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Abstract

Several coded exposure techniques have been proposed
for acquiring high frame rate videos at low bandwidth.
Most recently, a Coded-2-Bucket camera has been proposed
that can acquire two compressed measurements in a single
exposure, unlike previously proposed coded exposure tech-
niques, which can acquire only a single measurement. Al-
though two measurements are better than one for an effec-
tive video recovery, we are yet unaware of the clear advan-
tage of two measurements, either quantitatively or qualita-
tively. Here, we propose a unified learning-based frame-
work to make such a qualitative and quantitative compar-
ison between those which capture only a single coded im-
age (Flutter Shutter, Pixel-wise coded exposure) and those
that capture two measurements per exposure (C2B). Our
learning-based framework consists of a shift-variant con-
volutional layer followed by a fully convolutional deep neu-
ral network. Our proposed unified framework achieves the
state of the art reconstructions in all three sensing tech-
niques. Further analysis shows that when most scene points
are static, the C2B sensor has a significant advantage over
acquiring a single pixel-wise coded measurement. How-
ever, when most scene points undergo motion, the C2B sen-
sor has only a marginal benefit over the single pixel-wise
coded exposure measurement.

1. Introduction

Cameras that can acquire high frame rate videos re-
quire high light sensitivity and massive data bandwidth
increasing their cost significantly. Hence, several meth-
ods have been proposed to first acquire a low frame rate
video from a low-cost camera and computationally up-
sample the videos temporally [6, 20, 21, 11]. Computa-
tional imaging techniques have used compressive sensing
theory to first acquire compressed video measurements at
low bandwidth and then computationally reconstruct the
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Figure 1: We propose a unified deep learning-based frame-
work that allows us to compare the performance of various
coded exposure techniques. The figure shows the input and
the middle frame of the reconstructed video for each of the
exposure techniques.

high frame rate video signal [3]. For visible light com-
pressive video sensing, coded exposure techniques are the
most popular ones with several compressive acquisition
systems and reconstruction algorithms proposed over the
years [27, 4, 28,7, 16, 15, 9, 39, 10, 17, 14].

In coded exposure techniques, a pre-determined code is
used to multiplex the temporal dimension of the video sig-
nal into compressed measurements. Recently, a novel pro-
totype sensor based on multi-bucket pixels named Coded-
2-Bucket sensor [30, 36] was introduced. While allowing
for per-pixel control of the “shutter”, this sensor also can
acquire two compressed measurements per exposure using
the 2 light-collecting buckets per pixel. Based on the num-
ber of measurements acquired per exposure, we can classify
these sensing techniques into two categories: a) single com-
pressed measurement (such as flutter shutter and pixel-wise
coding) [7, 27, 16, 28, 15,9, 39, 10, 17, 14] and b) two com-
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pressed measurements per exposure [30]. It is expected that
two measurements should lead to better video reconstruc-
tion quality compared to a single measurement. However,
the performance improvement provided by two compressed
measurements over a single compressed measurement is yet
to be investigated. As the C2B sensor is recently introduced,
no previous algorithm exists, making a quantitative com-
parison between the single and two compressed measure-
ment techniques. While [14] uses C2B, only a qualitative
comparison on a single video sequence is made for single
and two measurement cases. An extensive quantitative and
qualitative comparison has not been made, and it can help
determine how much advantage is gained by acquiring two
measurements over just one. This comparison of the differ-
ent sensing architectures will also provide users with a tool
to determine which sensing technique is better for a given
scenario.

With this objective, we propose a unified learning-based
framework with which we wish to make an extensive eval-
uation. This learning based framework should be usable
for recovering videos from various single and two measure-
ment techniques, particularly, Flutter-Shutter [27], pixel-
wise coded exposure [33, 5] and C2B [30]. Most of the
previously proposed algorithms for compressive video re-
covery use fully connected networks, and, ideally, we can
use any of those networks for our framework. However,
fully connected networks have fallen out of favour for most
image processing tasks as they have a large number of train-
able parameters and are also hard to scale up for large spa-
tial/temporal resolutions. Hence, we design our framework
to be fully-convolutional, enabling reconstruction of the full
resolution video sequence in a single forward pass. In [17]
it has also been demonstrated that a fully convolutional net-
work provides better reconstruction results than fully con-
nected networks. Later, we provide an intuitive explanation
for why a convolutional network with local spatial connec-
tivity is actually more suitable for this problem than fully
connected networks with global connectivity. Our frame-
work also uses the recently proposed shift-variant convolu-
tional (SVC) layer [22] that has shown to be effective for
feature extraction from a coded image input.

The proposed algorithm is divided into two stages, where
the first stage uses the SVC layer for an exposure code
aware feature extraction. In the second stage, a deep, fully
convolutional neural network is used to learn the non-linear
mapping to the full resolution video sequence. Exten-
sive comparisons show that our proposed learning frame-
work provides state of the art results on all three sensing
techniques. Using our unified framework, we quantita-
tively evaluate the performance of the various coded ex-
posure techniques. As expected, pixel-wise coded expo-
sure techniques produce much better video reconstructions
than global coded exposure technique such as FS. We also

confirm that acquiring two compressed measurements as in
C2B is better than capturing just a single compressed mea-
surement. The advantage is significant for a largely station-
ary scene (Fig. 5). However, C2B is only marginally bene-
ficial over a single pixel-wise coded compressed measure-
ment when most scene points undergo motion.

In summary we make the following contributions:

* We provide a deep learning framework using which
various coded exposure techniques can be compared.

* Our proposed approach matches or exceeds the state-
of-the-art video reconstruction algorithms for each of
the sensing techniques.

* We show that C2B has significant advantage over
per-pixel exposure coding in reconstructing videos of
scenes consisting of significant static regions.

2. Related Work

High speed imaging techniques with conventional

sensor: Conventional image sensors capture a sharp video
by using exposures shorter than the sampling period of the
video. Frame interpolation techniques [6, 20, 11, 21] can
be used to interpolate multiple frames between any two ac-
quired frames and thereby increasing the video frame rate.
When a long exposure is used, a blurred frame is acquired
which encodes the full motion information. Recent learning
based methods [26, 12] have been used to decode the mo-
tion information from a single blurred frame into multiple
video frames.
Computational Imaging techniques: For scenes with lit-
tle to no depth variations techniques using arrays of low-
cost low frame rate cameras have shown to be effective at
computationally recovering the high frame rate video [37,
31, 1]. A hybrid imaging system which uses one low-frame
rate but high spatial resolution and another high frame rate
but low spatial resolution sensors has been proposed for
image deblurring [19] and high spatio-temporal resolution
video recovery [23]. Recently, a hybrid imaging system
consisting of image and event sensor has been proposed for
high speed image reconstruction [32, 35, 34].

Motivated from the compressive sensing theory, several
imaging architectures have been proposed for video com-
pressive sensing problem [3]. Flutter shutter is a global
exposure coding technique which was first introduced for
motion deblurring [27] and then extended for video recov-
ery from the compressed measurements [7]. A pixel-wise
coded exposure system was proposed in [28] which demon-
strated the recovery of high temporal resolution video from
measurements compressed using spatial light modulator. A
per-pixel control of the exposure was shown in [15], using
only a commercially available CMOS image sensor with-
out the need for any other hardware. The recently intro-
duced multi-bucket sensors such as Coded-2-Bucket cam-
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Figure 2: Our proposed algorithm takes in compressed mea-
surements from the different coded exposure techniques as
input and output full spatial and temporal resolution video
in a single forward pass. Our proposed algorithm is fully
convolutional and consists of a feature extraction stage and
a refinement stage.

eras [30, 36], have reduced the complexity of per-pixel ex-
posure control to a great extent. As video recovery from the
compressed measurements is an ill-posed problem, strong
signal priors are necessary for solving the inverse prob-
lem. While analytical priors such as wavelet domain spar-
sity [28, 24], TV-regularization [40] have been used, learn-
ing based algorithms such as Gaussian mixture models [38],
dictionary learning [15] and neural network based mod-
els [9, 10, 39] have shown better performance than analyti-
cal priors. While many of the deep learning based methods
use fully connected networks for the signal recovery, a very
recent paper [14] uses a fully convolutional network to learn
a denoising prior to iteratively solve the inverse problem.

3. A Unified Framework for Compressive
Video Recovery Using Fully Convolutional
Network

In this section, we elaborate on our proposed method to
obtain the video signal from its compressed measurements.
Our proposed algorithm takes in as input the compressed
video measurements and outputs the video sequence at full
spatial and temporal resolution in a single forward pass. The
proposed architecture consists of two stages, as shown in
Fig. 2. First, features are extracted from the compressed
measurements using an exposure aware feature extraction
stage consisting of shift variant convolutional layer. In the
second stage, a deep neural network takes in the extracted

features and outputs the full resolution video sequence. Our
network architecture is flexible enough that it can be used
for video reconstruction from all three coded exposure tech-
niques considered here. All we need to do is train the net-
work for these different inputs.

In Sec. 3.1, we provide motivation for using CNN for
extracting relevant features from the compressed measure-
ments. In Sec. 3.2, we elaborate on the use of shift-variant
convolutional layer for handling pixel-wise coded exposure
measurements and in Sec. 3.3 we specify the loss function
used in the training our network.

3.1. Motivation for Using CNN

Several previous learning-based algorithms for compres-
sive video recovery from coded exposure techniques have
used fully connected networks [39, 10]. In [17], it has been
shown that a fully convolutional network provides better re-
construction than fully connected networks for compressive
video sensing. This section shows that a fully convolutional
network is a better choice for solving our problem than a
fully connected network.

For coded exposure techniques, each pixel in the com-
pressed measurement is a linear combination of the under-
lying video sequence at that pixel alone. As there is no
spatial multiplexing involved, it is possible to recover the
video sequence at each pixel independently of the neigh-
boring pixels. However, by using the information in a small
neighborhood of a pixel, we can exploit the spatio-temporal
redundancy inherent in natural video signals. Fully con-
nected networks that are used in previous works provide
global connectivity at the cost of much larger computational
complexity and learning parameters. Thus, they should be
used for solving inverse problems where global multiplex-
ing occurs in the forward model, such as FlatCam [2]. With
a toy example and elementary mathematical operations, we
demonstrate next that fully connected networks with global
connectivity are overkill and fully convolutional network
with local spatial connectivity is a better design choice for
our problem.

3.1.1 Toy example demonstration

Consider a video signal z of size H x W x T with x; rep-
resenting each of the 1" frames of the video signal. A binary
exposure sequence ¢ of dimension H x W x T is used for
temporally multiplexing the signal x into the measurement
1. Mathematically, we can write the forward model as:

T
=Y g0, (1)
t=1

where ¢, represents the code corresponding to each frame
of ¢ and © represents element-wise multiplication.
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The linear system in Eq. (1) can be represented in the
matrix-vector form as follows:

[=0X, )

where @ is a matrix representation of ¢ and X is a column
vector obtained by vectorizing . The minimum Ls-norm
solution for the signal X can be obtained by:

min | X, 3)
st.]=0X . )

Note that there are better reconstruction techniques such as
dictionary learning which uses Ly or L; norm on sparse
transform coefficients of X [15]. But here our main goal
is to show that CNN is appropriate for solving our inverse
problem and hence we only provide a justification with Lo-
norm, that has a closed-form solution. The approximate so-
lution X for Eq. (3) is given by,

X =ofr, )
of = o7 (pa™) 1. (©6)

We notice that the matrix ®®7 is a diagonal matrix of
dimension HW x HW, and so is the matrix (®®7)~1. As
shown in Fig. 3, the matrix ®' is the matrix ®" whose
columns are scaled by the entries of the diagonal matrix
(®®T)~1. From the solution shown in Fig 3, it is clear
that the temporal sequence at each pixel of the video is re-
covered only from the compressed measurement captured
at that pixel. For example, if we consider the 5" pixel lo-
cation, then the estimated temporal sequence (&7, 43, 27)
corresponding to the j** pixel location depends only on
the compressed measurement at the same pixel location I7.
This shows that CNN with local connectivity is more than
sufficient for video reconstruction from coded exposure im-
ages.

3.2. Feature Extraction Using Shift-Variant Convo-
lution (SVC)

In Sec. 3.1, we determined that to recover a video at
a particular pixel, only that pixel’s compressed measure-
ments are necessary. Hence, the local connectivity offered
by CNNs can be efficiently used for the task of recover-
ing the underlying video signal. However, CNNs share the
same weights across the whole input image. In pixel-wise
coded exposure, the compressed measurement can be en-
coded using a different exposure sequence at each pixel.
From Eq. (5) and Fig. 3, we see that the estimated video
sequence at a particular pixel is dependent on the exposure
sequence at that particular pixel. Hence, for pixels with dif-
ferent exposure sequence, using a different set of weights in
the convolutional layer is desirable.

In flutter shutter video camera, each pixel in the image
shares the same coded exposure sequence. Hence, the same
learned convolutional weights w can be used to recover the
underlying video signal for all the pixels. Thus, for recov-
ering video sequences from the flutter shutter camera, we
build our inversion stage as a standard convolutional layer
as it achieves the functions mentioned above: local connec-
tivity and shared weights across the whole image.

In pixel-wise coded exposure and C2B architectures, the
underlying coded exposure sequence can change from one
pixel to the next. In practice, a predetermined code of size
m x n x T is repeated over the entire image with a stride of
m X n pixels. Hence, a standard convolutional layer cannot
be directly used as it shares the same set of weights across
the whole image. Instead, a convolutional layer, which can
share weights for every m x n'" pixel, is desirable. Such
a convolutional layer whose weights vary in a local neigh-
borhood of m x n pixels was proposed in [22] called shift-
variant convolutional (SVC) layer. This layer allows the
network the freedom to learn different weights to invert the
linear system when the underlying exposure sequence is dif-
ferent. Hence, we use this layer to extract adaptive features
from the input compressed measurement. The exact imple-
mentation of our SVC layer is shown in Algorithm 1. These
extracted features are input to the next stage of the network,
which predicts the full resolution video sequence.

Algorithm 1 SVC implementation

Input: Single channel coded image I
Mask size: [m,n,T]
Output: Extracted feature maps

procedure SVC(J)

For each pixel, extract k£ x k pixel neighborhood and
arrange them as the third dimension ©> output tensor of size
[k, H, W]

Reverse pixel shuffle with block size m x n
mn tensors of size [k%, H/m, W /n]

> Size: [1, H, W]

> Size: [C, H, W]

> output

fori=1tom x ndo

2D convolutions for each i*" tensor of size
[k2, H/m,W/n] with input channels k? and output C
channels > Output size [C,H/m,W/n]

end for

Pixel shuffle for the m x n channels to upsample the
tensors spatially > output tensor of size [C, H, W]

end procedure

3.3. Refinement Stage

The refinement stage takes as input the features extracted
from the shift-variant convolutional layer and outputs a re-
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Figure 3: We show a toy example of pixel-wise coded exposure technique for compressing a video sequence of size 3 x 3 x 3.
® and X are the matrix and vector representation of the exposure sequence ¢ and the video sequence x, respectively. From the
pseudo-inverse solution we see that the temporal video sequence reconstruction at any pixel depends only on the measurement
and the code at that pixel alone. This motivates our choice of a fully convolutional design.

fined video sequence X. Our refinement stage consists of
a UNet [29] like deep neural network. Our proposed Unet
model consists of 3 encoder stages followed by a bottleneck
layer and 3 decoder stages. In each of the encoder stages,
the feature maps are downsampled spatially by a factor of
2 and upsampled by the same factor in corresponding de-
coder stage. The output of this network is supervised using
L4 loss function. We also add a TV-smoothness loss on the
final predicted video sequence. Our overall loss function
then becomes,

L= chf + Atvﬁtv
Lrep =X = X1 (7)
Ly, = VX

where V is the gradient operator in the x-y directions and
Ay weights the smoothness term in the overall loss func-
tion.

4. Experimental Results
4.1. Experimental and Training Setup

Ground truth data preparation: We trained our pro-
posed network using GoPro dataset [18] consisting of 22
video sequences at a frame rate of 240 fps and spatial res-
olution of 720 x 1280. The first 512 frames from each
of the 22 sequences are spatially downsampled by 2 for
preparing the training data. Overlapping video patches of
size 64 x 64 x 16 (heightxwidthxframes) are extracted
from the video sequences by using a sliding 3D window
of (32,32, 8) pixels resulting in 263, 340 training patches.
Similarly, for 8-frame reconstruction, we extracted video
patches of size 64 x 64 x 8 and shifting the window by
(32,32, 4) pixels. The network was trained in PyTorch [25]

using Adam optimizer [13] with a learning rate of 0.0001,
At 0of 0.1 and batch size of 50 for 500 epochsl.

Network architecture for each sensing technique: We
trained our network separately for each of the different
coded exposure techniques - Flutter Shutter (FS), Pixel-
wise coded exposure, and Coded-2-Bucket. For FS, we
trained our proposed network for 16-frame reconstruction
and 8-frame reconstruction. As FS uses global code, a stan-
dard convolutional layer is used as a feature extraction layer
in place of the SVC layer. We use the SVC layer as de-
scribed in Sec. 3.2 as a feature extraction stage for pixel-
wise coded exposure and C2B.

Input to the network: In the case of FS, the input to the
network is a single coded exposure image obtained by mul-
tiplexing with a global exposure code. We used the expo-
sure code obtained by maximizing the minimum of the DFT
values’ magnitude and minimizing the variance of the DFT
values [27], over all possible binary codes. For the case of
pixel-wise coded exposure, the coded mask of size 8 x8x 16
is repeated spatially to make it the same dimension as input,
which is then used for multiplexing. We used the optimized
SBE mask exposure code proposed in [39] for this purpose.
In the case of C2B exposure, the input to the network can
either be a pair of coded and complement-coded images or
a pair of coded and fully-exposed images. The output of the
C2B sensor is two images that are coded using complemen-
tary exposure sequences (i.e., ¢ and 1 — ¢). We used the
same exposure pattern optimized SBE mask from [39] for
C2B exposure as well. The fully-exposed or blurred image
is obtained by adding the coded and complementary coded
images. The image pair for the C2B sensor are stacked as
two channels and provided as input to the proposed algo-
rithm.

"https://github.com/asprasan/unified_framework
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Figure 4: Visual comparison of middle frame from the re-
constructed video sequences from various reconstruction al-
gorithms. Our proposed method performs better than the
existing methods GMM [38], DNN [39], and also doesn’t
suffer from block artifacts caused by patch-wise reconstruc-
tion. As expected, C2B produces better results than pixel-
wise coded imaging. FS lags far behind.

4.2. Analysis of Video Reconstruction for Various
Compressive Sensing Systems

In this section, we qualitatively and quantitatively assess
video reconstruction from compressed measurements cap-
tured by different coded exposure techniques - FS, pixel-
wise coded exposure, and C2B. We compared our proposed
method with existing state-of-the-art algorithms for video
reconstruction such as GMM-based inversion [38], DNN
[39] and AAUN [14]. We used two sets of test videos
with a different spatial resolution to perform this analy-
sis. First, we used the test set that was used for evaluation
in DNN [39], consisting of 14 videos of spatial resolution
256 x 256 and 16 frames each. For the second set, we ran-
domly selected 15 videos of resolution 720 x 1280 and 16
frames each, from the GoPro test dataset [18].

Exposure  Algorithm Test data
DNN set [39] GoPro set [18]
ES 8x GMM [38] 23.90, 0.818 23.30, 0.766
Ours 24.06, 0.833  25.03, 0.811
ES 16x GMM [38] 21.50,0.738 21.45,0.697
Ours 21.69, 0.752  21.61, 0.710
DNN set [39] GoPro set [18]
GMM [38] 29.31,0.898 29.94, 0.887
Pixel-wise DNN [39] 30.21, 0.905 30.27, 0.890
coded 16x AAUN [14] 28.5,0.882  31.6,0.910
Ours 31.14,0.925 31.76,0.914
DNN set [39] GoPro set [18]
GMM [38] 30.94,0.914 30.84, 0.898
C2B 16X Qurs 32.23,0.935 32.34,0.920
Table 1: Quantitative results for different coded exposure

techniques and reconstruction algorithms. The table lists
average PSNR(dB) and SSIM of reconstructed videos from
DNN set [39] and GoPro set [18].

Exposure CPU run-time (GPU run-time) in seconds
GMM [38] DNN [39] AAUN [14]  Ours
Pixel-wise ~ 78.7 462.7) 11.1(0.3) 3.6(0.011)
C2B 96.4 - - 4.1 (0.013)

Table 2: Run time for various algorithms to reconstruct a
single 256 x 256 x 16 frame sequence. For algorithms that
are accelerated by GPU, the run times are provided in paren-
theses. The run times are for an Intel i7 CPU and Nvidia
GeForce 2080 Ti GPU.

For FS, we compared our proposed method with the
GMM-based video reconstruction method [38] for 8-frame
and 16-frame reconstructions. For single pixel-wise coded
exposure sensing, we compare with GMM-based inver-
sion [38] and state-of-the-art deep learning based methods,
DNN [39] and AAUN [14], for 16-frame reconstruction.
For C2B exposure, we compare with GMM-based inver-
sion [38] for 16-frame reconstruction from a pair of coded
and blurred images. We trained the GMM [38] model with
20 components using the same training dataset as described
in Sec. 4.1. We used 8 x 8 x 8 patches to train the GMM [38]
for 8-frame reconstruction and 8 x 8 x 16 patches for 16-
frame reconstruction. We used the pre-trained model for
DNN proposed in [39]. We trained the AAUN [14] algo-
rithm on the same training dataset as described in Sec. 4.1.
The model was trained for 80 epochs on patches of size
128 x 128 for 16-frame reconstruction.

Comparison analysis: Qualitative reconstruction re-
sults are shown in Fig. 4 and quantitative results are sum-
marized in Table 1. FS produces satisfactory results for 8-
frame reconstruction but struggles to reconstruct 16 frames.
Pixel-wise coded exposure can perform 16-frame recon-
struction with good fidelity. For natural images, the inten-
sities in a small spatial neighborhood are correlated. Intu-
itively, using different exposure sequences for different pix-
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Figure 5: Qualitative comparison of cropped middle frames
from the reconstruced video sequences. When majority of
the pixels do not see any motion C2B has a significant ad-
vantage, while being only marginally beneficial in the case
where majority of the pixels see motion.

els, is equivalent to making multiple measurements, which
helps in recovering the information better. As our algo-
rithm exploits the spatial correlation structure, the pixel-
wise coded exposure technique will have an advantage over
the global, flutter shutter imaging technique in the fidelity of
the reconstructed video. The C2B exposure provides an ad-
ditional advantage by capturing information that is lost by
the pixel-wise coded exposure and hence produces better
reconstruction than pixel-wise coded exposure. Overall, we
observe a similar trend in the reconstruction performance
of different sensing techniques in both GMM [38] our pro-
posed and model. We see that, overall, C2B provides the
best reconstruction and FS performs the worst, while there
is only a slight quantitative advantage for C2B when com-
pared to pixel-wise exposure. We further compare the per-
formance of pixel-wise coded exposure with C2B exposure
in the following section.

Our proposed fully-convolutional model performs bet-
ter than the existing methods, GMM [38], DNN [39] and
AAUN [14], for all the sensing techniques. Since we re-
construct the full video, our proposed method doesn’t suf-
fer from block artifacts, which is seen in patch-wise recon-
struction methods such as GMM and DNN. A comparison
of run times of various algorithms on CPU as well as GPU
has also been provided in Table 2. Patch-based reconstruc-
tion methods such as GMM and DNN require a signifi-
cantly longer time to reconstruct a single video sequence
compared to AAUN [14] and our algorithm. Being an itera-
tive deep learning algorithm, AAUN [14] takes 3x and 10x
longer time than our proposed algorithm on CPU and GPU,
respectively.

SVC(16)+U-Net SVC(64)+U-Net
Intermediate Final Final

Input

0N, AN A0

26.29, 0.856 31.31,0.937| 31.66, 0.940

25.47,0.871 31.02, 0.952| 31.23, 0.954

Figure 6: The figure compares the middle frames from the
reconstructed video sequences from two different architec-
tural choices. It can be seen that SVC(64)+U-Net per-
forms better than SVC(16)+U-Net in terms of the PSNR
and SSIM.

4.3. When Does C2B Have a Significant Advantage
over Pixel-wise Coded Exposure?

In Sec. 4.2, we observe that C2B based sensing provides
only a slight advantage compared to pixel-wise coded ex-
posure technique. To analyze and identify the cases where
C2B provides a significant advantage over pixel-wise coded
exposure, we conduct experiments on different kinds of
videos: purely dynamic sequences, partly-dynamic-partly-
static sequences, and largely static sequences. We use our
proposed method to compare video reconstruction from a
pixel-wise coded exposure image and from a coded-blurred
image pair obtained from C2B. We explain why we use a
blurred image with the coded image as input through an ab-
lation study in Sec 4.4. Fig. 5 shows reconstructed results
for the different cases of video sequences mentioned above.
For purely dynamic scenes, C2B does not show a notable
performance improvement over pixel-wise coded exposure.
However, for videos containing significant static regions,
C2B produces much better reconstruction results than pixel-
wise coded exposure. If we consider a scene composed of
both stationary and dynamic regions, the dynamic regions
are better captured by the coded exposure image, while the
stationary regions are better captured by the fully-exposed
image. Therefore, it follows that videos containing station-
ary regions can be better recovered by using the additional
information captured by C2B.

4.4. Ablation Study

Ablation study on proposed architecture: We explain
some of the architectural choices that we made in devel-
oping our proposed network. We experimented with two
different architectures for pixel-wise coded exposure - U-
Net only, SVC(16) + U-Net, and SVC(64) + U-Net. SVC
denotes the shift-variant convolution layer [22], and the
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following value in bracket specifies the number of output
channels of the SVC layer. In U-Net only framework, we
input the coded image directly to the standard U-Net ar-
chitecture, which learns the mapping to the full resolution
video sequence. In SVC(16)+U-Net, we implemented the
SVC layer to produce an intermediate reconstruction from
the input, followed by U-Net [29] to refine the intermedi-
ate reconstruction and produce the final high-quality video.
While training the network, we supervise both the interme-
diate and final reconstructions using ground truth with a 0.5
weightage for intermediate reconstruction. In SVC(64)+U-
Net, we modified the number of output channels of the SVC
layer from 16 to 64. Therefore, instead of producing an in-
termediate reconstruction, the SVC layer extracts the fea-
tures required to reconstruct the video. Here, we super-
vise the final reconstruction using ground truth while train-
ing. From Table 3, we observe that using SVC(64)+U-Net
gives the best reconstruction results. It can also be observed
that using an SVC layer instead of a standard convolutional
layer provides a significant improvement in performance.
The SVC layer also does not add significantly to the com-
putational overhead. While, SVC(64)+U-Net model takes
0.011s, Unet-only model takes 0.009s per forward pass on
a GPU for a 256 x 256 x 16 video sequence. Therefore,
we choose SVC(64)+U-Net architecture as our proposed
method.

Ablation Study on C2B Input: The advantage of using
C2B exposure is that it captures the complementary infor-
mation otherwise lost in pixel-wise coded exposure. C2B
captures two coded exposure images: coded image and
complement-coded image. We can obtain a fully-exposed
or blurred image by adding the coded and complementary
coded images. There are two ways of representing the C2B
input: a coded-complement image pair or coded-blurred im-
age pair. We evaluated both the cases and determined that
video reconstruction from a coded-blurred image pair per-
forms marginally better than reconstruction from a coded-
complement pair. The results are summarized in Table 3.

4.5. Learning the mask

Jointly learning the coded mask ¢ and the reconstruction
algorithm has been shown to provide better reconstruction
results [14, 22, 10]. To demonstrate this, we jointly learn
the coded mask ¢ along with our proposed learning-based
reconstruction algorithm. We add the weights of the mask
¢ also as trainable parameters along with the other trainable
network parameters. As the hardware sensors can use only
binary mask patterns, we restrict the mask weights to be bi-
nary. Binarization is done via thresholding the weights be-
fore each forward pass through the network. As threshold-
ing is non-differentiable, we follow [8] and use the straight-
through estimator for computing gradients. We use a sim-
ilar training scheme and training dataset as described in

DNN set [39] GoPro set [18]
PSNR SSIM PSNR SSIM

U-Net only 30.68 0.919 31.27 0.902
Pixel-wise SVC(16)+U-Net 30.89 0.921 31.56 0.910
coded SVC(64)+U-Net 31.14 0.925 31.76 0.914

C2B coded+complement 32.19 0.935 32.31 0.919
coded+blurred 32.23 0.935 32.34 0.920

Exposure

Table 3: Ablation studies on proposed architecture and C2B
input. The table lists average PSNR(dB) and SSIM of re-
constructed videos from DNN set [39] and GoPro set [18].

| Noiseless | Noisy(o = 0.01)
Model PSNR SSIM |PSNR SSIM
FS (optimized) 21.72 0.756 | 21.42 0.722

Pixel-wise(fixed) 1.76 0914|2758 0.845

l
FS (fixed) i 21.61 0.752i 21.28  0.707
| |
|

3
Pixel-wise(optimized) | 32.13 0.953 | 29.58  0.912
C2B(fixed) 32.34 09202822 0.860
C2B(optimized) 32.59 0.961 | 30.06 0.912

Table 4: PSNR, SSIM comparison of reconstructed videos
for FS, pixel-wise and C2B for fixed and optimized coded
mask ¢. We observe better reconstruction performance for
optimized mask for both the noisy and noiseless cases.

Sec. 4.1. The mask ¢ and the network are jointly trained
for 16x reconstruction for the case of FS, pixel-wise expo-
sure, and C2B. The trained network is evaluated on the Go-
Pro test set, and the results are summarized in Table 4. We
observe that for both the noiseless and the noisy cases, joint
optimization of the coded mask and the reconstruction al-
gorithm provides better performance. The gap between the
fixed and optimized code is bigger for the noisy case.

5. Conclusion

We propose a unified deep learning-based framework to
make a fair comparison of the video reconstruction perfor-
mance of various coded exposure techniques. We make
a mathematically informed choice for our framework that
leads to the use of fully convolutional architecture over
a fully connected one. Extensive experiments show that
the proposed algorithm performs better than previous video
reconstruction algorithms across all coded exposure tech-
niques. The proposed unified learning framework is used
to make an extensive quantitative and qualitative evalua-
tion of the different coded exposure techniques. From this,
we observe that C2B provides the best reconstruction per-
formance, closely followed by the single pixel-wise coded
exposure technique, while FS lags far behind. Our further
analysis of C2B shows that a significant advantage is gained
over pixel-wise coded exposure only when the scenes are
largely static. However, when the majority of scene points
undergo motion, C2B shows only a marginal benefit over
acquiring a single pixel-wise coded exposure measurement.
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