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Abstract

Several coded exposure techniques have been proposed

for acquiring high frame rate videos at low bandwidth.

Most recently, a Coded-2-Bucket camera has been proposed

that can acquire two compressed measurements in a single

exposure, unlike previously proposed coded exposure tech-

niques, which can acquire only a single measurement. Al-

though two measurements are better than one for an effec-

tive video recovery, we are yet unaware of the clear advan-

tage of two measurements, either quantitatively or qualita-

tively. Here, we propose a unified learning-based frame-

work to make such a qualitative and quantitative compar-

ison between those which capture only a single coded im-

age (Flutter Shutter, Pixel-wise coded exposure) and those

that capture two measurements per exposure (C2B). Our

learning-based framework consists of a shift-variant con-

volutional layer followed by a fully convolutional deep neu-

ral network. Our proposed unified framework achieves the

state of the art reconstructions in all three sensing tech-

niques. Further analysis shows that when most scene points

are static, the C2B sensor has a significant advantage over

acquiring a single pixel-wise coded measurement. How-

ever, when most scene points undergo motion, the C2B sen-

sor has only a marginal benefit over the single pixel-wise

coded exposure measurement.

1. Introduction

Cameras that can acquire high frame rate videos re-

quire high light sensitivity and massive data bandwidth

increasing their cost significantly. Hence, several meth-

ods have been proposed to first acquire a low frame rate

video from a low-cost camera and computationally up-

sample the videos temporally [6, 20, 21, 11]. Computa-

tional imaging techniques have used compressive sensing

theory to first acquire compressed video measurements at

low bandwidth and then computationally reconstruct the
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Figure 1: We propose a unified deep learning-based frame-

work that allows us to compare the performance of various

coded exposure techniques. The figure shows the input and

the middle frame of the reconstructed video for each of the

exposure techniques.

high frame rate video signal [3]. For visible light com-

pressive video sensing, coded exposure techniques are the

most popular ones with several compressive acquisition

systems and reconstruction algorithms proposed over the

years [27, 4, 28, 7, 16, 15, 9, 39, 10, 17, 14].

In coded exposure techniques, a pre-determined code is

used to multiplex the temporal dimension of the video sig-

nal into compressed measurements. Recently, a novel pro-

totype sensor based on multi-bucket pixels named Coded-

2-Bucket sensor [30, 36] was introduced. While allowing

for per-pixel control of the “shutter”, this sensor also can

acquire two compressed measurements per exposure using

the 2 light-collecting buckets per pixel. Based on the num-

ber of measurements acquired per exposure, we can classify

these sensing techniques into two categories: a) single com-

pressed measurement (such as flutter shutter and pixel-wise

coding) [7, 27, 16, 28, 15, 9, 39, 10, 17, 14] and b) two com-
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pressed measurements per exposure [30]. It is expected that

two measurements should lead to better video reconstruc-

tion quality compared to a single measurement. However,

the performance improvement provided by two compressed

measurements over a single compressed measurement is yet

to be investigated. As the C2B sensor is recently introduced,

no previous algorithm exists, making a quantitative com-

parison between the single and two compressed measure-

ment techniques. While [14] uses C2B, only a qualitative

comparison on a single video sequence is made for single

and two measurement cases. An extensive quantitative and

qualitative comparison has not been made, and it can help

determine how much advantage is gained by acquiring two

measurements over just one. This comparison of the differ-

ent sensing architectures will also provide users with a tool

to determine which sensing technique is better for a given

scenario.

With this objective, we propose a unified learning-based

framework with which we wish to make an extensive eval-

uation. This learning based framework should be usable

for recovering videos from various single and two measure-

ment techniques, particularly, Flutter-Shutter [27], pixel-

wise coded exposure [33, 5] and C2B [30]. Most of the

previously proposed algorithms for compressive video re-

covery use fully connected networks, and, ideally, we can

use any of those networks for our framework. However,

fully connected networks have fallen out of favour for most

image processing tasks as they have a large number of train-

able parameters and are also hard to scale up for large spa-

tial/temporal resolutions. Hence, we design our framework

to be fully-convolutional, enabling reconstruction of the full

resolution video sequence in a single forward pass. In [17]

it has also been demonstrated that a fully convolutional net-

work provides better reconstruction results than fully con-

nected networks. Later, we provide an intuitive explanation

for why a convolutional network with local spatial connec-

tivity is actually more suitable for this problem than fully

connected networks with global connectivity. Our frame-

work also uses the recently proposed shift-variant convolu-

tional (SVC) layer [22] that has shown to be effective for

feature extraction from a coded image input.

The proposed algorithm is divided into two stages, where

the first stage uses the SVC layer for an exposure code

aware feature extraction. In the second stage, a deep, fully

convolutional neural network is used to learn the non-linear

mapping to the full resolution video sequence. Exten-

sive comparisons show that our proposed learning frame-

work provides state of the art results on all three sensing

techniques. Using our unified framework, we quantita-

tively evaluate the performance of the various coded ex-

posure techniques. As expected, pixel-wise coded expo-

sure techniques produce much better video reconstructions

than global coded exposure technique such as FS. We also

confirm that acquiring two compressed measurements as in

C2B is better than capturing just a single compressed mea-

surement. The advantage is significant for a largely station-

ary scene (Fig. 5). However, C2B is only marginally bene-

ficial over a single pixel-wise coded compressed measure-

ment when most scene points undergo motion.

In summary we make the following contributions:

• We provide a deep learning framework using which

various coded exposure techniques can be compared.

• Our proposed approach matches or exceeds the state-

of-the-art video reconstruction algorithms for each of

the sensing techniques.

• We show that C2B has significant advantage over

per-pixel exposure coding in reconstructing videos of

scenes consisting of significant static regions.

2. Related Work

High speed imaging techniques with conventional

sensor: Conventional image sensors capture a sharp video

by using exposures shorter than the sampling period of the

video. Frame interpolation techniques [6, 20, 11, 21] can

be used to interpolate multiple frames between any two ac-

quired frames and thereby increasing the video frame rate.

When a long exposure is used, a blurred frame is acquired

which encodes the full motion information. Recent learning

based methods [26, 12] have been used to decode the mo-

tion information from a single blurred frame into multiple

video frames.

Computational Imaging techniques: For scenes with lit-

tle to no depth variations techniques using arrays of low-

cost low frame rate cameras have shown to be effective at

computationally recovering the high frame rate video [37,

31, 1]. A hybrid imaging system which uses one low-frame

rate but high spatial resolution and another high frame rate

but low spatial resolution sensors has been proposed for

image deblurring [19] and high spatio-temporal resolution

video recovery [23]. Recently, a hybrid imaging system

consisting of image and event sensor has been proposed for

high speed image reconstruction [32, 35, 34].

Motivated from the compressive sensing theory, several

imaging architectures have been proposed for video com-

pressive sensing problem [3]. Flutter shutter is a global

exposure coding technique which was first introduced for

motion deblurring [27] and then extended for video recov-

ery from the compressed measurements [7]. A pixel-wise

coded exposure system was proposed in [28] which demon-

strated the recovery of high temporal resolution video from

measurements compressed using spatial light modulator. A

per-pixel control of the exposure was shown in [15], using

only a commercially available CMOS image sensor with-

out the need for any other hardware. The recently intro-

duced multi-bucket sensors such as Coded-2-Bucket cam-
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Figure 2: Our proposed algorithm takes in compressed mea-

surements from the different coded exposure techniques as

input and output full spatial and temporal resolution video

in a single forward pass. Our proposed algorithm is fully

convolutional and consists of a feature extraction stage and

a refinement stage.

eras [30, 36], have reduced the complexity of per-pixel ex-

posure control to a great extent. As video recovery from the

compressed measurements is an ill-posed problem, strong

signal priors are necessary for solving the inverse prob-

lem. While analytical priors such as wavelet domain spar-

sity [28, 24], TV-regularization [40] have been used, learn-

ing based algorithms such as Gaussian mixture models [38],

dictionary learning [15] and neural network based mod-

els [9, 10, 39] have shown better performance than analyti-

cal priors. While many of the deep learning based methods

use fully connected networks for the signal recovery, a very

recent paper [14] uses a fully convolutional network to learn

a denoising prior to iteratively solve the inverse problem.

3. A Unified Framework for Compressive

Video Recovery Using Fully Convolutional

Network

In this section, we elaborate on our proposed method to

obtain the video signal from its compressed measurements.

Our proposed algorithm takes in as input the compressed

video measurements and outputs the video sequence at full

spatial and temporal resolution in a single forward pass. The

proposed architecture consists of two stages, as shown in

Fig. 2. First, features are extracted from the compressed

measurements using an exposure aware feature extraction

stage consisting of shift variant convolutional layer. In the

second stage, a deep neural network takes in the extracted

features and outputs the full resolution video sequence. Our

network architecture is flexible enough that it can be used

for video reconstruction from all three coded exposure tech-

niques considered here. All we need to do is train the net-

work for these different inputs.

In Sec. 3.1, we provide motivation for using CNN for

extracting relevant features from the compressed measure-

ments. In Sec. 3.2, we elaborate on the use of shift-variant

convolutional layer for handling pixel-wise coded exposure

measurements and in Sec. 3.3 we specify the loss function

used in the training our network.

3.1. Motivation for Using CNN

Several previous learning-based algorithms for compres-

sive video recovery from coded exposure techniques have

used fully connected networks [39, 10]. In [17], it has been

shown that a fully convolutional network provides better re-

construction than fully connected networks for compressive

video sensing. This section shows that a fully convolutional

network is a better choice for solving our problem than a

fully connected network.

For coded exposure techniques, each pixel in the com-

pressed measurement is a linear combination of the under-

lying video sequence at that pixel alone. As there is no

spatial multiplexing involved, it is possible to recover the

video sequence at each pixel independently of the neigh-

boring pixels. However, by using the information in a small

neighborhood of a pixel, we can exploit the spatio-temporal

redundancy inherent in natural video signals. Fully con-

nected networks that are used in previous works provide

global connectivity at the cost of much larger computational

complexity and learning parameters. Thus, they should be

used for solving inverse problems where global multiplex-

ing occurs in the forward model, such as FlatCam [2]. With

a toy example and elementary mathematical operations, we

demonstrate next that fully connected networks with global

connectivity are overkill and fully convolutional network

with local spatial connectivity is a better design choice for

our problem.

3.1.1 Toy example demonstration

Consider a video signal x of size H ×W × T with xt rep-

resenting each of the T frames of the video signal. A binary

exposure sequence φ of dimension H ×W × T is used for

temporally multiplexing the signal x into the measurement

I . Mathematically, we can write the forward model as:

I =

T∑

t=1

φt ⊙ xt , (1)

where φt represents the code corresponding to each frame

of φ and ⊙ represents element-wise multiplication.
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The linear system in Eq. (1) can be represented in the

matrix-vector form as follows:

I = ΦX , (2)

where Φ is a matrix representation of φ and X is a column

vector obtained by vectorizing x. The minimum L2-norm

solution for the signal X can be obtained by:

min
X

‖X‖2 (3)

s.t. I = ΦX . (4)

Note that there are better reconstruction techniques such as

dictionary learning which uses L0 or L1 norm on sparse

transform coefficients of X [15]. But here our main goal

is to show that CNN is appropriate for solving our inverse

problem and hence we only provide a justification with L2-

norm, that has a closed-form solution. The approximate so-

lution X̃ for Eq. (3) is given by,

X̃ = Φ†I , (5)

Φ† = ΦT (ΦΦT )−1. (6)

We notice that the matrix ΦΦT is a diagonal matrix of

dimension HW ×HW , and so is the matrix (ΦΦT )−1. As

shown in Fig. 3, the matrix Φ† is the matrix ΦT whose

columns are scaled by the entries of the diagonal matrix

(ΦΦT )−1. From the solution shown in Fig 3, it is clear

that the temporal sequence at each pixel of the video is re-

covered only from the compressed measurement captured

at that pixel. For example, if we consider the jth pixel lo-

cation, then the estimated temporal sequence (x̂j
1
, x̂j

2
, x̂j

3
)

corresponding to the jth pixel location depends only on

the compressed measurement at the same pixel location Ij .

This shows that CNN with local connectivity is more than

sufficient for video reconstruction from coded exposure im-

ages.

3.2. Feature Extraction Using Shift­Variant Convo­
lution (SVC)

In Sec. 3.1, we determined that to recover a video at

a particular pixel, only that pixel’s compressed measure-

ments are necessary. Hence, the local connectivity offered

by CNNs can be efficiently used for the task of recover-

ing the underlying video signal. However, CNNs share the

same weights across the whole input image. In pixel-wise

coded exposure, the compressed measurement can be en-

coded using a different exposure sequence at each pixel.

From Eq. (5) and Fig. 3, we see that the estimated video

sequence at a particular pixel is dependent on the exposure

sequence at that particular pixel. Hence, for pixels with dif-

ferent exposure sequence, using a different set of weights in

the convolutional layer is desirable.

In flutter shutter video camera, each pixel in the image

shares the same coded exposure sequence. Hence, the same

learned convolutional weights w can be used to recover the

underlying video signal for all the pixels. Thus, for recov-

ering video sequences from the flutter shutter camera, we

build our inversion stage as a standard convolutional layer

as it achieves the functions mentioned above: local connec-

tivity and shared weights across the whole image.

In pixel-wise coded exposure and C2B architectures, the

underlying coded exposure sequence can change from one

pixel to the next. In practice, a predetermined code of size

m×n×T is repeated over the entire image with a stride of

m×n pixels. Hence, a standard convolutional layer cannot

be directly used as it shares the same set of weights across

the whole image. Instead, a convolutional layer, which can

share weights for every m × nth pixel, is desirable. Such

a convolutional layer whose weights vary in a local neigh-

borhood of m× n pixels was proposed in [22] called shift-

variant convolutional (SVC) layer. This layer allows the

network the freedom to learn different weights to invert the

linear system when the underlying exposure sequence is dif-

ferent. Hence, we use this layer to extract adaptive features

from the input compressed measurement. The exact imple-

mentation of our SVC layer is shown in Algorithm 1. These

extracted features are input to the next stage of the network,

which predicts the full resolution video sequence.

Algorithm 1 SVC implementation

Input: Single channel coded image I ⊲ Size: [1, H,W ]

Mask size: [m,n,T]

Output: Extracted feature maps ⊲ Size: [C,H,W ]

procedure SVC(I)

For each pixel, extract k × k pixel neighborhood and

arrange them as the third dimension ⊲ output tensor of size

[k2, H,W ]

Reverse pixel shuffle with block size m× n ⊲ output

mn tensors of size [k2, H/m,W/n]

for i = 1 to m× n do

2D convolutions for each ith tensor of size

[k2, H/m,W/n] with input channels k2 and output C
channels ⊲ Output size [C,H/m,W/n]

end for

Pixel shuffle for the m × n channels to upsample the

tensors spatially ⊲ output tensor of size [C,H,W ]

end procedure

3.3. Refinement Stage

The refinement stage takes as input the features extracted

from the shift-variant convolutional layer and outputs a re-
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Figure 3: We show a toy example of pixel-wise coded exposure technique for compressing a video sequence of size 3×3×3.

Φ and X are the matrix and vector representation of the exposure sequence φ and the video sequence x, respectively. From the

pseudo-inverse solution we see that the temporal video sequence reconstruction at any pixel depends only on the measurement

and the code at that pixel alone. This motivates our choice of a fully convolutional design.

fined video sequence X̂ . Our refinement stage consists of

a UNet [29] like deep neural network. Our proposed Unet

model consists of 3 encoder stages followed by a bottleneck

layer and 3 decoder stages. In each of the encoder stages,

the feature maps are downsampled spatially by a factor of

2 and upsampled by the same factor in corresponding de-

coder stage. The output of this network is supervised using

L1 loss function. We also add a TV-smoothness loss on the

final predicted video sequence. Our overall loss function

then becomes,

L = Lref + λtvLtv

Lref = ‖X̂ −X‖1

Ltv = ‖∇X̂‖1

(7)

where ∇ is the gradient operator in the x-y directions and

λtv weights the smoothness term in the overall loss func-

tion.

4. Experimental Results

4.1. Experimental and Training Setup

Ground truth data preparation: We trained our pro-

posed network using GoPro dataset [18] consisting of 22
video sequences at a frame rate of 240 fps and spatial res-

olution of 720 × 1280. The first 512 frames from each

of the 22 sequences are spatially downsampled by 2 for

preparing the training data. Overlapping video patches of

size 64 × 64 × 16 (height×width×frames) are extracted

from the video sequences by using a sliding 3D window

of (32, 32, 8) pixels resulting in 263, 340 training patches.

Similarly, for 8-frame reconstruction, we extracted video

patches of size 64 × 64 × 8 and shifting the window by

(32, 32, 4) pixels. The network was trained in PyTorch [25]

using Adam optimizer [13] with a learning rate of 0.0001,

λtv of 0.1 and batch size of 50 for 500 epochs1.

Network architecture for each sensing technique: We

trained our network separately for each of the different

coded exposure techniques - Flutter Shutter (FS), Pixel-

wise coded exposure, and Coded-2-Bucket. For FS, we

trained our proposed network for 16-frame reconstruction

and 8-frame reconstruction. As FS uses global code, a stan-

dard convolutional layer is used as a feature extraction layer

in place of the SVC layer. We use the SVC layer as de-

scribed in Sec. 3.2 as a feature extraction stage for pixel-

wise coded exposure and C2B.

Input to the network: In the case of FS, the input to the

network is a single coded exposure image obtained by mul-

tiplexing with a global exposure code. We used the expo-

sure code obtained by maximizing the minimum of the DFT

values’ magnitude and minimizing the variance of the DFT

values [27], over all possible binary codes. For the case of

pixel-wise coded exposure, the coded mask of size 8×8×16
is repeated spatially to make it the same dimension as input,

which is then used for multiplexing. We used the optimized

SBE mask exposure code proposed in [39] for this purpose.

In the case of C2B exposure, the input to the network can

either be a pair of coded and complement-coded images or

a pair of coded and fully-exposed images. The output of the

C2B sensor is two images that are coded using complemen-

tary exposure sequences (i.e., φ and 1 − φ). We used the

same exposure pattern optimized SBE mask from [39] for

C2B exposure as well. The fully-exposed or blurred image

is obtained by adding the coded and complementary coded

images. The image pair for the C2B sensor are stacked as

two channels and provided as input to the proposed algo-

rithm.

1https://github.com/asprasan/unified_framework
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Flutter shutter (8x)

Input GMM [38] Ours

17.46, 0.586 21.82, 0.773

Pixel-wise coded exposure (16x)

Input GMM [38] DNN [39] AAUN[14] Ours

31.54, 0.937 31.88, 0.94 32.99, 0.960 34.03, 0.963

22.25, 0.747 22.69, 0.764 23.75, 0.8 24.20, 0.828

Coded-2-bucket exposure (16x)

Coded image Blurred image GMM [38] Ours

33.51, 0.959 35.35, 0.972

23.17, 0.779 24.93, 0.851

Figure 4: Visual comparison of middle frame from the re-

constructed video sequences from various reconstruction al-

gorithms. Our proposed method performs better than the

existing methods GMM [38], DNN [39], and also doesn’t

suffer from block artifacts caused by patch-wise reconstruc-

tion. As expected, C2B produces better results than pixel-

wise coded imaging. FS lags far behind.

4.2. Analysis of Video Reconstruction for Various
Compressive Sensing Systems

In this section, we qualitatively and quantitatively assess

video reconstruction from compressed measurements cap-

tured by different coded exposure techniques - FS, pixel-

wise coded exposure, and C2B. We compared our proposed

method with existing state-of-the-art algorithms for video

reconstruction such as GMM-based inversion [38], DNN

[39] and AAUN [14]. We used two sets of test videos

with a different spatial resolution to perform this analy-

sis. First, we used the test set that was used for evaluation

in DNN [39], consisting of 14 videos of spatial resolution

256× 256 and 16 frames each. For the second set, we ran-

domly selected 15 videos of resolution 720 × 1280 and 16
frames each, from the GoPro test dataset [18].

Exposure Algorithm Test data

DNN set [39] GoPro set [18]

FS 8x
GMM [38] 23.90, 0.818 23.30, 0.766
Ours 24.06, 0.833 25.03, 0.811

FS 16x
GMM [38] 21.50, 0.738 21.45, 0.697
Ours 21.69, 0.752 21.61, 0.710

DNN set [39] GoPro set [18]

GMM [38] 29.31, 0.898 29.94, 0.887
Pixel-wise DNN [39] 30.21, 0.905 30.27, 0.890
coded 16x AAUN [14] 28.5, 0.882 31.6, 0.910

Ours 31.14, 0.925 31.76, 0.914

DNN set [39] GoPro set [18]

C2B 16x
GMM [38] 30.94, 0.914 30.84, 0.898
Ours 32.23, 0.935 32.34, 0.920

Table 1: Quantitative results for different coded exposure

techniques and reconstruction algorithms. The table lists

average PSNR(dB) and SSIM of reconstructed videos from

DNN set [39] and GoPro set [18].

Exposure CPU run-time (GPU run-time) in seconds

GMM [38] DNN [39] AAUN [14] Ours

Pixel-wise 78.7 4.6 (2.7) 11.1 (0.3) 3.6 (0.011)

C2B 96.4 – – 4.1 (0.013)

Table 2: Run time for various algorithms to reconstruct a

single 256× 256× 16 frame sequence. For algorithms that

are accelerated by GPU, the run times are provided in paren-

theses. The run times are for an Intel i7 CPU and Nvidia

GeForce 2080 Ti GPU.

For FS, we compared our proposed method with the

GMM-based video reconstruction method [38] for 8-frame

and 16-frame reconstructions. For single pixel-wise coded

exposure sensing, we compare with GMM-based inver-

sion [38] and state-of-the-art deep learning based methods,

DNN [39] and AAUN [14], for 16-frame reconstruction.

For C2B exposure, we compare with GMM-based inver-

sion [38] for 16-frame reconstruction from a pair of coded

and blurred images. We trained the GMM [38] model with

20 components using the same training dataset as described

in Sec. 4.1. We used 8×8×8 patches to train the GMM [38]

for 8-frame reconstruction and 8 × 8 × 16 patches for 16-

frame reconstruction. We used the pre-trained model for

DNN proposed in [39]. We trained the AAUN [14] algo-

rithm on the same training dataset as described in Sec. 4.1.

The model was trained for 80 epochs on patches of size

128× 128 for 16-frame reconstruction.

Comparison analysis: Qualitative reconstruction re-

sults are shown in Fig. 4 and quantitative results are sum-

marized in Table 1. FS produces satisfactory results for 8-

frame reconstruction but struggles to reconstruct 16 frames.

Pixel-wise coded exposure can perform 16-frame recon-

struction with good fidelity. For natural images, the inten-

sities in a small spatial neighborhood are correlated. Intu-

itively, using different exposure sequences for different pix-
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Pixel-wise
C2B

Pixel-wise
C2B

coded exposure coded exposure

Purely dynamic scene Partly dynamic scene

29.95, 0.904 30.38, 0.908 32.21, 0.954 34.50, 0.970

Largely stationary scene Largely stationary scene

27.53, 0.914 33.07, 0.977 28.11, 0.917 35.48, 0.980

Figure 5: Qualitative comparison of cropped middle frames

from the reconstruced video sequences. When majority of

the pixels do not see any motion C2B has a significant ad-

vantage, while being only marginally beneficial in the case

where majority of the pixels see motion.

els, is equivalent to making multiple measurements, which

helps in recovering the information better. As our algo-

rithm exploits the spatial correlation structure, the pixel-

wise coded exposure technique will have an advantage over

the global, flutter shutter imaging technique in the fidelity of

the reconstructed video. The C2B exposure provides an ad-

ditional advantage by capturing information that is lost by

the pixel-wise coded exposure and hence produces better

reconstruction than pixel-wise coded exposure. Overall, we

observe a similar trend in the reconstruction performance

of different sensing techniques in both GMM [38] our pro-

posed and model. We see that, overall, C2B provides the

best reconstruction and FS performs the worst, while there

is only a slight quantitative advantage for C2B when com-

pared to pixel-wise exposure. We further compare the per-

formance of pixel-wise coded exposure with C2B exposure

in the following section.

Our proposed fully-convolutional model performs bet-

ter than the existing methods, GMM [38], DNN [39] and

AAUN [14], for all the sensing techniques. Since we re-

construct the full video, our proposed method doesn’t suf-

fer from block artifacts, which is seen in patch-wise recon-

struction methods such as GMM and DNN. A comparison

of run times of various algorithms on CPU as well as GPU

has also been provided in Table 2. Patch-based reconstruc-

tion methods such as GMM and DNN require a signifi-

cantly longer time to reconstruct a single video sequence

compared to AAUN [14] and our algorithm. Being an itera-

tive deep learning algorithm, AAUN [14] takes 3x and 10x

longer time than our proposed algorithm on CPU and GPU,

respectively.

Input
SVC(16)+U-Net SVC(64)+U-Net

Intermediate Final Final

26.29, 0.856 31.31, 0.937 31.66, 0.940

25.47, 0.871 31.02, 0.952 31.23, 0.954

Figure 6: The figure compares the middle frames from the

reconstructed video sequences from two different architec-

tural choices. It can be seen that SVC(64)+U-Net per-

forms better than SVC(16)+U-Net in terms of the PSNR

and SSIM.

4.3. When Does C2B Have a Significant Advantage
over Pixel­wise Coded Exposure?

In Sec. 4.2, we observe that C2B based sensing provides

only a slight advantage compared to pixel-wise coded ex-

posure technique. To analyze and identify the cases where

C2B provides a significant advantage over pixel-wise coded

exposure, we conduct experiments on different kinds of

videos: purely dynamic sequences, partly-dynamic-partly-

static sequences, and largely static sequences. We use our

proposed method to compare video reconstruction from a

pixel-wise coded exposure image and from a coded-blurred

image pair obtained from C2B. We explain why we use a

blurred image with the coded image as input through an ab-

lation study in Sec 4.4. Fig. 5 shows reconstructed results

for the different cases of video sequences mentioned above.

For purely dynamic scenes, C2B does not show a notable

performance improvement over pixel-wise coded exposure.

However, for videos containing significant static regions,

C2B produces much better reconstruction results than pixel-

wise coded exposure. If we consider a scene composed of

both stationary and dynamic regions, the dynamic regions

are better captured by the coded exposure image, while the

stationary regions are better captured by the fully-exposed

image. Therefore, it follows that videos containing station-

ary regions can be better recovered by using the additional

information captured by C2B.

4.4. Ablation Study

Ablation study on proposed architecture: We explain

some of the architectural choices that we made in devel-

oping our proposed network. We experimented with two

different architectures for pixel-wise coded exposure - U-

Net only, SVC(16) + U-Net, and SVC(64) + U-Net. SVC

denotes the shift-variant convolution layer [22], and the
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following value in bracket specifies the number of output

channels of the SVC layer. In U-Net only framework, we

input the coded image directly to the standard U-Net ar-

chitecture, which learns the mapping to the full resolution

video sequence. In SVC(16)+U-Net, we implemented the

SVC layer to produce an intermediate reconstruction from

the input, followed by U-Net [29] to refine the intermedi-

ate reconstruction and produce the final high-quality video.

While training the network, we supervise both the interme-

diate and final reconstructions using ground truth with a 0.5
weightage for intermediate reconstruction. In SVC(64)+U-

Net, we modified the number of output channels of the SVC

layer from 16 to 64. Therefore, instead of producing an in-

termediate reconstruction, the SVC layer extracts the fea-

tures required to reconstruct the video. Here, we super-

vise the final reconstruction using ground truth while train-

ing. From Table 3, we observe that using SVC(64)+U-Net

gives the best reconstruction results. It can also be observed

that using an SVC layer instead of a standard convolutional

layer provides a significant improvement in performance.

The SVC layer also does not add significantly to the com-

putational overhead. While, SVC(64)+U-Net model takes

0.011s, Unet-only model takes 0.009s per forward pass on

a GPU for a 256 × 256 × 16 video sequence. Therefore,

we choose SVC(64)+U-Net architecture as our proposed

method.

Ablation Study on C2B Input: The advantage of using

C2B exposure is that it captures the complementary infor-

mation otherwise lost in pixel-wise coded exposure. C2B

captures two coded exposure images: coded image and

complement-coded image. We can obtain a fully-exposed

or blurred image by adding the coded and complementary

coded images. There are two ways of representing the C2B

input: a coded-complement image pair or coded-blurred im-

age pair. We evaluated both the cases and determined that

video reconstruction from a coded-blurred image pair per-

forms marginally better than reconstruction from a coded-

complement pair. The results are summarized in Table 3.

4.5. Learning the mask

Jointly learning the coded mask φ and the reconstruction

algorithm has been shown to provide better reconstruction

results [14, 22, 10]. To demonstrate this, we jointly learn

the coded mask φ along with our proposed learning-based

reconstruction algorithm. We add the weights of the mask

φ also as trainable parameters along with the other trainable

network parameters. As the hardware sensors can use only

binary mask patterns, we restrict the mask weights to be bi-

nary. Binarization is done via thresholding the weights be-

fore each forward pass through the network. As threshold-

ing is non-differentiable, we follow [8] and use the straight-

through estimator for computing gradients. We use a sim-

ilar training scheme and training dataset as described in

Exposure
DNN set [39] GoPro set [18]

PSNR SSIM PSNR SSIM

U-Net only 30.68 0.919 31.27 0.902
Pixel-wise SVC(16)+U-Net 30.89 0.921 31.56 0.910
coded SVC(64)+U-Net 31.14 0.925 31.76 0.914

C2B
coded+complement 32.19 0.935 32.31 0.919
coded+blurred 32.23 0.935 32.34 0.920

Table 3: Ablation studies on proposed architecture and C2B

input. The table lists average PSNR(dB) and SSIM of re-

constructed videos from DNN set [39] and GoPro set [18].

Noiseless Noisy(σ = 0.01)

Model PSNR SSIM PSNR SSIM

FS (fixed) 21.61 0.752 21.28 0.707
FS (optimized) 21.72 0.756 21.42 0.722

Pixel-wise(fixed) 31.76 0.914 27.58 0.845
Pixel-wise(optimized) 32.13 0.953 29.58 0.912

C2B(fixed) 32.34 0.920 28.22 0.860
C2B(optimized) 32.59 0.961 30.06 0.912

Table 4: PSNR, SSIM comparison of reconstructed videos

for FS, pixel-wise and C2B for fixed and optimized coded

mask φ. We observe better reconstruction performance for

optimized mask for both the noisy and noiseless cases.

Sec. 4.1. The mask φ and the network are jointly trained

for 16x reconstruction for the case of FS, pixel-wise expo-

sure, and C2B. The trained network is evaluated on the Go-

Pro test set, and the results are summarized in Table 4. We

observe that for both the noiseless and the noisy cases, joint

optimization of the coded mask and the reconstruction al-

gorithm provides better performance. The gap between the

fixed and optimized code is bigger for the noisy case.

5. Conclusion

We propose a unified deep learning-based framework to

make a fair comparison of the video reconstruction perfor-

mance of various coded exposure techniques. We make

a mathematically informed choice for our framework that

leads to the use of fully convolutional architecture over

a fully connected one. Extensive experiments show that

the proposed algorithm performs better than previous video

reconstruction algorithms across all coded exposure tech-

niques. The proposed unified learning framework is used

to make an extensive quantitative and qualitative evalua-

tion of the different coded exposure techniques. From this,

we observe that C2B provides the best reconstruction per-

formance, closely followed by the single pixel-wise coded

exposure technique, while FS lags far behind. Our further

analysis of C2B shows that a significant advantage is gained

over pixel-wise coded exposure only when the scenes are

largely static. However, when the majority of scene points

undergo motion, C2B shows only a marginal benefit over

acquiring a single pixel-wise coded exposure measurement.
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