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Abstract

Regular pavement inspection plays a significant role in
road maintenance for safety assurance. Existing methods
mainly address the tasks of crack detection and segmenta-
tion that are only tailored for long-thin crack disease. How-
ever, there are many other types of diseases with a wider
variety of sizes and patterns that are also essential to seg-
ment in practice, bringing more challenges towards fine-
grained pavement inspection. In this paper, our goal is not
only to automatically segment cracks, but also to segment
other complex pavement diseases as well as typical land-
marks (markings, runway lights, etc.) and commonly seen
water/oil stains in a single model. To this end, we propose
a three-stream boundary-aware network (TB-Net). It con-
sists of three streams fusing the low-level spatial and the
high-level contextual representations as well as the detailed
boundary information. Specifically, the spatial stream cap-
tures rich spatial features. The context stream, where an
attention mechanism is utilized, models the contextual rela-
tionships over local features. The boundary stream learns
detailed boundaries using a global-gated convolution to
further refine the segmentation outputs. The network is
trained using a dual-task loss in an end-to-end manner,
and experiments on a newly collected fine-grained pave-
ment disease dataset show the effectiveness of our TB-Net.

1. Introduction

Pavement disease segmentation is a fundamental prob-
lem in maintaining the condition of transport infrastruc-
ture such as airports, bridges, and roads [10, 39]. Previ-
ous works often only focus on long-thin cracks and address
the task of crack segmentation [11, 20, 30] using some ex-
isting crack datasets (e.g., AigleRN [26], CrackForest [3],
DeepCrack [23]), where the size of cracks tends to be large
leading to easier segmentation. However, in practice, other

pavement diseases are also critical to segment in order to en-
hance public safety. This inevitably poses more challenges
due to the irregular shapes and various sizes of diseases,
some of which may even be difficult to recognize by hu-
mans. Therefore, it is of great significance to develop a
fine-grained segmentation technique, which can automati-
cally detect different pavement diseases for detailed inspec-
tion and generate pixel-level segmentation outputs.

In addition to segmenting different diseases, other typ-
ical landmarks (such as markings, runway lights, etc.) as
well as commonly seen water/oil stains are also essential to
segment for better understanding the general condition of
a pavement. Some examples from the newly collected dis-
ease dataset for fine-grained pavement inspection are shown
in Figure 1. The yellow rectangles indicate the regions of
different diseases (as well as non-diseases). Note that all
images are captured with a gray-scale camera.

Specifically, Crack has long-thin shapes with different
orientation angles (horizontal, vertical and oblique). The
small break in the corner of a block is Cornerfracture. Patch
is the rectangle-like cement patch and Repair is the strip-
shaped asphalt repair. Markings that have ring/line shapes
and commonly seen water/oil stains are all classified as
Track. The small damaged area along the edge of a block
is Seambroken. Light is the ground lighting equipment that
is especially deployed at airports. Slab is the normal gap
between two cement or asphalt blocks. These classes cover
different diseases and typical objects which can reflect the
detailed pavement condition.

Images of pavement surfaces tend to contain noises due
to low contrast, varying illumination, and inconsistent tex-
tures. Several previous works on crack detection and seg-
mentation of textured images have been studied to address
this challenge by utilizing deep neural networks. For exam-
ple, Zhang et al. [37] first proposed a framework based on
Convolutional Neural Networks (CNNs) that has 10 hidden
layers on patch-based images to address the crack detec-
tion task. Dung and Anh [9] developed an encoder-decoder-
based Fully Convolutional Networks (FCNs) to distinguish
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Figure 1. The examples from the newly collected dataset for fine-grained pavement segmentation. They cover different diseases and typical
landmarks (markings, runway lights, etc) and commonly seen water/oil stains that can reflect the detailed pavement condition. The yellow
rectangles indicate the regions of different diseases (as well as non-diseases). Note that all images are captured with a gray-scale camera.

crack/non-crack pixels. Liu et al. [23] later introduced a
hierarchical segmentation network, DeepCrack, that inte-
grates FCNs with Conditional Random Fields (CRFs) and
Guided Filtering (GF) [16] in order to better exploit the
multi-scale and the multi-level features for refinement. An-
other encoder-decoder architecture built on SegNet [2] for
semantic segmentation, is also designed to capture hierar-
chical convolutional features and perform pixel-wise crack
detection [40]. With the recent development of adversarial
training, Zhang et al. [36] utilized Generative Adversarial
Networks (GANs) [13] to eliminate the influence of noises
from large background areas for crack detection.

These above methods aim to tackle the problem of
crack detection/segmentation. However, for fine-grained
pavement disease segmentation, models trained only on
cracks cannot meet the requirement of correctly detect-
ing/segmenting other pavement diseases (as well as non-
diseases). On one hand, similarities among some certain
classes make it difficult to discriminate. On the other hand,
diseases within the same class may possess quite different
appearances, such as markings and water/oil stains in Track.
Moreover, these classes have a large variety of shapes and
sizes, which poses more challenges towards fine-grained
pavement segmentation.

Recent years have seen great advances in the field of
semantic image segmentation. Earlier approaches widely
make use of FCNs that take arbitrary-sized inputs to pro-
duce pixel-wise predictions [24, 4]. Since affluent spatial
representations are crucial for this dense classification prob-
lem, based on fully-convolution-style networks, U-Net [25]
is further developed by adding skip connections in order to
exploit features from the middle layers. A multi-path refine-
ment network, RefineNet [21], is also introduced to capture
multi-level features and produce high-resolution segmenta-
tion maps. Some other methods are tasked to segment ob-

jects at multiple scales by encoding the multi-scale contex-
tual features. For instance, DeepLab v3 [6] and DeepLab
v3+ [7] are proposed by applying the atrous spatial pyramid
pooling (ASPP) module [5], which is built upon atrous con-
volution. They aim to capture the multi-scale contexts with
the filters at different atrous rates. Dense ASPP [31] further
boosts the segmentation performance by densely connect-
ing multiple atrous convolutional layers in order to achieve
a larger receptive field.

More recently, some other effective segmentation net-
works are designed by fusing different information to form
dense image representations. For example, Yu et al. [32]
proposed BiSeNet which fuses the spatial information and
the global contexts. This real-time model achieves higher
results against other non-real-time algorithms on popular
benchmarks. Takikawa et al. [27] introduced Gated-SCNN
that processes shape information in parallel to the regular
spatial stream. Their model can produce sharper predictions
around boundaries, especially on thin and small objects.

Inspired by the recent works that benefit from fusing dif-
ferent information, we propose a three-stream boundary-
aware network (TB-Net) for the task of fine-grained pave-
ment disease segmentation, which can explicitly exploit
the spatial, the contextual and the boundary information.
Specifically, it consists of three streams: 1) The spatial
stream aims to obtain high-resolution spatial information.
2) The context stream utilizes an attention mechanism that
models the global dependencies. 3) The boundary stream
learns boundary features using a global-gated convolution.
The features of these three streams are fused to produce the
final pixel-level predictions. The network is trained using
a dual-task loss to regularize both the segmentation and the
boundary outputs. We evaluate the proposed method on a
newly collected dataset, and the detailed analysis demon-
strates the effectiveness of our TB-Net.
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The contributions of this work are as follows:

* We propose a three-stream boundary-aware network
that takes full advantages of the low-level spatial, the
high-level contextual and the detailed boundary infor-
mation for fine-grained pavement segmentation.'

* To the best of our knowledge, this is the first work
attempting to generate fine-grained disease (as well
as non-disease) segmentation outputs with multiple
classes for detailed pavement inspection.

* Experimental results on a newly collected dataset,
which specifically targets this fine-grained pavement
disease segmentation task demonstrate the effective-
ness of the proposed approach.

2. Approach

In this section, we first formulate the problem of fine-
grained pavement disease segmentation, then describe the
proposed network in detail. Let the training image set be
S = {I,,G,}_,, where I, = {I{",m = 1,...,[L,|}
is the original input image, and G,, = {GS,?)7 m =
1,..., \Gn|,G,(ﬁ) € {1,...,C}} denotes the ground-truth
segmented result for C' given classes. Note that we have
C = 9 1in this task, including 8 disease/non-disease classes
plus an additional background class. The goal is to train a
pixel-wise classifier that minimizes the difference between
the output segmentation map and the ground-truth in order
to produce the fine-grained segmentation results.

ICode is available at: https://github.com/yujiaz2/tbnet.

Spatial Stream
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2.1. Network Architecture

The architecture of our TB-Net is shown in Figure 2. The
three streams first capture different types of information,
and the output features are then fused to obtain the segmen-
tation map. The additional boundary map is produced in
parallel to further refine the segmentation results.

Spatial Stream. Since encoding rich spatial informa-
tion is critical in this dense prediction task, we follow [32]
and stack three convolutional blocks for its effectiveness.
Specifically, each block contains a convolutional layer us-
ing 33 filters with a stride of 2, and the number of filters
for each layer is [64,128,256]. A batch normalization and a
ReLU activation are further applied. This shallow structure
and the small stride have the benefits that allow the model
to preserve the spatial size of the original image, as well as
retaining affluent spatial information.

Context Stream. Capturing contextual dependencies
plays an important role in semantic segmentation [34, 12,
32], thus we propose a context stream that can model a
wide range of contextual relationships over local features
in order to achieve better feature representations. Given
the input image, it incorporates the multi-scale contexts by
utilizing a context-aware attention (CAA) mechanism (de-
tailed in Section 2.2). We first make use of the ImageNet-
pretrained ResNet-101 v2 [17] to obtain the features from
the last layers of the second and the last residual blocks, re-
spectively. In this way, the middle-level and the high-level
feature extraction can be achieved. After applying a 1x1
convolutional layer, the transformed features are then fed
into two CAA modules to encode the global contextual in-
formation and generate two enhanced features.

Feature Fusion

Mul — Add —| ->- Lyce |

Context Stream

CAA  Context-aware attention ( Conv+BN+ReLLU

GGC Global-gated convolution KTCOHV#»BN#»RP,LU

Boundary Stream
Feature map

Conv

Figure 2. The details of the TB-Net architecture. The three streams are proposed to take full advantages of the low-level spatial, the
high-level contextual and the detailed boundary information. Context-aware attention modules are developed in the context stream to
model a wide range of contextual relationships. The boundary stream with the introduced global-gated convolution provides additional
regularization to further refine the segmentation results. The three learned features are then fused to produce the final segmentation results.
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Boundary Stream. Making use of boundary informa-
tion can enhance the segmentation performance, particu-
larly for thin and small objects [8, 27]. In order to refine the
fine-grained segmentation results, we propose a boundary
stream that takes the learned global contextual features as
the input and generates boundary predictions. This allows
the information to flow from the context to the boundary
stream. Specifically, we first utilize a residual block with a
short-skip connection [14, 38]. This aims to force the net-
work to pay more attention to the informative features. In-
spired by the recent success of gated convolutions that learn
dynamic feature selection for each channel and each spatial
location on images [33, 19], we then apply a global-gated
convolution module (detailed in Section 2.3) that assigns
more weights to boundary-related pixels by incorporating
the global contexts. The output boundary predictions are
obtained by further utilizing two transposed convolutional
blocks followed by a sigmoid activation.

Feature Fusion. In the feature fusion module, different
types of features are fused to produce the refined segmenta-
tion outputs. We first concatenate and transform the outputs
of the spatial and the context streams by a batch normal-
ization and a convolutional layer. The encoded features are
then fused with the boundary information. Similar to [18],
the learned feature maps are refined by using a reweighting
mechanism to generate a weight vector. After that, a matrix
multiplication operation is performed between the weight
vector and the input features, and an element-wise sum op-
eration is further applied to obtain the learned features. The
final features are resized to the original image using bilinear
interpolation to produce the segmentation map.

2.2. Context-Aware Attention

Attention mechanism [29, 12, 22] allows the input to in-
teract with each other and models the global dependencies.
Similar to [12] where the self-attention is utilized to capture
the semantic interdependencies between any two positions,
we employ context-aware attention modules in the context
stream to enrich feature representations.

Let the input feature map be F,. As illustrated in Fig-
ure 3(a), three convolutional layers are used to generate the
new features F}, F2 and F3. Then the matrix multipli-
cation is utilized on F! and F? after a reshaping operation
followed by a sigmoid activation to obtain an attention map.
Next, another matrix multiplication is performed between
F3 and the attention map. The learned context-aware fea-
ture F, can be obtained by using an element-wise sum op-
eration with a scale parameter ~y, which is formulated as:

F.=y(F}®oF! e (F))aF,, (1)

where ¢ is the nonlinear activation function, and ® and ®
denote the matrix multiplication and the element-wise sum
operation, respectively.
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(b) Global-Gated Convolution

Figure 3. The illustration of the context-aware attention (CAA)
module (a) in the context stream and the global-gated convolution
(GGC) module (b) in the boundary stream.

Here the learnable + is initialized as 0, which allows the
network to rely on the local cues before assigning more
weights to the non-local evidence [35]. In this way, the
context-aware attention modules enable the model to cap-
ture the affluent relationships by incorporating the seman-
tic interdependencies of the inputs. Note that since there
are two context-aware attention modules used in the context
stream as shown in Figure 2, the learnable scale parameters
in these two modules are defined as y' and 2 separately.

2.3. Global-Gated Convolution

Inspired by [27] where a gated mechanism is proposed to
ensure that only the boundary-relevant information is pro-
cessed, we introduce the global-gated convolution module.
This aims to highlight the relevant information and filter out
the rest to better generate the boundary representations and
further improve the segmentation performance. The archi-
tecture of the GGC module is shown in Figure 3(b).

Specifically, let the two input features be ' and F2. We
first concatenate these two features, then perform a batch
normalization to balance the different scales of the input
features. Next, two 3x3 convolutional layers using 512 fil-
ters are applied with a ReLU in between, followed by an-
other batch normalization and a sigmoid activation. Af-
ter that we multiply the results with the input feature Fcl
and perform an element-wise sum operation to produce the
boundary features Fj. In this way, the model can learn to
give the boundary regions more weights. The overall pro-
cess can be summarized as:

Fy=F!®@o(8(F!H|F?)) @ FL, )

where § denotes the normalized 1x 1 convolutional layers
and || is the concatenation operation. o, ® and @ are the
same as in Equation (1).
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2.4. Dual-Task Loss Function

The proposed TB-Net is trained using a dual-task loss
on the predicted segmentation and boundary maps. For the
segmentation prediction, a cross-entropy loss with a soft-
max activation is applied on the predicted outputs of the
feature fusion module. Due to the fact that pixels in the
minority classes tend to be less well trained, we further uti-
lize a weighting mechanism for the highly imbalanced fine-
grained disease data, which can be written as:

C |Ial
EWCE - Z Z Z ynl ,C log ) ) (3)
n=1 c=1m=1

where Ly ¢ g is the loss on the predicted segmentation map,
N denotes the total number of the training images, and |L, |
is the number of pixels in each sample. y(n) is the label in-
dicating whether the given pixel in position m of the image
n belongs to class ¢ out of the total C' classes, and ps,ﬁ)c is
the softmax probability of the corresponding predicted out-
put of the network. The weight w,, for each image can be
defined as:

C ||
W= we Y, )
c=1m=1

where w, is the class weight which can be computed over
all the training images based on the number of pixels for
each class by:

C N L] N L]

SDIDIDIVEYD DD DI NC
c=1n=1m=1 n=1m=1
We then normalize the weight by the sum of @, and obtain
the final class weight w,. In this way, the weighting mecha-
nism penalizes the loss based on the estimated labels. This
is beneficial to reduce the class imbalance that is inherent in
the data and avoid ignoring the minority classes.

For the boundary prediction, a binary cross-entropy loss
is utilized by introducing the ground-truth boundary in-
formation. Here we make use of a recent state-of-the-art
method on edge detection [15] and generate binary ground-
truth boundaries given the annotated segmentation maps.

) e {0, 1} be the pixel-wise label in-

dicating whether it is a boundary pixel, and pgn) is the corre-

sponding prediction. The binary cross-entropy loss Lpcg
on the predicted maps can be written as:

For each image, let y

N I

Lpce = Z Z V-log(p

n=1m=1

g)log(1-p5))).

(6)
The segmentation and the boundary predictions are jointly
learned using the proposed dual-task loss £ as follows:

L=MLwcE+ XLBcE, @)

where \; and ), are the balancing parameters.

S+(1-

3. Experiments

In this section, we first introduce the newly collected
dataset as well as the evaluation metrics, then provide the
details of the implementation before presenting the com-
prehensive experimental analysis.

3.1. Dataset

To evaluate the proposed method, we conduct the experi-
ments on an airport pavement disease dataset which specifi-
cally targets this fine-grained task to reflect the road surface
condition. The dataset contains 3946 images captured with
a gray-scale camera on the complex cement/asphalt pave-
ments under different illumination. The examples can be
seen in Figure 1. In total, there are 3171 images for train-
ing, and 793 images for testing, which involve eight seman-
tic classes and one background class with pixel-level labels.
We randomly select 20 images from the training set for val-
idation. The size of each image ranges from 640x415 to
1800x900, and the number of the annotated areas in the
dataset for each class is: f§Crack: 3586, §Cornerfracture:
151, tSeambroken: 557, §Patch: 312, §Repair: 893, #Slab:
3040, §Track: 3749, tLight: 58.

3.2. Evaluation Metrics

We evaluate our performance using two commonly used
metrics [24] in semantic segmentation: Class Pixel Accu-
racy (CPA) and Intersection-over-Union (IoU) which are
defined as:

Pii
cpA= i
j=1Dij
Pii ®)
C c )
Zj:l Pij + Zi:l Pji — Dii
where p;; is the number of pixels of class ¢ predicted to
belong to class j out of the total C' classes.

IoU =

3.3. Implementation Details

Our TB-Net is implemented using Tensorflow [1] on a
single NVIDIA Tesla V100 16GB GPU. We adopt RM-
SProp optimizer [28] for optimizing the models. In the
training stage, the initial learning rate is set to 0.0001, the
decay is set to 0.995 and the model gets converged af-
ter 150 epochs. The input images and the corresponding
ground-truths are resized uniformly to 512x512. In the two
context-aware attention modules, since the pre-activation
ResNet does not have batch normalization or ReLU in the
residual unit output, we further apply a batch normalization
and a ReLU on the extracted feature maps. The learned
boundary features are upsampled by bilinear interpolation
and transformed by a 1x1 convolution before being con-
catenated in the feature fusion module. We experimentally
set the balancing parameters Ay = A, = 1. The overall
training time is 35 hours and inference is 0.03 seconds.
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3.4. Quantitative Results

We compare the performance of our TB-Net against four
segmentation methods that attain the state-of-the-art results
in other semantic segmentation tasks and can be potentially
used for this fine-grained pavement segmentation task: (1)
DeepLabv3 [6], a network employs atrous convolution with
upsampled filters to capture the multi-scale contexts; (2)
DeepLabv3+ [7], an encoder-decoder-based model that ex-
tends DeepLabv3 by adding a decoder to further refine the
segmentation results; (3) DenseASPP [31], a method con-
catenates different atrous-convolved features with the multi-
ple scales; (4) BiSeNet [32], a network combines two paths
to achieve the rich spatial information and the sizeable re-
ceptive field. Note that we keep the learning objective func-
tions the same for fair comparisons.

The results are shown in Table 1 and 2, where BiSeNet+
and BiSeNet are the same, except that BiSeNet+ does not
make use of the weighting mechanism in the loss function.
It can be observed that the proposed TB-Net consistently
outperforms the existing methods in terms of both mean
CPA (mPA) and mean IoU (mloU). Specifically, for Cor-
nerfracture and Seambroken where the numbers of the an-
notated areas are small in the dataset (§{Cornerfracture: 151,
#Seambroken: 557) with each annotated area being rela-
tively small, we still achieve favorable performance over
other competing methods. This indicates the importance of
fusing the rich spatial and the contextual features with addi-
tional boundary information, which can effectively enhance
the feature discrimination.

It is worth noting that Track contains the markings of
various curves and straight lines as well as the low con-
trast water/oil stains, and our model improves the perfor-
mance by large margins (56.78% vs. 43.29% in terms of
CPA and 42.19% vs. 31.28% in terms of IoU). The overall
results show that the proposed TB-Net can bring great ben-
efits to fine-grained segmentation across different diseases
with varying patterns.

3.5. Qualitative Results

We provide visual comparisons of the results obtained
by our proposed TB-Net and one of the competing models,
BiSeNet [32]. We also show the boundaries obtained from
the proposed TB-Net and the corresponding ground-truths
that are obtained using [15]. As shown in Figure 4, we ob-
serve that our model generally achieves better pixel-wise
disease segmentation. Specifically, for Crack and Seambro-
ken where the size of each disease tends to be small, more
pixels that belong to these two classes are properly detected
by our method. For other diseases where the sizes tend to be
large, such as Patch and Repair, our model can also produce
more robust and complete predictions.

Moreover, we can see that the predicted boundaries de-
cently outline the different pavement diseases and help the
network produce sharp segmentation results. For example,
in the first row in Figure 4, the region for Seambroken is
rather small and thin which poses more challenges, and
BiSeNet fails to predict it correctly. However, our model
that incorporates the boundary features better segments this
type of disease and produces a higher-quality boundary.

Method crack fCr (;225; ;:312 ;1 patch  repair slab track light | Mean
DeepLabv3 [6] 343 1.08 1.42 47.37 34.93 45.81 14.55 22.25 21.35
DeepLabv3+ [7] 0.33 0.78 0.91 27.89 86.51 50.74 22.01 52.45 30.20
DenseASPP [31] 3.65 0.25 3.21 10.32 34.48 41.95 37.88 42.70 21.80
BiSeNet+ [32] 2.92 0.00 0.53 2.21 44.77 56.94 32.42 84.09 27.99
BiSeNet [32] 52.60 11.74 14.10 14.00 65.40 87.52 43.29 32.86 40.19
TB-Net (ours) 46.34 18.98 17.65 37.15 73.98 87.36 56.78 96.02 54.28

Table 1. Comparison of different methods for fine-grained pavement disease segmentation on our testing set in terms of Class Pixel

Accuracy (CPA). The best results are highlighted in bold.

Method crack 1Er (z)lrcrtlzi_e lj:(?l?; ;1 patch repair slab track light Mean
DeepLabv3 [6] 1.22 1.05 0.96 24.93 25.41 15.78 10.75 21.14 12.65
DeepLabv3+ [7] 0.24 0.74 0.75 25.42 40.89 29.52 18.35 49.62 | 20.69
DenseASPP [31] 1.37 0.25 2.01 9.52 27.18 28.68 26.71 40.26 17.00
BiSeNet+ [32] 1.72 0.09 0.42 2.21 38.55 39.52 27.41 65.59 | 21.93

BiSeNet [32] 7.59 10.15 7.56 13.63 42.57 42.16 31.28 31.03 23.25
TB-Net (ours) 11.43 12.28 11.34 35.77 53.30 50.74 42.19 87.54 | 38.07

Table 2. Comparison of different methods for fine-grained pavement disease segmentation on our testing set in terms of Intersection-over-

Union (IoU). The best results are highlighted in bold.
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Figure 4. Qualitative results of our proposed TB-Net and one of the competing models, BiSeNet [32]. From left to right: image, ground-
truth, predictions of BiSeNet and our TB-Net, boundary prediction of TB-Net and boundary ground-truth obtained using [15].

corner- seam-
fracture  broken
TB-Net | CPA 52.40 15.88 19.17 32.10 71.89 87.02 36.63 93.73 51.10
w/o attn | IoU 9.08 11.58 12.41 31.16 46.01 45.33 27.64 81.80 33.12
TB-Net | CPA | 46.34 18.98 17.65 37.15 73.98 87.36 56.78 96.02 54.28
(full) IoU 11.43 12.28 11.34 35.77 53.30 50.74 42.19 87.54 38.07
Table 3. Results of the ablation experiments for analyzing the effect of the context-aware attention module. We compare our TB-Net to the
model that does not make use of the context-aware attention module. The best results are highlighted in bold.

Method crack patch repair slab track light Mean




Method crack Fr Zf:lzz; tfre(?lz ;1 patch repair slab track light Mean
TB-Net | CPA | 53.94 23.98 17.28 57.97 79.83 81.78 50.27 97.94 | 57.87
w/o BS | IToU 5.43 12.53 8.42 51.08 44.82 36.28 30.34 69.01 32.24
TB-Net | CPA | 46.34 18.98 17.65 37.15 73.98 87.36 56.78 96.02 | 54.28

(full) IoU 11.43 12.28 11.34 35.77 53.30 50.74 42.19 87.54 | 38.07

Table 4. Results of the ablation experiments for analyzing the effect of incorporating the boundary information.

to the model that does not make use of the boundary information. The best results are highlighted in bold.

We compare our TB-Net

Method crack :r (a)lrc?z:e bsf(?]?; ;1 patch repair slab track light Mean
TB-Net | CPA 1.10 1.10 2.50 16.11 53.10 56.47 43.55 79.25 31.65
w/ow | IoU 0.95 1.10 1.87 15.72 45.29 36.37 36.70 75.02 | 26.63
TB-Net | CPA | 46.34 18.98 17.65 37.15 73.98 87.36 56.78 96.02 | 54.28
(full) IoU 11.43 12.28 11.34 35.77 53.30 50.74 42.19 87.54 | 38.07

Table 5. Results of the ablation experiments for analyzing the effect of the weighting mechanism in the loss function. We compare our
TB-Net to the model that does not make use of the weighting mechanism. The best results are highlighted in bold.

3.6. Ablation Studies

The effect of the context-aware attention module. To
investigate the use of the context-aware attention in our pro-
posed TB-Net, we drop the attention module in the context
stream and compare the performance to the full model. The
results are shown in Table 3. Here we use TB-Net w/o attn
to denote the model that does not make use of the context-
aware attention module. From the table, we observe that
the attention module generally helps improve the perfor-
mance, especially in Track with different patterns and sizes
of markings and stains, bringing 20.15% improvements in
terms of CPA and 14.55% in terms of IoU. This indicates
that the context-aware attention module can effectively al-
low the model to incorporate the long-range dependencies
between different pixels and further enhance feature repre-
sentations by capturing the contextual information.

The effect of incorporating the boundary informa-
tion. We further perform an ablation study to analyze the
effect of the boundary information. Table 4 illustrates the
performance when dropping the boundary stream (denoted
as TB-Net w/o BS). Here we fuse the encoded spatial and
contextual features and apply a convolutional block, that
consists of a 3x3 convolutional layer, a batch normaliza-
tion and a ReLU. The learned features are then taken as the
input to the reweighting mechanism and further predict the
segmentation results. We observe that the overall CPA and
IoU drop or remain relatively unchanged after dropping the
boundary stream for different classes except Patch. We hy-
pothesize that this is due to the fact that it is less depen-
dent on the boundaries to segment rectangle-like cement
patches. For other small diseases such as Crack and Seam-
broken which contain much detailed information, it tends to
be more beneficial from fusing the boundary stream.

The effect of the weighting mechanism in the loss
function. Since the fine-grained disease data we use is
highly imbalanced, we adopt a weighting mechanism in
the loss function to avoid the model ignoring the minority
classes. The effect of introducing the weighting mechanism
can be seen in Table 5. Here we use TB-Net w/o w to denote
the model that does not make use of the weighting mecha-
nism. We observe that the full model significantly outper-
forms the model without the weighting mechanism in terms
of both mPA and mloU. Especially in Crack where the
number of pixels in each annotated area tends to be small,
the performance improves by large margins (45.24% and
10.48% in terms of CPA and IoU) by using the weighting
mechanism. Besides, the performance of BiSeNet increases
compared to BiSeNet+ in Table 1, which also demonstrates
the effectiveness of this weighting mechanism.

4. Conclusions

In this work, we address the challenging task of fine-
grained pavement disease segmentation and present a three-
stream boundary-aware network (TB-Net), that takes full
advantages of the low-level spatial, the high-level contex-
tual and the detailed boundary information. The network
is trained using a dual-task loss to regularize both the seg-
mentation and the boundary predictions. We evaluate the
proposed approach on a newly collected airport pavement
disease dataset, and the comprehensive experimental results
demonstrate the effectiveness of our TB-Net.
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