]
12: Strain ← C(Z, p) ⊲ Get new training

set according to threshold p

13: L
old := L

14: L ← Strain ⊲ Update set of indices for

training samples

15: else

16: Train fen, fde on Strain to obtain

{Θen,Θde}

17: end for

18: end while

19: ΘtF
en = Θen, ΘtF

de = Θde

20: Output h(x) according to finalized autoencoder

{ΘtF
en,Θ

tF
de} base on Eq. (9)

21: end procedure

hidden layer. We report the best score attained among all

possible activation functions in our experiments.

OC-SVM(unsupervised) One-class support vector ma-

chine (OC-SVM) [9] is a kernel-based method for anomaly

detection. The algorithm searches for best-performing hyper-

parameters γ (kernel coefficient) and ν (upper bound of the

fraction of training errors and lower bound of the fraction of

support vectors) to obtain the optimal AUROC [3].

DAGMM(unsupervised) Deep autoencoding Gaussian

mixture model (DAGMM) [35], comprised of one compres-

sion net and one estimation net, is a method based on rep-

resentation learning. The compression network provides
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low-dimensional representations of input samples and the

reconstruction error features. They are fed into the estima-

tion network, which functions as a Gaussian Mixture Model,

to predict the mixture membership for each sample. We

modify the original DAGMM algorithm by adding a small

value to the diagonal elements of the covariance matrix. The

model achieves better results than the reported score from

the original work.

Deep anomaly detection using geometric transforma-

tions(semi-supervised) This method [11] employs a deep

neural model to identify out-of-distribution samples of im-

age data, given only the examples from the normal class. A

series of geometric transformations are applied to the nor-

mal class to create a multi-class dataset. A deep neural net,

trained using this dataset, is then employed to discriminate

the transformations applied. Subsequently, given an unseen

instance, the model applies each transformation on it and

assigns membership scores. The final normality score is de-

termined based on the combined log-likelihood of softmax

response vectors.

4.2. Datasets

We employ five benchmark datasets, namely, KDDCUP,

MNIST, CIFAR-10, CatVsDog and UCF-Crime, to evaluate

our proposed method, together with other methods described

above.

• KDDCUP: The KDDCUP network intrusion dataset

[18] contains samples of 41 dimensions. Similar to [35],

categorical features are prepared by applying one-hot encod-

ing. 20% of the ”normal” samples form the minority group,

while the rest 80% are treated as ”attackers”. As ”normal”

samples are the minorities, they are treated as anomalies

• MNIST: The MNIST dataset [17] consists of 60,000

gray-scale 28× 28 images of handwritten digits from 0 to

9. We formulate an anomaly detection task as per described

in [5] and [34], where 4,859 images of digit 4 are randomly

sampled as normal instances and 265 images are evenly

sampled from all other categories as anomalies.

• CIFAR-10: The CIFAR-10 dataset [15] contains

60,000 color images of size 32×32 from 10 classes. We

formulate an anomaly detection task with 5050 examples

from class airplane (category 0) being the normal group and

450 images evenly sampled from the rest of the categories

as anomalous instances.

• CatVsDog: The CatVsDog dataset consists of dogs

and cats images of varying sizes, which are extracted from

the ASIRRA dataset [8] following the settings specified in

[11]. 12,500 images of dogs and 2,500 images of cats are

sampled to form an anomaly detection task. The cat images

are treated as anomalies.

• UCF-Crime: The UCF-Crime dataset [27] contains

1,900 long and untrimmed videos captured from CCTV cam-

eras. It covers 13 categories of real-world crimes under

diverse conditions, e.g., indoor and outdoor, day and night

times. Example crime categories include fighting, burglary,

etc. In both the training and testing sets, videos are of dif-

ferent lengths and anomalies happens at various temporal

locations. Videos within the same category may contain

diverse background scenes. Some of the videos may have

multiple anomaly events.

4.3. Evaluations

We adopt Area Under the curve of the Receiver Operating

Characteristic (AUROC) as the main evaluation metric to

measure the discrimination power of different models. AU-

ROC is a standard method to assess the effectiveness of a

classifier [10]. It can be interpreted as the probability that an

anomalous instance is assigned to a higher anomaly score

than a normal instance [7]. In this section, we compare the

performance of our method against other baseline methods.

KDDCUP: Network Intrusion Data In this experiment,

we divide the KDDCUP dataset following the setting in [35].

50% of the data is reserved for testing by random sampling.

From the remaining 50% of the data reserved for training,

we take all samples from the normal class and mix them with

different percentages of samples from the anomaly class to

form the training set. Parameters for this experiment (see

Algorithm 1) are set to: p0 = 35%, p = 30%, r = 10.

Table 2 and 3 reports the AUROC and AUPRC of OC-

SVM, DAGMM and our model on the KDDCUP dataset

after 200 epochs, with anomaly percentage in training set be-

ing 5%, 10% and 20%, respectively. It can be observed that

an increase in the percentage of anomalous data undermines

the detection performance of OC-SVM and DAGMM more

severely, while our method remains robust to such changes.

Figure 4 shows the Receiver Operating Characteristic

(ROC) curves of different models when the anomaly percent-

age of the training data is 20%. In our unsupervised setting

where no prior knowledge of normal class is known, our

method is clearly more robust to contaminated training data.

Image Data In table 4, we compare the AUROC scores ob-

tained from OC-NN, OC-SVM, DAGMM, Geometric Trans-

formation and our model, based on multiple image datasets.

It should be noted that Geometric Transformation approach

trains on data from the normal class only (hence classified as

semi-supervised). Our method, on the other hand, does not

require label information. Unless otherwise specified, we

use NetVLAD [2] as feature representation for all the image

datasets.

The parameters used (refer to Algorithm 1) for each image

dataset are as follows: MNIST (p0 = 25%, p = 20%, r =
5), CIFAR-10 (p0 = 15%, p = 10%, r = 5) and CatVsDog

(p0 = 25%, p = 20%, r = 10). Detailed parameters for the

experiments are presented in the appendix.
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Table 1: Summary statistics of datasets.

Dataset Normal Class Input Dimension # Instances Anomaly Percentage (%)

KDDcup attack 1×120 494,021 20

MNIST digit 4 28×28 5,124 5

CIFAR-10 airplane (category 0) 32×32 5,500 8

CatVsDog dog 128×128 15,000 17

UCF-Crime non-crime scenes varying dep. on video < 35

Table 2: AUROC (in %) of different models with different

anomaly percentage based on KDDCUP dataset. Our pro-

posed method is much more immune to increase in anomaly

percentage.

Anomaly

Percentage (%) OC-SVM DAGMM Ours

5 96.8± 0.5 96.6± 1.1 98.2± 1.0

10 89.7± 0.1 88.6± 2.0 98.4± 0.8

20 61.6± 0.1 79.5± 2.0 93.5± 1.1

Table 3: AUPRC (in %) of different models with different

anomaly percentage based on KDDCUP dataset. Our pro-

posed method is much more immune to increase in anomaly

percentage.

Anomaly

Percentage (%) OC-SVM DAGMM Ours

5 77.8± 0.1 75.4± 0.7 94.5± 0.1

10 68.1± 0.1 53.4± 2.7 93.9± 0.1

20 45.4± 0.0 40.7± 2.8 90.3± 0.5

Figure 4: ROC comparison of our proposed mothod,

DAGMM, and OC-SVM. Results are obtained based on

the KDDCUP dataset, with 20% anomaly.

Results in Table 4 demonstrate an outstanding perfor-

mance of our method over other unsupervised approaches.

In addition, on CIFAR-10, the performance of our proposed

algorithm is comparable to that of Geometric Transforma-

tion, a semi-supervised method. In the last column of Table 4,

we report results obtained using distribution clustering alone.

The combination of distribution clustering and autoencoder

significantly improves discrimination against anomalies. De-

tails of the network parameters used in the experiments are

reported in the supplementary material.

We make several key observations based on the results

in Table 4. Unlike all other methods that tend to perform

better on simpler datasets (e.g. MNIST), the advantage of

our method becomes more evident on datasets with higher

complexity. Notably, our method outperforms other unsuper-

vised approaches on CIFAR-10 and CatVsDog. The shortfall

of our method on MNIST dataset could be due to the adop-

tion of NetVLAD feature extractor (4096-d feature vectors),

which may not be an ideal choice of feature representation

since the images are pre-aligned and hence of low dimen-

sionality. We repeat the same experiment using raw image

pixel values from MNIST. It shows improved AUROC score,

suggesting that raw feature is a better representation.

While our method is able to produce results comparable

to semi-supervised approaches, the gap is wider on CatVs-

Dog dataset as compared to CIFAR-10. We attribute this to

the high noise level in the CatVsDog dataset. For example,

some images consist of both dog and cats. Moreover, train-

ing on normal data (with augmentation through geometric

transformation) gives Geometric Transform a natural advan-

tage. According to [8], ASIRRA dataset, from which the

CatVsDog is extracted, is deemed extremely challenging for

computers. Sample images of the dataset are presented in

the supplementary material.

Video Data We apply the proposed approach on UCF-

Crime dataset [27], with features extracted using C3D [28]

descriptor. In default C3D settings, every 16-frame segment

is aggregated to generate 1 feature vector.

In [27], although the AUROC score of each video cate-

gory is not reported, the AUROC averaged across the en-

tire test set of UCF-Crime dataset is 75.4%. It is achieved

by adopting a weakly-supervised method called multiple

instance learning (MIL). We applied our method on each

crime category by combining all test videos in each category

as a single dataset for training. The results are tabulated

in Table 5. Our method is able to score 72.9%, losing by

just a small margin of 2.5% to [27]. We note that crimes
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Table 4: AUROC in %. Highest score among all methods and highest score among all unsupervised methods are highlighted.

On complex datasets such as CIFAR-10 and CatVsDog, our proposed method has higher performance gain among all

unsupervised methods. The last column presents results obtained using distribution clustering alone.

Dataset
OC-NN

(semi-supervised)
Geom. Transform.
(semi-supervised)

DAGMM
(unsupervised)

OC-SVM
(unsupervised)

Ours
(unsupervised)

Distrib.
Clust. only

MNIST 70.0 98.2 50.3 90.2 82.4± 1.8 (raw) / 70.5± 2.1 (NetVLAD) 63.3

CIFAR-10 63.8 73.3 49.0 69.7 73.6± 0.6 48.7

CatVsDog 50.8 88.3 43.4 56.2 78.0± 1.2 56.1

Table 5: AUROC for each crime scene category UCF-Crime.

Crime Scene No. of videos AUROC (%)

Abuse 2 66.4

Arrest 5 63.2

Arson 9 65.6

Assault 3 76.9

Burglary 13 76.8

Explosion 21 72.8

Fighting 5 76.4

Road Accidents 23 79.5

Robbery 5 78.1

Shooting 23 73.3

Shoplifting 21 63.5

Stealing 5 73.3

Vandalism 5 83.5

Average 10.77

Ave. over all categories: 73.0

Ave. over all videos: 72.9

Table 6: Performance comparison based on AUROC scores

on selected videos with DAGMM [35]

Crime scene # Video selected Ours DAGMM

Arrest 2 70.6 52.2

Arson 3 67.8 60.1

Burglary 4 79.2 67.4

Fighting 3 77.1 57.0

such as “shoplifting” has subtle actions that are less dis-

tinguishable from normal behavior, hence the AUROC is

lower. Despite being fully unsupervised (without label in-

formation), our method is as effective as its semi-supervised

competitor, demonstrating its strength in handling complex

and high-dimensional data.

To benchmark against DAGMM, the state-of-the-art un-

supervised method, we conducted another evaluation on 12

randomly selected videos from 4 categories. This experi-

ment takes individual video file as input, instead of taking

all test videos within a category as one single dataset as in

the previous experiment. As both methods need a sufficient

amount of feature vectors for training, we selected videos

with at least 65 feature vectors (i.e. 1040 frames). The AU-

ROC scores on 4 randomly selected video categories, using

our method and DAGMM, are reported in Table 6. Detailed

parameter settings for this experiment are reported in the

supplementary material.

We also plotted the segment-wise anomaly scores against

ground truth in Fig. 5. A good correspondence between the

ground truth and our anomaly scores can be observed, where

frames with anomalous events under the orange lines are

assigned to higher anomaly scores. Our method significantly

out-performs DAGMM.

Run Time Excluding feature extraction and clustering pro-

cess, on a single NVIDIA Tesla P100 GPU, our method takes

4 minutes 20 seconds on average to complete the CIFAR-10

experiment described above (consisting of 5,500 instances).

This timing is averaged over 5 runs.

4.4. Ablation Study

Initialization To examine the effect of adopting distri-

bution clustering as the initialization method for high-

dimensional data, a variety of other mainstream clustering

methods, including K-means, HDBSCAN [21] and Gaussian

Mixture Model (GMM) are used to replace the distribution

clustering component in the initial normal subset selection.

We compare results on the CIFAR-10 task.

For K-means and GMM, the number of clus-

ters/components is set to 20, which is consistent with the

setting of the GMM employed in the proposed model. For

HDBSCAN, the minimum size of a cluster is set to 5, that

follows the setting as distribution clustering. Table 8 reports

the AUROC scores obtained from CIFAR-10 anomaly de-

tection task with different clustering techniques. The results

demonstrate that using distribution clustering initialization

provides better supervisory signals and leads to favorable

performance.

To further understand the effectiveness of distribution

clustering, we tabulated the AUROC achieved using distri-

bution clustering alone, for the experiments on image data

(refer to right-most column of Table 4). Surprisingly, this
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(a) Burglary018 anomaly score by our method (b) Fighting033 anomaly score by our method

(c) Burglary018 anomaly score by DAGMM (d) Fighting033 anomaly score by DAGMM

Figure 5: Anomaly

scores (normalized) plot-

ted against ground truth

(flagged by orange lines).

Compared to DAGMM,

our method shows much

better correspondence to

the ground truth.

Table 7: AUROC score when varying anomaly percentage p. Ground truth anomaly pecentages are shown on the left column.

Dataset
G.T. p (%)
% 5 10 15 20 25 30 35 40 45 50

MNIST (raw) 5 42.7± 1.0 55.8± 1.4 63.0± 1.3 70.5± 2.1 70.3± 0.8 70.2± 1.5 71.2± 1.0 73.7± 0.3 70.0± 1.9 71.1± 1.5
Cifar10 8 72.8± 0.7 73.6± 0.6 71.9± 0.7 70.9± 0.5 67.5± 0.5 71.6± 0.4 69.0± 0.3 68.8± 1.0 66.0± 1.0 64.0± 0.9
CatVsDog 17 60.4±1.7 66.5± 2.1 74.0± 4.4 78.0± 1.2 74.0± 2.5 70.1± 3.2 69.5± 2.7 62.4± 4.0 60.3± 1.6 61.0± 3.3

Table 8: Comparison on initialization methods on CIFAR-

10.

Clustering method AUROC

K-means 60.3
HDBSCAN 61.2
GMM 50.0
Distribution Clustering 73.6

result is even better than those of DAGMM and OC-NN on

the challenging CatVsDog dataset.

Influence of Anomaly Percentage p is the assumed

anomaly percentage that serves as a threshold for normal can-

didate selection from the clustering output. Table 7 shows

the AUROC scores with varying p values. We observe that,

except for the MNIST dataset, a small overestimation above

the ground truth values have little impact on performance.

AUROC scores degrade gracefully as p increases to be more

than 10% above the ground truth. This implies the autoen-

coder was still able to generalize well on the “unseen” nor-

mal data that was discarded.

5. Discussion and Conclusion

This paper presents an end-to-end method for anomaly de-

tection under a fully unsupervised setting. The key insight of

our algorithm is to model normal data. We first leverage dis-

tribution clustering technique to make an educated guess on

the normal data. By incorporating clustering to provide su-

pervisory signals, we iterate between hypothesizing normal

candidate subset and representation learning. This frame-

work iteratively distills out anomalous data and improves

the learned representation of normal data. Extensive exper-

iments on benchmark datasets demonstrate our proposed

method outperforms existing unsupervised approaches and

is comparable to semi-supervised solutions in most cases.

Limitations and future work: Using only an autoen-

coder may be insufficient to handle highly complex patterns

and hence falls short on difficult dataset such as CatVsDog.

For future work, we seek to explore more sophisticated gen-

erative frameworks for representation learning.
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