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Abstract

Applying a trained model on a new scenario may suffer
from domain shift. Unsupervised domain adaptation (UDA)
has been proven to be an effective approach to solve the
problem of domain shift by leveraging both data from the
scenario that the model was trained on (source) and the new
scenario (target). Although the source data are available
for training the source model, there is no guarantee that the
source data will still be available when applying UDA in the
future due to emerging regulations on privacy of data. This
results in the in-applicability of most existing UDA meth-
ods in the absence of source data. This paper proposes
a source-data-free feature alignment (SoFA) method to ad-
dress this problem by only using the trained source model
and unlabeled target data. The source model is used to pre-
dict the labels for target data, and we model the generation
process from predicted classes to input data to infer the la-
tent features for alignment. Specifically, a mixture of Gaus-
sian distributions is induced from the predicted classes as
the reference distribution. The encoded target features are
then aligned to the reference distribution via variational in-
ference to extract class semantics without accessing source
data. Relationship of the proposed method and the theory
of domain adaptation is provided to verify the performance.
Experimental results show the proposed method achieves
higher or comparable accuracy compared to the existing
methods in several cross-dataset classification tasks. Abla-
tion studies are also conducted to confirm the importance
of latent feature alignment to adaptation performance.

1. Introduction

Machine learning models are widely applied in practical
scenarios with varying environmental conditions. There-
fore, the test data are commonly derived from a distribution
different from that of the training data. This domain shift
problem [28] leads to the performance degradation when
applying a model trained on one scenario (source) to a dif-
ferent scenario (target). Unsupervised domain adaptation
[8] (UDA) has become one of the popular and effective ap-
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Figure 1. Comparison of the problem settings in traditional UDA
and source-data-free UDA: Upper: In traditional UDA, both la-
beled source data and unlabeled target data are available during
adaptation. Lower: In source-data-free UDA, labeled source data
are inaccessible during adaptation. Instead, the source model, a
model that has been trained on the labeled source data, and the
unlabeled target data are available during adaptation. This setting
is more challenging, because without the source data, the source-
target feature alignment strategy that was commonly adopted in
UDA methods becomes inapplicable.

proaches to tackle this problem. Over the years, many UDA
methods [25] have been proposed, and encouraging results
have been achieved in recent researches [29, 33, 14, 19] by
employing deep-learning networks.

Among these researches, most of them achieved suc-
cessful adaptation performance with the help of a set of
labeled source data. In real-world applications, however,
the assumption on the availability of the source data is
not always true due to emerging regulations on privacy of
data. As an example, the General Data Protection Reg-
ulation (GDPR) have been promulgated and implemented
in Europe to restrict the use and transfer of personal data.
As a consequence, some training data or even the whole
training dataset have been deleted. For instance, Microsoft
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announced’ the deletion of the Ms-celeb-1m dataset [10],
which is the largest publicly available dataset for facial
recognition, since the publication of many images was not
authorized by the owners. In such scenario, the source facial
images are available when training the source facial recog-
nition model. However, by the time we acquire new facial
images and want to apply facial recognition on them, the
source facial images have been deleted due to containing
private information, and only the source facial recognition
model is available.

In this work, we consider a more practical setting that
is a variant of the traditional UDA: in addition to the un-
labeled target data, the source model that has been trained
on the labeled source data, rather than the labeled source
data themselves, are available for domain adaptation. The
problem setting in this paper is illustrated in Figure 1. The
source model is more privacy-protected than the source data
in the sense that it is much harder to decode private infor-
mation from a trained model than inspecting actual training
data. Thus, the overall setting in this paper is more suitable
for the real-world applications, and is more challenging be-
cause without the source data, the effective source-target
feature alignment strategy that was commonly adopted in
UDA methods becomes inapplicable.

To tackle the lack of source data, some domain adapta-
tion methods [27, 3, 24, 31] are proposed in the absence
of source data. One of the solutions is to refine the source
model with a few labeled target data [36, 18, 27], some gen-
erated target data [20], or through self-supervised pseudo-
labeling and information maximization between target data
and predictions [21]. However, these methods either ini-
tialize or regularize the adapted model by the parameters of
the source model, which assumes that the parameters of the
source model are available for adaptation.

Source-model prediction adjustment is another way to
address domain adaptation without the source data, which
does not require the availability assumption of source model
parameters. The existing methods tries to either denoise
[3, 24] or stabilize [31] the predictions made by the source
model on target data. However, these methods are lack of
encouraging the adapted model to extract class semantic in-
formation, which is desirable for classification, from tar-
get data. As the example shown in the upper half of Fig-
ure 2, without any constraints on the extracted information,
the adapted recognition model extracts information such as
background and product color, which are less helpful for
classifying objects.

To overcome the aforementioned limitation, this pa-
per proposes a source-data-free feature alignment method,
named as SoFA, to guide the latent feature in the adapted
model to extract the class semantic information from target
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Figure 2. Comparison of SoFA with existing UDA methods with-
out accessing source data : Upper: Without constraining the ex-
tracted information from target data, the existing methods might
capture ineffective information for classification (for example, ob-
ject tape dispenser erroneously classified as mobile phone due to
the similarity of background (wooden) and product color (black).)
Lower: In SoFA, the reference distribution induced from predicted
classes is able to facilitate the adapted model to extract class se-
mantic information, which is helpful for classification.

data. In addition to the target data and the source-model
predictions of target data, a mixture of Gaussian distribu-
tions is induced from the predicted classes as the reference
distribution for feature alignment. Each Gaussian distribu-
tion in the mixture corresponds to a predicted class, respec-
tively. The latent features of target data are thus required
to form the same number of clusters in order to be aligned
with the reference distribution. The described mechanism
is illustrated in the lower half of Figure 2. In this man-
ner, the adapted model can extract latent features with class
semantic information, which is desirable for classification,
from target data more efficiently. The alignment is obtained
through variational inference. Specifically, we developed
a Latent Alignment Variational Auto-Encoder (LA-VAE),
whose decoding process models the generation process of
target data. In the LA-VAE, the encoded features of the tar-
get data are used for data reconstruction to learn discrimina-
tive information from target data. In addition, the encoded
target features are aligned to the mixture of Gaussian dis-
tributions in the generation process. After learning the LA-
VAE, the encoded target features will tend to contain desir-
able class semantics. To further verify the performance, we
also analyze the relationship between the proposed method
and the theory of domain adaptation [1].

We summarize the contributions of this paper as follows,

* We propose an idea of inducing a reference feature
distribution from predicted classes, and propose the
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method of source-data-free feature alignment (SoFA)
to extract features with class semantics, thus realize
UDA without accessing the source data. To verify the
performance, we also connect the proposed method
with the theory of domain adaptation.

e We show that the proposed method achieves higher
or comparable accuracy when compared to existing
methods on a wide range of cross-dataset classification
tasks.

* We confirm the importance of feature alignment by
conducting ablation studies on the proposed method.

2. Related Works

Unsupervised Domain Adaptation (UDA) is an effec-
tive approach to adapt a source model to an unlabeled target
dataset whose distribution is different from the source do-
main. In traditional UDA, both a set of labeled source data
and a set of unlabeled target data are available. Learning
embedded features that are invariant across domains from
the source and target data is a main approach to achieve the
adaptation. In the domain-invariant feature space, the model
learned by the source features can be directly applied to the
target features. In recent years, many UDA algorithms [25]
have been proposed to obtain the domain-invariant features
with different distribution alignment criteria [9, 19] based
on the techniques of manifold learning [8, 7], sparse coding
[34, 35] and deep learning [22, 23, 2]. Adversarial learning
techniques [6, 30, 12] are also used to explore the domain-
invariant feature space. Features are regarded to be domain-
invariant if they could not be correctly classified by the do-
main classifier.

Unsupervised Domain Adaptation without Source Data
In some practical applications, source data are non-
reproducible due to the current data protection regulations.
To tackle this challenge, some methods are proposed to im-
prove the performance in the target domain by refining the
source model with few labeled target data [36, 18, 27] ,gen-
erated target data [20], or through self-supervised pseudo-
labeling and information maximization between target data
and predictions [21]. However, these methods either ini-
tialize or regularize the adapted model by the parameters of
the source model, which assumes that the parameters of the
source model are available for adaptation.

On the other hand, some methods are proposed to im-
prove the performance through adjusting the predictions
made by the source model on target data [3, 31, 24]. In par-
ticular, the performance in the target domain is improved
by either denoise [3, 24] or stabilize [31] the source-model
predictions. However, these methods are lack of encourag-
ing the adapted model to extract class semantic information
from target data. This might result in the adapted model

extracting information that is less helpful for classification,
such as background or product color.

3. Source-data-free Feature Alignment

This section introduces the proposed Source-data-free
Feature Alignment (SoFA) method. We use the uppercase
X and Y to denote the set of data and label samples, respec-
tively. The lowercase x and y represent the data and the la-
bel of a sample, respectively. The inferred features of data x
is written as z. In this paper, we focus on solving the prob-
lem of Closed Set UDA [37], where the predicted classes
are identical between the source and target domains. Given
the labeled source dataset { X, Y;} and the unlabeled tar-
get dataset X4, the goal of UDA is to learn a model that can
correctly classify X;. As discussed in Section 1, this paper
aims to solve the problem of unsupervised domain adapta-
tion without source data, in which only the source model
that has been well trained by the source data is given. Thus,
the existing methods that extract features from source data
are no longer applicable. Instead of inferring latent features
with class semantics from the source data, this paper pro-
poses inferring features from the predicted classes.

3.1. Overview

The overview of the proposed SoFA method is illustrated
in Figure 3. The proposed method includes two main pro-
cesses, generation process and inference process. As the
trained source model and a set of target data are available,
source-model predictions of target data can be obtained by
inputting the target data into the source model. The gen-
eration process provides the reference feature distribution
induced from the predicted classes. This reference feature
distribution, also known as the prior distribution, is mod-
eled as a mixture of Gaussian distributions. Each Gaussian
distribution represents the latent feature distribution of one
predicted class, respectively. On the other hand, given target
data, the inference process approximates a posterior feature
distribution with the assumption that the latent features of
each target data sample are Gaussian distributed. Details of
the generation and inference processes will be presented in
Sections 3.2 and 3.3, respectively. With the inferred prior
and the approximated posterior distributions, we derive the
objective function which maximizes the Evidence Lower
Bound (ELBO) to train our network for source-data-free
feature alignment. The criteria for matching source-model
predictions and data inputs, and the alignment of latent fea-
tures are derived with a framework of variational inference,
which will be introduced in Section 3.4.

3.2. Prior Distribution Induction from Predicted
Classes

We first introduce the generation process for data x. Data
x can be either the source or target data. That is, x €
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Figure 3. Illustration of the inference process from data to label (upper), and the generation process from label to data (lower) of SoFA. The
directions of the processes are depicted with green arrows. With variational inference, in addition to matching the source-model predictions
and target data, we can also apply distribution alignment for latent features.

{zs,2z:}. Regardless of the domain label, a well-trained
model should assign distinct modes to different classes in
the classification tasks. In other words, an ideal latent fea-
ture space should cluster data with the same class label to
the same mode, and assign data with different class labels
to different modes. Based on this assumption, a reference
distribution in the latent feature space can be modeled by a
mixture of Gaussian distributions. Each Gaussian distribu-
tion in the mixture represents the latent feature distribution
of one predicted class, respectively. The latent features are
then mapped to the data space for data reconstruction. The
entire generation process can be written as follows.

p(y) = Cat(y|n) )]
p(zly) = N'(zlny, o3 1) 2
p(z]z) = N(x|po(2), ) 3)

where Cat(-) represents a categorical distribution with
parameters 7. , and o, are the means and standard de-
viations of the estimated Gaussian distribution given label
y. Gaussian distribution is chosen to model the genera-
tion of data given the latent features, with py(z) denotes
the neural network parametrized by a set of weights 6. To
ensure the label y captures the same class semantics as in
the source domain, the source-model predictions are used
as the parameters for p(y), i.e., 7 = fs(x), where fi(z) is
the source-model predictions for data x.

3.3. Posterior Distribution Approximation via Vari-
ational Inference

We then introduce the inference process for posterior dis-
tribution approximation. In other words, we aim at calcu-
lating the posterior distribution p(y, z|x = x). Inspired by
Variational Auto-Encoder (VAE) [16], we approximate the

posterior with ¢(y, z|z = x;). Mathematically,

a(y, zlz = ) = q(z|z = 21)q(y2) 4
qzlx = 2¢) = N(z|pg (1), 03 (1) 5
q(y|2) = softmax(gy(2)), (6)

where p4(z), og(xz) and g4(z) are neural networks
parametrized by a set of weights ¢, and softmax(-) rep-
resents the softmax function. As we wish our method can
be used in most image recognition tasks, the posterior dis-
tribution is modeled by a feed-forward network, which we
assume x and y are conditionally independent given z (as
shown in Equation (4)). In order to learn smooth latent fea-
tures, we formulate g(z|x = x;) as a sample-wise Gaussian
distribution. ¢(y|z) is formulated as a classifier, which takes
the latent features as the inputs to predict labels.

3.4. Objective Function for Maximizing the Evi-
dence Lower Bound

After defining the prior and posterior distributions, we
achieve domain adaptation by aligning the prior and poste-
rior distributions using variational inference. The generated
target data are matched to the real target data in the auto-
encoder framework. The adapted predictions are matched
to the source-model predictions to capture the meaning of
the same set of classes as in the source domain. Finally, the
encoded target features are aligned to the mixture of Gaus-
sian distributions in the generation process. The concept
is illustrated in Figure 3. The objective function that max-
imizes the Evidence Lower Bound (ELBO) in variational
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Figure 4. Overall pipeline of Latent Alignment Variational Auto-Encoder (LA-VAE). Each target data x; is first encoded to a Gaussian
distribution N (2|1 (2+), 05 (x¢)) in the latent space. We then sample the distribution to get a latent feature sample z* of x, and pass it
through the decoder and the classifier for data reconstruction and label prediction, respectively. (Note that x+ can be either raw images, or
features extracted from images, for example, DeCAF-fc7 features [5], features from ImageNet-pre-trained [4] ResNet50 [11], and etc.)

inference is derived as follows.

(xtv z y)
L= _Eq(z,y|xt) |:10g( >:|

q(z,ylze)
= Eq(z\wt)[ logp xt| g IOg (( ||1:;t)) )]

+ KL(g(yl2) Ip(y)]

= — 10 T2 z (0] 7q(z*|xt)
=-1 gp( t| + Zy: y‘ 1 g( p(Z*|y) )]
+ K L(q(y|z")llp(y)), 2" ~ q(z|z:), (7

where z* is a random sample from ¢(z|x;) and K L(p||q)
is the Kullback-Leibler divergence between distributions p
and g. The set of parameters {6, ¢, 11,,, 0, } are then learned
by minimizing Equation (7). The objective function of
Equation (7) consists of three terms: The first term is a
reconstruction loss that constrains the latent features to be
informative for reconstructing the target data. The second
term aims to align the posterior latent features and the ref-
erence Gaussian-mixture-based latent features. The third
term regularizes the posterior predictions to be close to the
source-model predictions. In summary, the derived objec-
tive function produces constraints for data, latent features
and predict labels, as shown in Figure 3. The first and third
terms in Equation (7) encode the information from the target
domain (i.e. target data) and the source domain (i.e. source-
model predictions) into the latent features, respectively. The
second term in Equation (7) constrains the latent features by
aligning features to the mixture of Gaussian distributions,
one Gaussian distribution per predicted class, helping the
latent features extract information of class semantics.

Table 1. Measure of ep,.(ls,lr) training with/without Recon-
struction Loss in the Dslr—Amazon setting of Office31[28]. The
ep, (ls,lr) is measured by the error rate of [ on target data, av-
eraging over 30 samples of g(z|z:) for every target data x;

6DT (lSa lT)
Without Reconstruction Loss 55.45
With Reconstruction Loss 45.97

3.5. Network Architecture

We realize the idea of SoFA by developing a Latent
Alignment Variational Auto-Encoder (LA-VAE). The net-
work architecture is illustrated in Figure 4. LA-VAE
consists of a VAE structure and a classifier. The target
data are first encoded by an encoder. The encoded out-
puts are passed through a batch-normalization layer [13],
whose outputs are passed through a fully-connected layer
and two fully-connected layers with ReLU activation to
obtain the feature means pg(z¢) and feature variances
U;(.’L‘t), respectively. The feature means and variances
are then used as the parameters of a Gaussian distribution
N (zlpg (), 05 (2:)1) to get a latent feature sample z* of
x;. This sample is then passed through a decoder and a
classifier for data reconstruction and label prediction, re-
spectively. The decoder corresponds to the prior distribu-
tion inference, while the encoder and classifier correspond
to the posterior distribution approximation. According to
the objective function in Section 3.4, the target data recon-
struction is computed by matching the decoder output to
the target data. The match of label predictions across do-
mains is computed by matching the classifier outputs to the
source-model predictions. Finally, the latent feature align-
ment is achieved by maximizing the probability of encoded
features in the mixture of Gaussian distributions, weighted
by the outputs of the classifier.
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3.6. Theoretical Insights

We now relate the proposed method with the theory of
domain adaptation [1]. A domain S is defined as (Dg, lg),
where Dy is a data distribution and /g is a labeling function
on Dg. The disagreement between a hypothesis h and a
labeling function [ on distribution D can be defined as

ep(h,1) = E.~pl|h(z) = I(2)[] ®

Based on theory proposed by Ben-David et al.[1], given
the source domain S = (Dg,lg), the target domain T' =
(Dr,l1), and a hypothesis space H, the error of a given
hypothesis h € H on T, €p,.(h,lr), is upper-bounded by
the following inequality :

1
epr(h,lr) <epg(h,ls) + §dHAH(DSa Dr)+ X 9

, where
dHAH(D57DT) =2 sup |6DS(h,h/) — EDT(h,h/”
h,h/€H
= min[eDS (h, ls) + €p, (h, lTﬂ

heHd

€pg(h,lg) is the error of h on S, dgam(Ds, Dr) is the
HAH-divergence [1] between the two data distributions,
and \* is the optimal joint error on both domains.

On the other hand, our objective function can be rewrit-
ten as follows :

L = By(efa) |~ logp(@:]2)] + KL(a(zla2) lp(2)
+ Eytefen [ KL(awl2) Ip(v]2))]

By considering Dg, Dr, h, and lg as p(z), q(z|xt),
argmax, (q(y[z)), and argmax, (p(y|z)), respectively, we
can see the relationship between Equation (9) and Equa-
tion (10): K L(q(z|x¢)||p(z)) measures dgan(Ds, D7),
and Ey(.|2,) [KL(q(y|2)|[p(y|z))] can measure ep (h,ls)
since the distance between Dg and D7 is reduced by mini-
mizing K L(q(z|z¢)|[p(2))-

We finally show the reconstruction loss,
Eq(2)a,) [~ log p(x¢]2)], can reduce A*. We first notice that
A* can be reduced if lg and I have less disagreement,
which can be measured by ep..(ls,lr) since the distance
between Dg and Dy is reduced during training. Table
1 summarizes the effect on the error rate of Ig on target
data training with and without the reconstruction loss. The
results indicate that by adding the reconstruction loss, the
disagreement of the two labeling functions can be reduced.
Therefore, \* can be reduced with the reconstruction loss.

In summary, the above shows the relationship of the pro-
posed objective function with theory of domain adaptation,
which implies minimizing the proposed objective function
can reduce the bound of error on target domain and realize
successful adaptation.

4. Experiments

In this section, we evaluate the proposed method on two
unsupervised domain adaptation tasks: cross-dataset real-
world object recognition and cross-dataset creation-to-real
object recognition. Results of these tasks are reported and
analyzed in Section 4.3 and Section 4.4, respectively. To
evaluate the proposed method on large-scale dataset, we
also conduct experiments on the VisDA-C dataset [26] and
report the results in the supplementary materials. In all
the experiments, the labeled source data are only used for
training the source model and are not used during the
adaptation. Our results of SoFA is the expected value of
the predictions on latent distribution, i.e., Fy .|z, [q(y]2)],
which is estimated by averaging the predictions over 30 la-
tent samples of ¢(z|z;). To fairly compare with the existing
linear UDA methods (for example, sMDA [3]), we also train
a linear network with the latent features to mimic the final
predictions of SoFA. Though we didn’t observe significant
difference in performance, the results of the linear model,
named as SoFA student, are also provided for the purpose
of fair comparison.

4.1. Implementation Details

Cross-dataset Real-world Object Recognition: As most ex-
isting methods trained a linear classifier on top of the pre-
trained features for adaptation, we apply a similar setting for
the source model, where a linear classifier is added on top
of the DeCAF-fc7 [5] features, the deep features extracted
from the ImageNet-pre-tained [4] AlexNet [17]. For LA-
VAE, the DECAF-fc7 features are used to infer the latent
features, and a fully-connected layer with dropout is added
on top of the latent features as the classifier. We set the
dimension of latent features z as 1024. The decoder con-
sists of 2 layers of the fully-connected + batch normaliza-
tion + Leaky ReLU (alpha=0.2)” module and a final fully-
connected layer to reconstruct the DECAF-fc7 features.
The number of channels in the fully-connected layers of the
decoder are set to 4096. With the source model learned by
the labeled source DeCAF-fc7 features, we trained the over-
all pipeline of LA-VAE for 5000 epochs until convergence.
The batch size is set to 256, and the ADAM [15] optimizer
with learning rate of le-4 is used for optimization. During
the training process, we apply a ”’kl annealing”-like schedul-
ing, in which the weight of the alignment term in the objec-
q(z"|z+)
p(z*ly)
the first 1000 epochs, and gradually ramps up from O to 1

over the subsequent 1500 epochs. We find this scheduling
strategy prevents the network from arriving at poor local
minima in the early training stages.

Cross-dataset Creation-to-real Object Recognition: Simi-
lar to the previous experiments of cross-dataset real-world
object recognition, we also consider the linear classification

tive function, >, {q(y\z*) log( )}, is set to zero for
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Table 2. Accuracies (%) of Cross-dataset Real-world Object Recognition

Method D—A W—A A—D W—D A—W D—-W Average
Source Only 43.66 45.83 59.84 97.59 57.99 94.09 66.50
sMDA [3] 44.34 47.00 63.86 98.19 60.75 95.09 68.21
RWA [31] 47.35+£0.15 50.15+0.12 74.344+0.99 97.19+0.40 72.20+1.07 96.20+0.18 72.90+0.61
SHOT [21] 48.07£0.50 51.85+0.52 57.23+0.72 84.58+2.98 71.95+0.62 82.79+0.81 66.08£1.28
SHOT-IM [21] 54.34+1.54 54.204+0.32 52.57+1.23 98.27+£0.33 66.42+1.63 95.50+0.29 70.224+1.11
SoFA (Ours) 53.71£0.53 54.63£0.56 73.90£0.44 98.194+0.18 71.724+0.56 96.68+-0.43 74.81+0.56
SoFA student (Ours) 53.724+0.54 54.64+0.55 73.90+£0.44 98.19+0.18 71.72£0.56 96.68+0.43 74.81+0.56
Table 3. Accuracies (%) of Cross-dataset Creation-to-real Object Recognition
Method Ar—Pr Ar—Rw Cl—Pr Cl—=Rw Average
Source Only 61.18 70.60 58.80 60.82 62.85
sMDA [3] 64.72 72.00 61.14 63.21 65.27
RWA [31] 73.68+£0.18  76.90+0.11 71.214+0.32 69.89+0.11 72.92+0.23
SHOT [21] 69.77£0.41 74.31+0.28 70.11£0.27 72.46+0.31 71.6640.40
SHOT-IM [21] 70.95+0.88  74.594+0.33 63.94£1.26 65.59+0.57 68.77+0.95
SoFA (Ours) 74.14£0.10  77.63+0.15 71.86+0.26 75.09+0.37 74.68+0.27
SoFA student (Ours) 74.13£0.10 77.62+0.16  71.87+0.25 75.08+0.36  74.68+0.27

setting. The features before the final linear classifier from
the ImageNet-pre-trained ResNet50 [11] are used for ex-
periment. The architectures of the source model and the
LA-VAE are the same as the one in the experiments of
cross-dataset real-world object recognition, with only the
number of channels in the fully-connected layers of the
decoder changed to 2048. The overall pipeline is trained
for 5000 epochs until convergence, with batch size of 256
and ADAM optimizer with learning rate of le-4. The "kl
annealing”-like scheduling is also applied in this experi-
ment, in which the weight for the alignment term is set to
zero in the first 1000 epochs, and gradually ramps up from
0 to 1 over the subsequent 1500 epochs.

4.2. Comparison Methods

The results of the proposed method are compared to
three existing methods that also tackle UDA in the ab-
sence of source data. 1) Stacked Marginalized Denois-
ing Autoencoder (sMDA) [3]: A denoising auto-encoder
framework is applied to marginalize the corrupted target
data and the source predictions. 2) Random Walk based
Adaptation (RWA) [31]: To increase the label stability,
RWA repeatedly trains the network from scratch for sev-
eral episodes, and re-samples the target dataset in each
episode®. We follow the settings in the paper of RWA [31]
and set the number of episodes K = 500 for all the experi-
ments. 3) Source Hypothesis Transfer (SHOT) [21]: While
keeping the classifier frozen, SHOT fine-tunes the feature
extractor of the source model by self-supervised pseudo-
labeling and information maximization between the input
target data and the predictions made by the adapted model.

2In this paper, “episode” refers to the “iteration” in the RWA method
[31], in order to distinguish it from the term “iteration” within each epoch
in the training process.

As there are no trainable parameters in our feature extrac-
tors, we add a layer of “’fully-connected + batch normaliza-
tion” module between the input features and the classifier.
The module is initialized to produce identity mapping and
is trained with SHOT during adaptation. We also provide
the results of SHOT-IM that applies SHOT without self-
supervised pseudo-labeling, as we found self-supervised
pseudo-labeling worsen the performance in some experi-
ments. In the two experiments above, except for the source
model that was run once, all the compared methods and the
proposed SoFA method, are conducted 5 different runs. The
means and standard deviations of the results are reported in
Table 2 and 3. 3

4.3. Cross-dataset Object Recognition

To evaluate the proposed method, we conduct experi-
ments on the Office31 dataset [28], which consists of 31
classes of real-world object images from three domains: im-
ages downloaded from amazon.com (A) and images in the
office environment taken by webcams (W) and DSLR cam-
eras (D), respectively. In each experiment, these three do-
mains take turns to be either source or target domains. The
results are summarized in Table 2, showing the proposed
method achieves higher or comparable accuracy to the ex-
isting methods in each of the adaptation directions, and out-
performs the existing methods in overall average accuracy.

4.4. Cross-dataset Creation-to-real Object Recog-
nition

As the example mentioned in Section 1, the absence of

source data may occur due to privacy issues. In the practical

3Note that as sSMDA conducts deterministic computation, the standard
deviations are 0 over the 5 runs and thus were not shown in the tables.
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Table 4. Accuracies (%) of the Ablation Study on Cross-dataset
Object Recognitions.

Real-world Creation-to-real

Source Only 66.50 62.85
Recon Feature KL

v 65.72 62.29

v v 66.09 62.27

v v 64.67 66.05

v v v 74.95 74.70

cases, artworks created by individuals are one of the cate-
gories of images that are vulnerable to privacy and copy-
right issues. To evaluate our method in the scenario prone
to privacy issues, we consider the situation where the absent
source domain is the domain of drawings or creations. We
conduct experiments using the Office-Home dataset [32],
which consists of images of 65 object classes in four do-
mains: artworks (Ar), clipart images (Cl), product images
(Pr), and real-world images taken from camera (Rw). We
select Art (Ar) and Clipart (Cl) as the source domains and
the rest two domains as the target domains. The results in
accuracy are summarized in Table 3. It is shown that the
proposed method outperforms the existing methods in all 4
adaptation directions. We also observed that the standard
deviations of the proposed method are within an accept-
able range, since the proposed method still outperforms the
existing methods even subtracting one standard deviations
from the means of the accuracy. The results indicate that the
proposed method not only outperforms the existing methods
in traditional cross-domain scenarios, but is also suitable for
practical cases prone to the absent of source data.

5. Discussions : Reasons for the improvements

In this section, we discuss the reasons that SoFA im-
proves adaptation results by conducting ablation stud-
ies on the proposed method. The first two terms in
the objective function, namely, the reconstruction loss,
—log p(z|z*), and the latent feature alignment loss,

>y |atylz") log(‘g(z;llzt))) , are partially removed for ex-

periment. We keep the KL divergence, K L(q(y|z*)||p(y)),
activated to ensure the adapted predictions hold the same
class semantics as in the source domain. The average results
of the two cross-dataset object recognition experiments are
summarized in Table 4.

As shown in Table 4, we find that the improvement
achieved by the proposed method comes in two-folds: 1)
Reconstruction loss that learns the discriminative informa-
tion from the target data; 2) Latent feature alignment loss
that facilitates the latent features to extract classification-
related semantics. In the first row, the models are trained to
match the source-model predictions with KL Divergence,
thus generally achieve accuracy closed to the source model.
In the second row, in addition to matching the source-model

predictions, the models are also trained to reconstruct target
data. Compared to the first row, as the reconstruction loss
provides an additional training signal from the target do-
main, the discriminative information learned by the latent
features is less affected by the domain gap. However, with-
out the latent feature alignment loss, we can not be sure
if such discriminative information learned from the recon-
struction loss extracts class semantics or other information
like background. Hence, such unconstrained latent features
give little improvement to the performance. In the third
row, the latent feature alignment loss is activated. However,
without the reconstruction loss, the latent features only con-
tain the information learned by matching the source-model
predictions. Such noisy information still cannot give signif-
icant improvement to the performance. Finally, the highest
accuracy occurs in the last row where all terms are included,
where the reconstruction loss learns discriminative informa-
tion from target data, and the latent feature alignment loss
facilitates latent features to extract classification-related se-
mantics.

6. Conclusion

In this paper, we proposed a novel method of source-
data-free feature alignment (SoFA) to tackle the problem of
unsupervised domain adaptation in the absence of source
data. We eliminate the need of source data for unsuper-
vised domain adaptation by inducing a reference distribu-
tion of latent features, which facilitates the model to ex-
tract semantics useful for classification. This idea is real-
ized with variational inference that builds a path to align
the encoded information across the source and target do-
mains. We also provide theoretical insights, connecting the
proposed method with the theory of domain adaptation to
verify the performance. We conduct experiments on multi-
ple classification tasks to show the effectiveness and prac-
ticality of the proposed method. In addition, effectiveness
of latent feature alignment is further confirmed through ab-
lation studies, which highlights the importance of aligning
encoded information between the source and target domains
in the source-data-free unsupervised domain adaptation.
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