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Abstract

Compared with other human biosignatures, iris has

more advantages on accuracy, invariability and robustness.

However, the performance of existing common iris recog-

nition algorithms is still far from expectations of the com-

munity. Although some researchers have attempted to uti-

lize deep learning methods which are superior to traditional

methods, it is worth exploring better CNN network archi-

tecture. In this paper, we propose a novel network archi-

tecture based on the dual spatial attention mechanism for

iris recognition, called DualSANet. Specifically, the pro-

posed architecture can generate multi-level spatially cor-

responding feature representations via an encoder-decoder

structure. In the meantime, we also propose a new spatial

attention feature fusion module, so as to ensemble these fea-

tures more effectively. Based on these, our architecture can

generate dual feature representations which have comple-

mentary discriminative information. Extensive experiments

are conducted on CASIA-IrisV4-Thousand, CASIA-IrisV4-

Distance, and IITD datasets. The experimental results show

that our method achieves superior performance compared

with the state-of-the-arts.

1. Introduction

Iris recognition [7, 6] is one of the most accurate ap-

proaches for person identification, because of the unique,

complex, and stable texture patterns in iris. In the last two

decades, there are many methods that have been proposed

for iris recognition [7, 6, 27, 28, 2]. Here we briefly survey

some classical algorithms (For a complete review, please re-

fer to [3, 30]). Gabor filter is a quite popular method which

extracts the iris feature representation (IrisCode) based on

the segmented and normalized iris image. The Hamming

distance between two masked IrisCodes is utilized as the

dissimilarity score for identity verification. Other compet-

itive methods for iris recognition generate different fea-

ture representation using Radon Transform [50], Discrete

Cosine Transform (DCT) [29], Discrete Fourier Transform

(DFT) [28].

In recent years, deep learning has achieved state-of-the-

art performance in many computer vision tasks, such as im-

age classification [19, 42], object detection [13, 12, 35],

semantic segmentation [22, 47, 46, 45], and face recogni-

tion [37, 34]. Motivated by the success of deep neural net-

works in other applications, several approaches based on

deep learning are recently explored for iris recognition [21,

10, 31, 11, 49]. However, the methods in [21, 10, 31] did

not take non-iris region into account and utilized the global

feature which is inappropriate for iris pattern. Gangwar

and Joshi [11] utilized DeepIrisNet to extract global fea-

ture on detected images without normalization. Zhao and

Kumar [49] proposed an UniNet which consists of two sub-

network: FeatNet and MaskNet. FeatNet is utilized to ex-

tract spatially corresponding features based on an encoder-

decoder structure, and MaskNet is set to perform non-iris

region masking. UniNet is a highly competitive benchmark,

but the FeatNet only consists of simple convolutional layers

and does not explore the effective fusion of features from

different levels.

In this paper, we propose a novel network architecture

for iris recognition, which is based on the dual spatial at-

tention mechanism, called DualSANet. Figure 1 illustrates

the encoder-decoder architecture of DualSANet. The en-

coder utilizes a pre-trained ResNet-18 [15] model to ex-

tract features from different levels, and the decoder contains

dual branches to generate dual feature representations. We

propose an advanced spatial attention feature fusion mod-

ule to fuse the features from different levels. Spatial at-

tention [9, 48] is a simple mechanism to encode different

importance of every position in a feature map. It is quite

appropriate for iris recognition because iris feature is a kind

of local features, which means that iris features have differ-

ent spatial importance in different local areas. The spatial

attention feature fusion module in DualSANet can learn the

weights of every position and fuse the features from differ-

ent levels effectively.

In summary, our main contributions can be summarized

as follows. 1) We introduce a novel encoder-decoder net-
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Figure 1. A brief illustration of our encoder-decoder architecture.

work to generate multi-level iris features. 2) We propose a

new spatial attention feature fusion module to ensemble fea-

tures from different levels in DualSANet. 3) We design an

effective pipeline for iris recognition, which leverages pro-

posed DualSANet to generate dual feature representations

which have complementary discriminative information. Ex-

perimental results show the improvement over the state-of-

the-art algorithms for iris recognition under fair compari-

son.

2. Related Work

The first automated iris recognition system was proposed

by Daugman [7, 6] in 1993. In his pioneering work, he

proposed generation of Gabor phase-quadrant feature de-

scriptor (IrisCode) to extract on segmented and normalized

iris images. The Hamming distance between two masked

IrisCodes is utilized for verification. IrisCode is an ef-

fective feature descriptor, achieving very low false accept

rates. This approach can be implemented by log-Gabor fil-

ters [27] which extracts iris texture feature more efficiently

than two-dimensional Gabor filters [6]. Monro et al. [29]

leveraged Discrete cosine transform (DCT) coefficients to

analyze spectral contents in image block regions, and gener-

ated promising results by matching binary feature. Sun and

Tan [39] utilized multi-lobe differential filters (MLDFs) to

encode multi-orientation and multi-scale feature represen-

tation for normalized templates. In addition, researchers

have also proposed varieties of feature descriptors for iris

recognition, which could be grouped into four main cate-

gories, phased-based method [28] , zero-crossings represen-

tation [2, 36, 38], texture analysis [51, 26, 23], and intensity

variation analysis [24, 25].

Learning the feature representation from iris data can get

a more robust and optimal representation for iris recogni-

tion task. However, unlike the popularity of deep learn-

ing for various computer vision tasks, especially for face

recognition, the literature so far has not yet fully explored

its potential for iris recognition. There has been few break-

throughs in iris recognition and very little attention to ex-

ploring the iris recognition solutions using deep learning.

Liu et al. [21] proposed a deep learning based framework

DeepIris to learn relational features to measure the simi-

larity between pairs of normalized iris images. Gangwar

and Joshi [10] treated iris recognition as a classical clas-

sification task and proposed DeepIrisNet, including convo-

lutional layers, pooling layers, and fully connected layers.

He et al. [14] attempted to explore the deep belief network

(DBN) for iris recognition. An optimal Gabor filter selec-

tion is the key component, while the DBN is only a sim-

plified application on the IrisCode without iris-specific op-

timization. Tang et al. [43] proposed a lightweight CNN ar-

chitecture suitable for iris datasets with small-scale labeled

images. Nguyen et al. [31] utilized off-the-shelf CNNs pre-

trained on the ImageNet [19] to extract iris features from

the segmented and normalized iris images. The extracted

features are classified by a support vector machine (SVM).

However, these works treat iris recognition as a direct

application of convolutional neural networks without con-

sideration of the adaptation for iris pattern: 1) These meth-

ods do not take non-iris region into account. 2) The most

discriminative information in iris pattern comes from lo-

cal features rather than global features based on the early

promising works [51, 26, 23, 24]. Therefore, convolutional

layers are more effective than fully connected layers in iris

recognition. To process the non-iris region of an input im-

age, DeepIrisNet2 in [10] presented a simple effective su-

pervised learning framework to obtain iris representation on

the detected and segmented images. Zhao and Kumar [49]

proposed a framework called UniNet, which consists of two

sub-networks: FeatNet and MaskNet. FeatNet is designed

for extracting discriminative iris features, and MaskNet is

set to perform non-iris region masking. They also introduce

a extended triplet loss to train their network. This method

is a highly competitive benchmark and confirms the effec-

tiveness of the spatially corresponding features. However,

it does not explore the structure of the network to obtain

better features and the impact of features from different lev-

els. Based on this work, Wang and Kumar [44] utilized

residual network to learning with dilated convolutional ker-

nels to optimize the training process and aggregate contex-
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tual information from the iris images. In addition, some

researches explored the effect of data on training iris recog-

nition model. Liu et al. [20] used Gaussian, triangular fuzzy

median smoothing filters to preprocess the images by fuzzi-

fying the region beyond the boundary to improve the signal-

to-noise ratios.

3. Proposed Algorithm

The proposed algorithm consists of three steps: image

preprocessing, network architecture, and loss function. The

image preprocessing module includes location, segmenta-

tion, and normalization of the iris images. The network ar-

chitecture is based on an encoder-decoder structure where

encoder is part of a pre-trained ResNet-18 which extracts

features from different levels and decoder consists of bilin-

ear upsampling and spatial attention feature fusion module.

The extended triplet loss with batch hard policy is utilized

to train the network.

3.1. Image Preprocessing

For a fair comparison, our experiments utilize a freely

available system Osiris v4.1 [32] for iris location, segmen-

tation, and normalization. Iris Segmentation consists in iso-

lating the iris texture from other elements of image such as

eyelids, eyeslashes, spotlights and/or shadows. In addition,

the segmentation module generates a binary mask, which

indicates which pixels of the image belong to iris texture.

The contours of the iris correspond to an optimal path re-

trieved by the Viterbi algorithm for joining in an optimal

way, the points of high gradients under the constraint that

the resulting curve has to be closed [41]. The iris texture

is mapped into a size-invariant band called the normalized

iris image. This transformation is carried out by exploit-

ing a parameterization of the iris boundaries obtained by

the segmentation module. In our image preprocessing, nor-

malization is based on Daugman’s rubber sheet model [7]

to unwrap the iris texture. We also set the resolution af-

ter normalization to 64×512 uniformly. The normalization

process allows the alignment of any two iris images to be

compared. Figure 2 illustrates the key steps for iris image

preprocessing which contains location, segmentation, and

normalization. The normalization process allows the align-

ment of any two iris images to be compared.After image

preprocessing, we can get the normalized iris texture image

and iris/noise mask image. The texture image is used for

extracting FCN feature maps and mask is actually a hard

attention used in the extended triplet loss.

3.2. Network Architecture

Detailed structure of proposed DualSANet is shown in

Figure 3. The proposed architecture can generate multi-

level spatially corresponding feature representations via an

encoder-decoder structure. A number of studies [33, 18]

have shown that attention plays an important role in

many vision tasks, we also propose a new spatial atten-

tion feature fusion module, so as to ensemble these features

more effectively. Earlier promising works on iris recogni-

tion [7, 6, 27, 24, 25] indicated that local features matter

more than global features. We do not employ very deep

network which has large receptive field and consider more

to exploit low-level features and mid-level features, here we

adopt ResNet-18 as the backbone network.

3.2.1 Encoder Module

Encoder module: we use the part of the standard pre-

trained ResNet-18 model as the backbone to extract fea-

tures from different levels. The block1 presents the ‘c1’

layer in ResNet-18, and the block2 presents the ‘c2’ layer

in ResNet-18. Low-level features are necessary to preserve

spatial details and textural features, high-level features have

the ability to capture more context information. We utilize a

spatial attention feature fusion module to combine features

from different levels.

3.2.2 Spatial Attention Feature Fusion Module

The detailed structure of SAFFM is illustrated in Figure 3

and Table 1. For the given multi-level input feature maps,

we first concatenate them and get an input X ∈ R
C×H×W .

Then, a convolutional layer and batch normalization is uti-

lized to balance the scales of features from different lev-

els. We halve the numbers of output channels in consid-

eration of reducing computation and get an feature map

F ∈ R
C/2×H×W . Next, we propose a specific spatial at-

tention module to refine the fused features. SAFFM infers

a 3D attention map Tr(F) ∈ R
C/2×H×W . The refined fea-

ture map F
′ is computed as:

F
′ = F+ F⊗Tr(F) (1)

where ⊗ denotes broadcast element-wise multiplication

along the channel dimension. We adopt a residual learn-

ing scheme along with the attention mechanism to facilitate

the gradient flow.

Usually, iris images have some non-iris region, including

eyelid, eyelash and reflection. Therefore, each point in the

spatially corresponding iris feature matters differently. The

spatial attention module utilizes a small network to compute

a weighted coefficient for each position. Spatial attention

plays a feature selection role in the network and pays more

attention to the features which have more discriminative in-

formation.

Considering the completeness of input feature X, we do

not reduce resolution in SAFFM forward computation. In

concrete, we utilize two simple conv-bn-relu structures and

one conv-sigmoid structure to generate the spatial attention
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Figure 3. Detailed structure of DualSANet.

feature. The first 3×3 convolution eliminates the aliasing

effect of direct concatenation and reduces the channel di-

mension from C to C/2. Such feature after first conv-bn-

relu is regarded as F. The second 1×1 convolution reduces

the channel dimension to C/8 much further. Finally, the last

1×1 convolution generates spatial weighted response map

Tr(F), and the operation of sigmoid compresses the output

between 0 and 1 which represents weighted coefficient of

each position.

3.2.3 Decoder Module

Decoder module: the decoder contains two branches. Each

branch consists of bilinear upsample, spatial attention fea-

ture fusion module, depthwise convolution layer, and last

convolutional layer. Bilinear upsample is utilized to upsam-

ple all features into the same resolution as input image. Spa-

tial attention feature fusion module with attention branch

is utilized to fuse features from different levels and give a

spatial weight to fused features. Then, we utilize depth-

wise convolution [5, 17] to reduce the parameters. The last

convolutional layer generates a 1×H×W feature represen-

tation.
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Module Name Layer Type Output Channel Kernel Size Padding Input Size Output Size

m1

Convolution C/2 3x3 1 C×H×W C/2×H×W

BN C/2 - - C/2×H×W C/2×H×W

ReLU - - - C/2×H×W C/2×H×W

m2

Convolution C/8 1x1 0 C/2×H×W C/8×H×W

BN C/8 - - C/8×H×W C/8×H×W

ReLU - - - C/8×H×W C/8×H×W

m3 Convolution 1 1x1 0 C/8×H×W 1×H×W

Table 1. Details of m1, m2, m3.

3.3. Loss Function

The basic Triplet Loss is proposed by FaceNet [37]. It is

defined as:

L =

N∑

i

[‖f(xa
i )−f(xp

i )‖
2
2−‖f(xa

i )−f(xn
i )‖

2
2+α]+ (2)

While the symbol [•]+ represents max(•, 0). This loss

makes sure that, the anchor-positive distance is closer than

the anchor-negative distance by at least a margin α which

is the tuning hyper-parameter. While Batch Hard is an im-

proved triplet selection method [16], it is defined as:

LBH(θ;X) =
P∑

i=1

K∑

a=1

[m+ max
p=1..K

D(fθ(x
i
a), fθ(x

i
p))

− min
j=1..P,
n=1..K,

j �=i

D(fθ(x
i
a), fθ(x

j
n))]+

(3)

Within a mini-batch, it randomly sample P classes and then

randomly sample K images of each class. For each sample

in the batch, this method select the hardest positive and the

hardest negative samples within the batch to form a triplet

for computing the loss.

For one normalized iris image, our network extracts dual

spatial feature representations defined as f1 and f2. f1 and

f2 fuse different level features and have the complemen-

tary discriminative information. The feature representations

have the same resolution with the input. Euclidean distance

is to metric the corresponding representations between the

compare pair. Our loss is defined as:

Ls =
P∑

i=1

K∑

a=1

[m+ max
p=1..K

MMSD(fs
ia,f

s
ip)

− min
j=1..P,
n=1..K,

j �=i

MMSD(fs
ia,f

s
jn)]+

(4)

Ltotal = λ1L1 + λ2L2 (5)

While s=1, 2, MMSD(f1,s, f2,s) is the Minimum Shifted

and Masked Distance proposed in [49]. In our case, it is

defined as:

MMSD(f1,s,f2,s) = min
−B≤b≤B

SD(f1,s
b ,f2,s) (6)

While B is the Shift size, SD is the distance between the

features which take masks into consideration:

SD =

∑
((f1,s − f2,s)⊙ (f1,s − f2,s)⊙ (m1 ⊙m2))∑

(m1 ⊙m2)
(7)

Where ⊙ represents the element-wise product of two ma-

trices,
∑

represents the sum of matrix here. m1 and m2

are the binary masks for two feature maps, in which zero

means the current position is non-iris. In (6), the subscript

b means the feature map has been shifted horizontally by b
pixels, i.e., a shifted feature map has the following spatial

correspondence with the original one:

fb[xb, y] = f [x, y]

xb = (x−b+ w) mod w
(8)

3.4. Feature extracting and matching

Our network architecture generates dual feature repre-

sentations and we obtain the final feature representation by

weighted average of the feature representations which is

computed as follows:

ffinal = λ1f
1 + λ2f

2 (9)

While λ1 and λ2 is as same as defined in loss function.

The Minimum shifted andMaskedDistance(MMSD)
is the dissimilarity metric between two final compare fea-

ture representations. The false reject rate (FRR) at different

false accept rate (FAR) and equal error rate (EER) are the

main evaluation criterion.

4. Experiments

4.1. Datasets

We employed the following three publicly available

datasets in our experiments, as shown in Figure 4:
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CASIA-IrisV4-Thousand: the dataset(subset) [4]. The

thousand subset includes 20,000 iris images from 2000 eyes

of 1000 persons. Thus, each subject has both left and right

eye. We just use the left eye for training and test. We split

the first 900 person as the training and the last 100 person

as the test. The test set includes 1000 samples, containing

4,500 intra pairs and 495,000 inter pairs.

CASIA-IrisV4-Distance: this dataset (subset) [4] in-

cludes 2,246 samples from 142 subjects. Each sample cap-

tures the upper part of face and therefore contains both left

and right irises. We train an easy eye detector based on [35]

to crop the eye regions from the original images. All of the

right eye iris images are utilized as training set, and all of

the left eye iris images were used as test set. The test set

contains 20,702 intra pairs and 2,969,533 inter pairs.

IITD Iris Database: the IITD dataset [1] contains 2,240

image samples from 224 subjects. We use the same split

as [49]. All of the right eye iris images are utilized as the

training set while the first five eye images are utilized as test

set. The test set contains 2,240 intra pairs and 624,400 inter

pairs.

(a) (b) (c)
Figure 4. (a) examples of CASIA-IrisV4-Distance (b) examples of

CASIA-IrisV4-Thousand (c) examples of IITD

4.2. Implemtation Details

Our network is implemented with PyTorch. We use the

same optimizer and learning policy for all experiments. The

optimizer is SGD. The initial learning rate is set to 0.001,

which is down-scaled by 10 after epoch 50, 100, 150, and

the max epoch is 200. We train all the networks with 8

Nvidia TITAN Xp. On each GPU, to form a mini-batch,

we sample P persons and K images for each person. For

CASIA dataset, P is set to 6, and K is set to 6. For IITD

dataset, P is set to 10, and K is set to 3 because each person

only have 5 images to train. The margin m is set to 20, the

coefficients of two losses are set as λ1=0.5, λ2=0.5, and the

Shift size is set to 5.

4.3. Ablation Study

In this subsection, we investigate the effect of each com-

poment in our proposed DualSANet in detail. In the follow-

ing experiments, We use the ResNet18 network pre-trained

on ImageNet dataset [8] as the backbone and conduct the

experiments on the CASIA-IrisV4-Thousand dataset.

Baseline: our baseline just have single feature represen-

tation from the Branch1 without Spatial Attention Feature

Fusion Module.

Ablation Study for the number of feature representation:

we propose the dual feature representations as outputs. We

also evaluate single representation from the Branch1 and

triple feature representations that the third branch is from

ahead of the block1. Results are shown in Table2 which

indicates the scheme of dual feature representations is the

best choice. The reason is that one feature representation

from Branch1 missing some low-level information and the

third representation from ahead of the block1 is too shallow

to learn discriminative information.

Method
FRR@FAR

EER
1e-5 1e-4 1e-3

Base 4.78% 2.58% 1.09% 0.40%

Base+Dual 3.67% 1.58% 0.69% 0.36%

Base+Trip 8.93% 3.29% 1.22% 0.58%

Table 2. Setting an appropriate number of feature representations

is important. ‘Base’ means the baseline network with just one fea-

ture representation from Branch1, ‘Dual’ means dual feature rep-

resentations and ‘Trip’ means triple feature representations which

the third branch is from ahead of the block1.

Ablation for SAFFM: we propose the spatial attention

feature fusion module to combine the different level fea-

tures. We evaluate a simple concatenation of these features,

channel attention feature fusion module (CAFFM) and spa-

tial attention feature fusion module (SAFFM). The channel

attention operation we used is the same as SENet [18]. Re-

sults are shown in Table 3, which indicate that ‘SAFFM’

is the best fusion module. ‘CAFFM’ may harm the per-

formance because of the global operation in ‘CAFFM’ is

inappropriate for iris pattern.

Method
FRR@FAR

EER
1e-5 1e-4 1e-3

Base+Dual 3.67% 1.58% 0.69% 0.36%

Base+Dual+CA 4.82% 1.93% 0.64% 0.34%

Base+Dual+SA 3.16% 1.53% 0.58% 0.31%

Table 3. Performance comparison between different feature fusion

modules. ‘Base’ represents the baseline model, ‘SA’ represents the

spatial attention feature fusion module, ‘CA’ represents the chan-

nel attention feature fusion module, and the other is just simple

concatenation.

Ablation Study for the coefficients of two feature rep-

resentations: we evaluate different coefficients for the two

feature representations, results are shown in Table 4.

Ablation Study for the Shift: we evaluate the effect of

Shift. The size of Shift is set to 5. Results are shown in

Table 5.
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Method
FRR@FAR

EER
1e-5 1e-4 1e-3

Base+Dual+SA(0.1, 0.9) 4.98% 1.96% 1.07% 0.48%

Base+Dual+SA(0.3, 0.7) 4.92% 2.58% 0.84% 0.39%

Base+Dual+SA(0.5, 0.5) 3.16% 1.53% 0.58% 0.31%

Base+Dual+SA(0.7, 0.3) 5.42% 1.73% 0.62% 0.37%

Base+Dual+SA(0.9, 0.1) 16.22% 9.09% 4.8% 1.84%

Table 4. Setting appropriate coefficients is important to learn discriminative feature representations.

Method
FRR@FAR

EER
1e-5 1e-4 1e-3

Base+Dual+SA 3.16% 1.53% 0.58% 0.31%

Base+Dual+SA+Shift 1.38% 0.6% 0.31% 0.27%

Table 5. Performance comparison with Shift and No-Shift

4.4. Results and Comparison

We present comparative experimental results with other

methods. 2D Gabor filters based IrisCode [7, 6] have been

the most widely deployed iris feature descriptor. IrisCode

has a number of advanced versions. From the publicly

available ones, we selected OSIRIS [32], which is an open

source tool for iris recognition. Our image preprocess-

ing also utilizes the OSIRIS for a fair comparison. An-

other widely accepted method is based on 1D log-Gabor

filters [27]. Ordinal filters based method proposed in [40]

is also a powerful method of iris feature extracting. Zhao

et al. proposed UniNet [49] to achieve a highly competitive

benchmark, and they also tuned other benchmarks as good

performance as possible. We take these tuned methods as

benchmarks. The comparison results are shown in Table 6

which show our methods outperform other methods.

5. Conclusion

In this paper we propose a dual spatial attention network,

namely DualSANet, to extract dual spatially corresponding

iris feature representations for iris recognition. We use

pre-trained ResNet-18 as the encoder backbone to extract

multi-level features. In decoder architecture, we propose

a new spatial attention feature fusion module(SAFFM) to

fuse multi-level features. The architecture generates dual

discriminative feature representaitons that fuse different

level features. An extended triplet loss is utilized to train

our network. The experimental results show our Dual-

SANet significantly outperforms state-of-the-art methods

on CASIA-IrisV4-Thousand, CASIA-IrisV4-Distance, and

IITD.
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