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Where to Look?: Mining Complementary Image
Regions for Weakly Supervised Object Localization

A. Experimental Studies on CUB-200-2011

In this section, we provide details of our experimental study on the CUB-200-2011 dataset.
We show that by introducing complementary images, even a simple mechanism of addition
(late addition fusion) of the outputs from classifiers X and X̃ gives promising results,
when compared to HaS [3]. However, as evident from table I, our proposed method
has significant gains in both the localization metrics. Our method effectively uses the
information lost in regional dropout in one of the input images to both classify and
localize objects much efficiently, using both the inputs, X and X̃.

Method Top-1 Loc (%) GT-Loc (%)

**Hide and Seek [3] 57.86 68.27
Late Addition Fusion 60.65 72.28
Ours 64.70 77.35

Table I: Comparison of the proposed approach with a simple late addition-based fusion
of the outputs of two classifiers X and X̃. We use ResNet50 as the backbone architecture
for the above experiment. ** indicates values computed on our own for the ResNet50
backbone to ensure fair comparison.

We also demonstrate the effect of different patch sizes {16, 32, 44, 56} and a combina-
tion of these (Mixed approach as stated in table II) on the classification accuracy of our
model. We observe that classification accuracy is highest when the patch size is 56, i.e.,
when the maximum part of the input image is visible during training. However, this is
not the case with localization accuracies. Both Top-1 Loc and GT-Loc perform well when
we randomly sample the patch sizes from {16, 32, 44, 56} for each input image in every
epoch during training, as also discussed subsection 4.3 of our paper.

Patch Size Top-1 Clas (%) Top-1 Loc (%) GT-Loc (%)

16 68.21 55.98 67.52
32 69.23 57.68 68.57
44 70.59 56.20 69.90
56 72.59 57.56 70.50

Mixed 71.65 58.12 71.28

Table II: Effect of different patch sizes on classification and localization accuracies. The
Mixed approach, similar to that in [3], performs best on the localization metrics. For the
above experiment, we have used VGG16 as the backbone CNN architecture.
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We also demonstrate the effect of the individual modules in our proposed architec-
ture on classification and localization accuracies, with CUB-200-2011 dataset in table III
(ablation studies). CAAM refers to our proposed Channel-wise Attention Module, SSAM
refers to Spatial Self-Attention Module and Lat fuse refers to our Attention-based Fusion
Loss function. These modules are explained in detail in section 3 of our main manuscript.

CAAM SSAM Lat fuse Top-1 Loc (%) GT-Loc (%)

3 3 7 63.05 75.66
3 7 3 62.11 75.06
7 3 3 59.54 73.63
3 3 3 64.70 77.28

Table III: Ablation Studies. Effect of each module in the architecture on localization
accuracy. For the above experiment, we have used ResNet-50 as the backbone CNN
architecture. We observed that the proposed CAAM is the most significant module in
terms of accurate localization of objects, followed by SSAM and our Lat fuse loss function.

We also evaluate our method on the recently proposed MaxBoxAccv2 metric [1]. Table
IV gives a detailed study of the MaxBoxAccv2 metric on CUB200-2011 and ILSVRC 2016
datasets with ResNet50 as the backbone CNN architecture.

Method CUB-200-2011 ILSVRC 2016

CAM [7] 73.2 64.2
HaS-32 [3] 78.1 63.2
ACoL [5] 72.7 61.7
SPG [6] 71.4 63.5
ADL [2] 73.5 64.2
CutMix [4] 67.8 63.9
Ours 78.5 64.8

Table IV: Evaluating our method on MaxBoxAccv2. We evaluate our model on the
recently proposed MaxBoxAccv2 metric [1] on ResNet50 as the backbone CNN.

B. Qualitative Illustration of Performance

Using visual illustrations, we now show the effect of our proposed Attention-based Fusion
Loss, as explained in subsection 3.6 of our paper. From figure I, we observe how our
model looks at complementary body parts of the birds (e.g., head, torso, wings, tail) to
analyze and provide better performance. After applying our proposed Attention-based
Fusion Loss on the localization maps of two classifiers X and X̃, our model is able to
localize the integral objects. E.g., in row (5) of figure I, the bird is Scissor-Tailed-
Flycatcher. We can clearly observe that one of the classifiers focuses more on the face
of the bird, which is its most-discriminating part, whereas the other classifier highlights
its scissor-tail. Finally, in the last column of the same row, we can see how our model
captures both the face and the scissor-tail of the bird, leading to its effective localization.

For figures II and III, column (a) refers to the input image, column (b) refers to the
attention map generated by our model, column (c) refers to the bounding box predicted
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by our model (here, the bounding boxes in Green are the ones predicted by our model
whereas the bounding boxes in Red refer to that of the ground truth) and column (d)
denotes the bounding box overlayed on the attention map.

Figure II shows our qualitative results on ILSVRC 2016 dataset. Observe that in
cases of King-snake and Joystick (rows (2) and (3) respectively), our model skillfully
looks only at the object of interest present in the hand while localizing it correctly. Also,
our model is good at localizing places (e.g., in case of row (4), it localizes the Fountain
class). Also, in row (6), our model does an excellent job in localizing School-bus, which
is present in the background and marginally occluded by the person standing in front of
it.

Figure III illustrates a few of the qualitative results on the CUB-200-2011 dataset.
We observe that our method also focuses on less-discriminative body parts of birds like
the wings in case of rows (1), (2), and (6), and tail of the bird in case of row (4), along
with their most-discriminative part like the head of the bird. Overall, our model generally
learns to efficiently localize the objects present in an image by looking at complementary
image regions. Also, notice that the attention maps generated by our proposed model are
quite precise.
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Figure I: Visualizing the effect of the proposed Attention-based Fusion Loss.
During training, we visualize the effect of our proposed loss function. The left column
denotes the input image, the second and third columns denote the localization maps of
our two classifiers and the right column denotes the localization map after fusion of the
outputs of classifier X and classifier X̃.
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Figure II: Qualitative Results on the ILSVRC 2016 dataset. The right-most column
gives the results (bounding boxes in green) of our proposed model, which are close to that
of the ground-truth (in red). Attention maps resemble the entire object being targetted.
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Figure III: Qualitative Results on the CUB-200-2011 dataset. The right-most
column gives the results (bounding boxes in green) of our proposed model, which are
close to that of the ground-truth (in red). Attention maps resemble the entire object
being targetted.
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