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Abstract

Compared with other human biosignatures, iris has
more advantages on accuracy, invariability and robustness.
However, the performance of existing common iris recog-
nition algorithms is still far from expectations of the com-
munity. Although some researchers have attempted to uti-
lize deep learning methods which are superior to traditional
methods, it is worth exploring better CNN network archi-
tecture. In this paper, we propose a novel network archi-
tecture based on the dual spatial attention mechanism for
iris recognition, called DualSANet. Specifically, the pro-
posed architecture can generate multi-level spatially cor-
responding feature representations via an encoder-decoder
structure. In the meantime, we also propose a new spatial
attention feature fusion module, so as to ensemble these fea-
tures more effectively. Based on these, our architecture can
generate dual feature representations which have comple-
mentary discriminative information. Extensive experiments
are conducted on CASIA-IrisV4-Thousand, CASIA-IrisV4-
Distance, and IITD datasets. The experimental results show
that our method achieves superior performance compared
with the state-of-the-arts.

1. Introduction

Iris recognition [7, 6] is one of the most accurate ap-
proaches for person identification, because of the unique,
complex, and stable texture patterns in iris. In the last two
decades, there are many methods that have been proposed
for iris recognition [7, 6, 27, 28, 2]. Here we briefly survey
some classical algorithms (For a complete review, please re-
fer to [3, 30]). Gabor filter is a quite popular method which
extracts the iris feature representation (IrisCode) based on
the segmented and normalized iris image. The Hamming
distance between two masked IrisCodes is utilized as the
dissimilarity score for identity verification. Other compet-
itive methods for iris recognition generate different fea-
ture representation using Radon Transform [50], Discrete
Cosine Transform (DCT) [29], Discrete Fourier Transform
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(DFT) [28].

In recent years, deep learning has achieved state-of-the-
art performance in many computer vision tasks, such as im-
age classification [19, 42], object detection [13, 12, 35],
semantic segmentation [22, 47, 46, 45], and face recogni-
tion [37, 34]. Motivated by the success of deep neural net-
works in other applications, several approaches based on
deep learning are recently explored for iris recognition [21,
10, 31, 11, 49]. However, the methods in [21, 10, 31] did
not take non-iris region into account and utilized the global
feature which is inappropriate for iris pattern. Gangwar
and Joshi [11] utilized DeeplrisNet to extract global fea-
ture on detected images without normalization. Zhao and
Kumar [49] proposed an UniNet which consists of two sub-
network: FeatNet and MaskNet. FeatNet is utilized to ex-
tract spatially corresponding features based on an encoder-
decoder structure, and MaskNet is set to perform non-iris
region masking. UniNet is a highly competitive benchmark,
but the FeatNet only consists of simple convolutional layers
and does not explore the effective fusion of features from
different levels.

In this paper, we propose a novel network architecture
for iris recognition, which is based on the dual spatial at-
tention mechanism, called DualSANet. Figure 1 illustrates
the encoder-decoder architecture of DualSANet. The en-
coder utilizes a pre-trained ResNet-18 [15] model to ex-
tract features from different levels, and the decoder contains
dual branches to generate dual feature representations. We
propose an advanced spatial attention feature fusion mod-
ule to fuse the features from different levels. Spatial at-
tention [9, 48] is a simple mechanism to encode different
importance of every position in a feature map. It is quite
appropriate for iris recognition because iris feature is a kind
of local features, which means that iris features have differ-
ent spatial importance in different local areas. The spatial
attention feature fusion module in DualSANet can learn the
weights of every position and fuse the features from differ-
ent levels effectively.

In summary, our main contributions can be summarized
as follows. 1) We introduce a novel encoder-decoder net-
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Figure 1. A brief illustration of our encoder-decoder architecture.

work to generate multi-level iris features. 2) We propose a
new spatial attention feature fusion module to ensemble fea-
tures from different levels in DualSANet. 3) We design an
effective pipeline for iris recognition, which leverages pro-
posed DualSANet to generate dual feature representations
which have complementary discriminative information. Ex-
perimental results show the improvement over the state-of-
the-art algorithms for iris recognition under fair compari-
son.

2. Related Work

The first automated iris recognition system was proposed
by Daugman [7, 6] in 1993. In his pioneering work, he
proposed generation of Gabor phase-quadrant feature de-
scriptor (IrisCode) to extract on segmented and normalized
iris images. The Hamming distance between two masked
IrisCodes is utilized for verification. IrisCode is an ef-
fective feature descriptor, achieving very low false accept
rates. This approach can be implemented by log-Gabor fil-
ters [27] which extracts iris texture feature more efficiently
than two-dimensional Gabor filters [6]. Monro et al. [29]
leveraged Discrete cosine transform (DCT) coefficients to
analyze spectral contents in image block regions, and gener-
ated promising results by matching binary feature. Sun and
Tan [39] utilized multi-lobe differential filters (MLDFs) to
encode multi-orientation and multi-scale feature represen-
tation for normalized templates. In addition, researchers
have also proposed varieties of feature descriptors for iris
recognition, which could be grouped into four main cate-
gories, phased-based method [28] , zero-crossings represen-
tation [2, 36, 38], texture analysis [51, 26, 23], and intensity
variation analysis [24, 25].

Learning the feature representation from iris data can get
a more robust and optimal representation for iris recogni-
tion task. However, unlike the popularity of deep learn-
ing for various computer vision tasks, especially for face
recognition, the literature so far has not yet fully explored
its potential for iris recognition. There has been few break-
throughs in iris recognition and very little attention to ex-
ploring the iris recognition solutions using deep learning.

Liu et al. [21] proposed a deep learning based framework
Deeplris to learn relational features to measure the simi-
larity between pairs of normalized iris images. Gangwar
and Joshi [10] treated iris recognition as a classical clas-
sification task and proposed DeeplrisNet, including convo-
lutional layers, pooling layers, and fully connected layers.
He et al. [14] attempted to explore the deep belief network
(DBN) for iris recognition. An optimal Gabor filter selec-
tion is the key component, while the DBN is only a sim-
plified application on the IrisCode without iris-specific op-
timization. Tang et al. [43] proposed a lightweight CNN ar-
chitecture suitable for iris datasets with small-scale labeled
images. Nguyen et al. [31] utilized off-the-shelf CNNs pre-
trained on the ImageNet [19] to extract iris features from
the segmented and normalized iris images. The extracted
features are classified by a support vector machine (SVM).

However, these works treat iris recognition as a direct
application of convolutional neural networks without con-
sideration of the adaptation for iris pattern: 1) These meth-
ods do not take non-iris region into account. 2) The most
discriminative information in iris pattern comes from lo-
cal features rather than global features based on the early
promising works [51, 26, 23, 24]. Therefore, convolutional
layers are more effective than fully connected layers in iris
recognition. To process the non-iris region of an input im-
age, DeeplrisNet2 in [10] presented a simple effective su-
pervised learning framework to obtain iris representation on
the detected and segmented images. Zhao and Kumar [49]
proposed a framework called UniNet, which consists of two
sub-networks: FeatNet and MaskNet. FeatNet is designed
for extracting discriminative iris features, and MaskNet is
set to perform non-iris region masking. They also introduce
a extended triplet loss to train their network. This method
is a highly competitive benchmark and confirms the effec-
tiveness of the spatially corresponding features. However,
it does not explore the structure of the network to obtain
better features and the impact of features from different lev-
els. Based on this work, Wang and Kumar [44] utilized
residual network to learning with dilated convolutional ker-
nels to optimize the training process and aggregate contex-
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tual information from the iris images. In addition, some
researches explored the effect of data on training iris recog-
nition model. Liu et al. [20] used Gaussian, triangular fuzzy
median smoothing filters to preprocess the images by fuzzi-
fying the region beyond the boundary to improve the signal-
to-noise ratios.

3. Proposed Algorithm

The proposed algorithm consists of three steps: image
preprocessing, network architecture, and loss function. The
image preprocessing module includes location, segmenta-
tion, and normalization of the iris images. The network ar-
chitecture is based on an encoder-decoder structure where
encoder is part of a pre-trained ResNet-18 which extracts
features from different levels and decoder consists of bilin-
ear upsampling and spatial attention feature fusion module.
The extended triplet loss with batch hard policy is utilized
to train the network.

3.1. Image Preprocessing

For a fair comparison, our experiments utilize a freely
available system Osiris v4.1 [32] for iris location, segmen-
tation, and normalization. Iris Segmentation consists in iso-
lating the iris texture from other elements of image such as
eyelids, eyeslashes, spotlights and/or shadows. In addition,
the segmentation module generates a binary mask, which
indicates which pixels of the image belong to iris texture.
The contours of the iris correspond to an optimal path re-
trieved by the Viterbi algorithm for joining in an optimal
way, the points of high gradients under the constraint that
the resulting curve has to be closed [41]. The iris texture
is mapped into a size-invariant band called the normalized
iris image. This transformation is carried out by exploit-
ing a parameterization of the iris boundaries obtained by
the segmentation module. In our image preprocessing, nor-
malization is based on Daugman’s rubber sheet model [7]
to unwrap the iris texture. We also set the resolution af-
ter normalization to 64 x512 uniformly. The normalization
process allows the alignment of any two iris images to be
compared. Figure 2 illustrates the key steps for iris image
preprocessing which contains location, segmentation, and
normalization. The normalization process allows the align-
ment of any two iris images to be compared.After image
preprocessing, we can get the normalized iris texture image
and iris/noise mask image. The texture image is used for
extracting FCN feature maps and mask is actually a hard
attention used in the extended triplet loss.

3.2. Network Architecture

Detailed structure of proposed DualSANet is shown in
Figure 3. The proposed architecture can generate multi-
level spatially corresponding feature representations via an
encoder-decoder structure. A number of studies [33, 18]

have shown that attention plays an important role in
many vision tasks, we also propose a new spatial atten-
tion feature fusion module, so as to ensemble these features
more effectively. Earlier promising works on iris recogni-
tion [7, 6, 27, 24, 25] indicated that local features matter
more than global features. We do not employ very deep
network which has large receptive field and consider more
to exploit low-level features and mid-level features, here we
adopt ResNet-18 as the backbone network.

3.2.1 Encoder Module

Encoder module: we use the part of the standard pre-
trained ResNet-18 model as the backbone to extract fea-
tures from different levels. The blockl presents the ‘cl’
layer in ResNet-18, and the block2 presents the ‘c2’ layer
in ResNet-18. Low-level features are necessary to preserve
spatial details and textural features, high-level features have
the ability to capture more context information. We utilize a
spatial attention feature fusion module to combine features
from different levels.

3.2.2 Spatial Attention Feature Fusion Module

The detailed structure of SAFFM is illustrated in Figure 3
and Table 1. For the given multi-level input feature maps,
we first concatenate them and get an input X € RE*XH>XW,
Then, a convolutional layer and batch normalization is uti-
lized to balance the scales of features from different lev-
els. We halve the numbers of output channels in consid-
eration of reducing computation and get an feature map
F e RC/2xHxW  Next, we propose a specific spatial at-
tention module to refine the fused features. SAFFM infers
a 3D attention map Tr(F) € RC/2XHXW The refined fea-
ture map F’ is computed as:

F =F+F @ Tr(F) (1)

where ® denotes broadcast element-wise multiplication
along the channel dimension. We adopt a residual learn-
ing scheme along with the attention mechanism to facilitate
the gradient flow.

Usually, iris images have some non-iris region, including
eyelid, eyelash and reflection. Therefore, each point in the
spatially corresponding iris feature matters differently. The
spatial attention module utilizes a small network to compute
a weighted coefficient for each position. Spatial attention
plays a feature selection role in the network and pays more
attention to the features which have more discriminative in-
formation.

Considering the completeness of input feature X, we do
not reduce resolution in SAFFM forward computation. In
concrete, we utilize two simple conv-bn-relu structures and
one conv-sigmoid structure to generate the spatial attention
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Figure 2. Illustration of key steps for iris image preprocessing.

4x upsample

4x upsample

Image

A4 A

‘ conv_7x7+bn+relu ’—D{ maxpool

i |
|
|

N

Y
Part of ResNet18

R L5 e S » -
J - =

=L

® broadcast element-wise product

Spatial Attention Feature Fusion Module

cn |
| g . Conv 1 cr
Tt -
e g N - ®—>€9—'—>| ;
A W
B B N
. 7
N a t
e oun(d |
| E
| Conv T |
c |
| BN | —» — |
I H
| ReLU W m3 :
I @ element-wise sum m2 |
: |
)

Figure 3. Detailed structure of DualSANet.

feature. The first 3x3 convolution eliminates the aliasing
effect of direct concatenation and reduces the channel di-
mension from C to C'/2. Such feature after first conv-bn-
relu is regarded as F. The second 1x 1 convolution reduces
the channel dimension to C'/8 much further. Finally, the last
1x1 convolution generates spatial weighted response map
Tr(F'), and the operation of sigmoid compresses the output
between 0 and 1 which represents weighted coefficient of
each position.

3.2.3 Decoder Module

Decoder module: the decoder contains two branches. Each
branch consists of bilinear upsample, spatial attention fea-

ture fusion module, depthwise convolution layer, and last
convolutional layer. Bilinear upsample is utilized to upsam-
ple all features into the same resolution as input image. Spa-
tial attention feature fusion module with attention branch
is utilized to fuse features from different levels and give a
spatial weight to fused features. Then, we utilize depth-
wise convolution [5, 17] to reduce the parameters. The last
convolutional layer generates a | xHxW feature represen-
tation.
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Module Name | Layer Type | Output Channel | Kernel Size | Padding | Input Size | Output Size

Convolution C2 3x3 CxHxW C2xHxW
ml BN C/2 - CR2xHxW | C2xHxW
RelLU - - CR2xHxW | C2xHxW
Convolution C/8 1x1 C2xHxW | C/8xHxW
m2 BN C/8 - C/8xHxW | C/8xHxW
ReLU - - C/8xHxW | C/8xHxW

m3 Convolution 1 1x1 C/8xHxW 1xHxW

Table 1. Details of m1, m2, m3.

3.3. Loss Function

The basic Triplet Loss is proposed by FaceNet [37]. It is
defined as:

N
L= Z[Ilf(w?)*f(rf)llgfIIf(x?)*f(x?)ll%Oéh 2)

While the symbol [e]; represents max(e,0). This loss
makes sure that, the anchor-positive distance is closer than
the anchor-negative distance by at least a margin « which
is the tuning hyper-parameter. While Batch Hard is an im-
proved triplet selection method [16], it is defined as:

P K
Lpn(0;X) =33 [m+ max D(fo(xy), fo(w)
i=1a=1
— min, D(folat), fo(h)+
n=1..K,
J#i
3)
Within a mini-batch, it randomly sample P classes and then
randomly sample K images of each class. For each sample
in the batch, this method select the hardest positive and the
hardest negative samples within the batch to form a triplet
for computing the loss.

For one normalized iris image, our network extracts dual
spatial feature representations defined as f! and f2. f! and
f? fuse different level features and have the complemen-
tary discriminative information. The feature representations
have the same resolution with the input. Euclidean distance
is to metric the corresponding representations between the
compare pair. Our loss is defined as:

P K
L= ZZ[mHEﬂ% MMSD(f5,. )

o — min MMSD(f;, f3,)] @
J=1..P, iar Jd jn)l+
n=1..K,

J#i
Liotar = M1 L1+ AaLo &)

While s=1,2, MMSD(f*, f2%) is the Minimum Shifted
and Masked Distance proposed in [49]. In our case, it is

defined as:
1,s p2,5\ _ : 1,s £2.s
MMSD(f"*, %) 7Brr%1,prSD(fb 7)) (6)

While B is the Shift size, SD is the distance between the
features which take masks into consideration:

S =)o (1 — f2°) © (m! © m?))

D= > (ml & m?)

N
Where © represents the element-wise product of two ma-
trices, Y represents the sum of matrix here. m! and m?2
are the binary masks for two feature maps, in which zero
means the current position is non-iris. In (6), the subscript
b means the feature map has been shifted horizontally by b
pixels, i.e., a shifted feature map has the following spatial
correspondence with the original one:

fb[xlﬂ y] = f[%, y} (8)
xp = (x—b+ w) mod w
3.4. Feature extracting and matching

Our network architecture generates dual feature repre-
sentations and we obtain the final feature representation by
weighted average of the feature representations which is
computed as follows:

Frinat = M ft+ X f? ©)

While A\; and A5 is as same as defined in loss function.

The Minimum shifted and Masked Distance(MMSD)

is the dissimilarity metric between two final compare fea-
ture representations. The false reject rate (FRR) at different
false accept rate (FAR) and equal error rate (EER) are the
main evaluation criterion.

4. Experiments
4.1. Datasets

We employed the following three publicly available
datasets in our experiments, as shown in Figure 4:
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CASIA-IrisV4-Thousand: the dataset(subset) [4]. The
thousand subset includes 20,000 iris images from 2000 eyes
of 1000 persons. Thus, each subject has both left and right
eye. We just use the left eye for training and test. We split
the first 900 person as the training and the last 100 person
as the test. The test set includes 1000 samples, containing
4,500 intra pairs and 495,000 inter pairs.

CASIA-IrisV4-Distance: this dataset (subset) [4] in-
cludes 2,246 samples from 142 subjects. Each sample cap-
tures the upper part of face and therefore contains both left
and right irises. We train an easy eye detector based on [35]
to crop the eye regions from the original images. All of the
right eye iris images are utilized as training set, and all of
the left eye iris images were used as test set. The test set
contains 20,702 intra pairs and 2,969,533 inter pairs.

IITD Iris Database: the IITD dataset [1] contains 2,240
image samples from 224 subjects. We use the same split
as [49]. All of the right eye iris images are utilized as the
training set while the first five eye images are utilized as test
set. The test set contains 2,240 intra pairs and 624,400 inter
pairs.

,,,,,,,,,,,,,,,,,

(a) (b)
Figure 4. (a) examples of CASIA-IrisV4-Distance (b) examples of
CASIA-IrisV4-Thousand (c) examples of IITD

4.2. Implemtation Details

Our network is implemented with PyTorch. We use the
same optimizer and learning policy for all experiments. The
optimizer is SGD. The initial learning rate is set to 0.001,
which is down-scaled by 10 after epoch 50, 100, 150, and
the max epoch is 200. We train all the networks with 8
Nvidia TITAN Xp. On each GPU, to form a mini-batch,
we sample P persons and K images for each person. For
CASIA dataset, P is set to 6, and K is set to 6. For IITD
dataset, P is set to 10, and K is set to 3 because each person
only have 5 images to train. The margin m is set to 20, the
coefficients of two losses are set as A\1=0.5, \2=0.5, and the
Shift size is set to 5.

4.3. Ablation Study

In this subsection, we investigate the effect of each com-
poment in our proposed DualSANet in detail. In the follow-
ing experiments, We use the ResNet18 network pre-trained
on ImageNet dataset [8] as the backbone and conduct the
experiments on the CASIA-IrisV4-Thousand dataset.

Baseline: our baseline just have single feature represen-
tation from the Branchl without Spatial Attention Feature

Fusion Module.

Ablation Study for the number of feature representation:
we propose the dual feature representations as outputs. We
also evaluate single representation from the Branchl and
triple feature representations that the third branch is from
ahead of the blockl. Results are shown in Table2 which
indicates the scheme of dual feature representations is the
best choice. The reason is that one feature representation
from Branchl missing some low-level information and the
third representation from ahead of the block1 is too shallow
to learn discriminative information.

FRR@FAR
Method 5 | led | Te3 | R
Base 478% | 2.58% | 1.09% | 0.40%
Base+Dual | 3.67% | 1.58% | 0.69% | 0.36%
Base+Trip | 8.93% | 3.29% | 1.22% | 0.58%

Table 2. Setting an appropriate number of feature representations
is important. ‘Base’ means the baseline network with just one fea-
ture representation from Branchl, ‘Dual’ means dual feature rep-
resentations and ‘“Trip” means triple feature representations which
the third branch is from ahead of the blockl.

Ablation for SAFFM: we propose the spatial attention
feature fusion module to combine the different level fea-
tures. We evaluate a simple concatenation of these features,
channel attention feature fusion module (CAFFM) and spa-
tial attention feature fusion module (SAFFM). The channel
attention operation we used is the same as SENet [18]. Re-
sults are shown in Table 3, which indicate that ‘SAFFM’
is the best fusion module. ‘CAFFM’ may harm the per-
formance because of the global operation in ‘CAFFM’ is
inappropriate for iris pattern.

FRR@FAR
Method &5 | Ted | Ie3 EER
Base+Dual 3.67% | 1.58% | 0.69% | 036%
Base+Dual+CA | 4.82% | 1.93% | 0.64% | 0.34%
Base+Dual+SA | 3.16% | 1.53% | 0.58% | 0.31%

Table 3. Performance comparison between different feature fusion
modules. ‘Base’ represents the baseline model, ‘SA’ represents the
spatial attention feature fusion module, ‘CA’ represents the chan-
nel attention feature fusion module, and the other is just simple
concatenation.

Ablation Study for the coefficients of two feature rep-
resentations: we evaluate different coefficients for the two
feature representations, results are shown in Table 4.

Ablation Study for the Shift: we evaluate the effect of
Shift. The size of Shift is set to 5. Results are shown in
Table 5.
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FRR@FAR
Method le5 | Ted | Ted | X
Base+Dual+SA(0.1,009) | 4.98% | 1.96% | 1.07% | 0.48%
Base+Dual+SA(0.3,0.7) | 4.92% | 2.58% | 0.84% | 0.39%
Base+Dual+SA(0.5,0.5) | 3.16% | 1.53% | 0.58% | 0.31%
Base+Dual+SA(0.7,0.3) | 5.42% | 1.73% | 0.62% | 0.37%
Base+Dual+SA(0.9, 0.1) | 16.22% | 9.09% | 4.8% | 1.84%

Table 4. Setting appropriate coefficients is important to learn discriminative feature representations.

FRR@FAR
Method o3 ‘ Tod ‘ o3 EER
Base+Dual+SA 3.16% | 1.53% | 0.58% | 0.31%
Base+Dual+SA+Shift | 1.38% | 0.6% | 0.31% | 0.27%

Table 5. Performance comparison with Shift and No-Shift

4.4. Results and Comparison

We present comparative experimental results with other
methods. 2D Gabor filters based IrisCode [7, 6] have been
the most widely deployed iris feature descriptor. IrisCode
has a number of advanced versions. From the publicly
available ones, we selected OSIRIS [32], which is an open
source tool for iris recognition. Our image preprocess-
ing also utilizes the OSIRIS for a fair comparison. An-
other widely accepted method is based on 1D log-Gabor
filters [27]. Ordinal filters based method proposed in [40]
is also a powerful method of iris feature extracting. Zhao
et al. proposed UniNet [49] to achieve a highly competitive
benchmark, and they also tuned other benchmarks as good
performance as possible. We take these tuned methods as
benchmarks. The comparison results are shown in Table 6
which show our methods outperform other methods.

5. Conclusion

In this paper we propose a dual spatial attention network,
namely DualSANet, to extract dual spatially corresponding
iris feature representations for iris recognition. We use
pre-trained ResNet-18 as the encoder backbone to extract
multi-level features. In decoder architecture, we propose
a new spatial attention feature fusion module(SAFFM) to
fuse multi-level features. The architecture generates dual
discriminative feature representaitons that fuse different
level features. An extended triplet loss is utilized to train
our network. The experimental results show our Dual-
SANet significantly outperforms state-of-the-art methods
on CASIA-IrisV4-Thousand, CASIA-IrisV4-Distance, and
IITD.
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