
Supplementary Material for
MeliusNet: An Improved Network Architecture for Binary Neural Networks

Joseph Bethge1, Christian Bartz1, Haojin Yang1,2, Ying Chen2, Christoph Meinel1
1Hasso Plattner Institute, University of Potsdam, Germany {firstname.surname}@hpi.de

2AI Labs, Alibaba Group {haojin.yhj,chenying.ailab}@alibaba-inc.com

Supplementary material
Our supplementary material contains the following infor-
mation:

• Section 1 briefly explains the structure of the experi-
ment data also contained within this archive

• Section 2 shows a comparison between MeliusNet
and the naive approach of simply alternating Residual
Blocks and Dense Blocks

• Section 3 contains data that shows some of the ob-
served differences between the different optimizers
(SGD, Adam, RAdam)

1. Detailed Experiment Data
We include the experiment logs (experiment.log),
accuracy curves (accuracy.png) and detailed plots
(network.pdf) of our model architectures in one
folder per experiment result within the parent folder
“main experiment data”. The accuracy curves also include
the model size and number of operations of the correspond-
ing model. An example of the accuracy curve of Melius-
Net22 can be seen in Figure 1.

2. Comparing the Naive Approach and Melius-
Net

The direct approach to combining residual and dense short-
cut connections could lead to a result as shown in Fig-
ure 2a. In this case the combination of a Dense Block and a
Residual Block are repeated throughout the network. How-
ever, the residual shortcut connection requires that feature
map sizes between the input and output of the convolution
match. This means the number of channel contributes to the
number of of operations quadratically. This makes achiev-
ing a reasonable number of operations difficult with this ap-
proach, since increasing the channel number (as is done in

every Dense Block) leads to a quadratic increase of oper-
ations. Therefore, increasing the capacity of feature maps
with this approach is not practical, especially for larger bi-
nary networks.

Figure 2b shows the MeliusNet for comparison. The de-
sign of our Improvement Block keeps the number of op-
erations lower, since increasing the channel number with
Dense Blocks only linearly increases the number of opera-
tions required for later blocks.

We also empirically evaluated both models. These ex-
periments were trained for only 40 epochs and a different
learning rate schedule (base learning rate is 0.001, decaying
by 0.1 at epochs 35 and 37). However, since both models

(a) The accuracy curve.

(b) The “cosine” learning rate scheduling.

Figure 1: A visualization of the training process of MeliusNet22.



c = 320

c = 256

c = 320

in: 256

out: 64

3⨉3

R
es

id
ua

l B
lo

ck
D

en
se

 B
lo

ck

+

in: 320

out: 320

3⨉3 h·w·3·3·c·c
operations

h·w·3·3·c·64
operations

(a) Naive approach

+

c = 320

c = 256

c = 320

in: 256

out: 64

3⨉3

in: 320

out: 64

3⨉3

Im
pr

ov
em

en
t B

lo
ck

D
en

se
 B

lo
ck

c = 256 64
h·w·3·3·c·64
operations

h·w·3·3·c·64
operations

(b) MeliusNet

Figure 2: The basic building blocks of MeliusNet and the naive ap-
proach of repeating alternating Dense Blocks and Residual Blocks
(c denotes the number of channels in the feature map). (a) With
the naive approach, the number of operations in the Residual Block
increases by the factor of c instead of the constant number of out-
put channels (64) compared to the Dense Block. This means the
Residual Block needs between 2 and 10 times the number of op-
erations of the Dense Block, depending on the number of layers
and depth of the layer in the network. Furthermore the number
of weights and operations increases quadratically, depending on c,
making anything except very shallow networks unfeasible. (b) Our
MeliusNet for comparison. The number of operations between
both blocks is similar (only the number of input channels changes
slightly between the blocks).

were trained with the same hyperparameters this should not
affect the comparison between both. Since we struggled to
construct a model which could match in both model size

63.5
60.2

82.3

57.2

10%

20%

30%

40%

50%

60%

70%

80%

0 10 20 30 40

Epoch

Im
ag

eN
et

 A
cc

ur
ac

y

MeliusNet Naive Approach

Training Validation Validation (Top−5)

Figure 3: A comparison between MeliusNet and the naive ap-
proach of simply alternating a Residual Block and a Dense Block
(see Figure 2a). Both models need about 258 million operations
(factoring in the speedup of binary operations). The 3% accuracy
drop of the naive approach is too large and the high number of
operations needed for larger models make the naive architecture
unfeasible for BNNs.

and number of operations, we only made the number of op-
erations equal. In the comparison we can see that the naive
approach is much worse, with a 3% different in Top 1 ac-
curacy on ImageNet (see Figure 3). Even with the slightly
smaller model (3.3 MB instead of 4 MB) this drop in ac-
curacy is too much compared to other binary models, e.g.
Bi-RealNet or BinaryDenseNet. Therefore, we concluded
that this approach is not useful for BNNs and have not pur-
sued it further. The details of these experiments are in the
folder “naive vs MeliusNet”.

3. Optimizer Comparison
As written in the paper, we found, that both Adam and
RAdam optimize better than SGD. We tried different learn-
ing rates and learning rate schedules, however, the accuracy
on ImageNet when training with SGD still was about 1%
lower than Adam (with warmup). Therefore, we counted
the number of sign “flips” for each individual weight be-
tween batches (accumulated per epoch) for each optimizer
during the training of ResNetE18 on ImageNet (see Fig-
ure 4). If a weight was updated from −1 to +1 when up-
dating the weights after processing one batch its weight flip
count would increase by one. This can happen several times
per epoch and intuitively reflects the “stability” of the train-
ing process regarding the binary weights.

First of all, the data showed, that surprisingly, after about
90 epochs, 95% of all binary weights are stable during a
single given epoch. Note that this does not mean that 95%
of weights are stable for the whole time after the 90th epoch,
since the 95% of stable weights are not necessarily identical
between the different epochs.



(a) Data from the first binary convolution of the first network stage

(b) Data from the last binary convolution of the last network stage

Figure 4: We show the n-th percentile of the number of weight
“flips” for each optimizer for the binary weights of two different
convolution layers over the whole training process of 120 epochs
for a ResNetE. The first 5 epochs are warm-up epochs for Adam
and SGD, where the learning rate is increased linearly to the base
learning rate. We can see, for example, that after the 100th epoch
during a single given epoch 95% of weights are stable in these
layers. Furthermore, for Adam and RAdam the stability increases
during the training. This is not the case for SGD in the earlier lay-
ers of the network (e.g., in (a)), where the number of flips increases
starting around epoch 60.

During the training with Adam and RAdam, the aver-
age stability increases during the training, while for SGD
the stability decreases after about 50 epochs. However, this
is only true for the earlier layers in the network (see Fig-
ure 4a), but does not apply to later layers (see Figure 4b).
Although this is an indication for a more unstable training
process with SGD it does not yet conclusively explain the
performance difference to RAdam and Adam.


