Supplementary Material to
Do We Really Need Gold Samples for Sample
Weighting under Label Noise?

7. Convergence of Robust-Meta-Noisy-Weight-
Network

We will detail the proof of convergence in Theorem 2
for our proposed method. Recall when we have clean meta
samples, the meta loss is computed as
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whereas for corrupted meta samples, the meta loss is com-
puted as,
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where w* is the optimal classifier network, and © is the
parameter of the weighting network. The classifier network
is trained on the following objective,
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We use the following lemma from [54] for proving con-
vergence results.

Lemma 3. Suppose the meta loss function is Lipschitz
smooth with constant L, and W(-) is differential with a
d-bounded gradient and twice differential with its Hessian
bounded by B, and the loss function £y have p-bounded
gradients with respect to tralmng/meta data. Then the gradi-
ent of © with respect to meta loss is Lipschitz continuous.

Proof. Detailed proof can be found in [54]. O

In Theorem 1, we showed that the expectation of the
meta-gradient remains same for corrupted meta samples
under uniform noise model. Next, we bound the variance of
meta-gradient under uniformly corrupted meta samples.

Lemma 4. Suppose the meta loss function ("
(4-moisy-meta) - satisfying symmetric condition in Eq. 6, have
p-bounded gradients with respect to meta data. Let the
variance of drawing a minibatch (of m samples) randomly
is 0. Then the variance of the meta-gradients under uni-
formly corrupted meta samples (with rate 1) is bounded by
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Proof. Under clean meta samples, we have,
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where the mini-batch of size m, (; is drawn uniformly from
the entire clean meta data set and (W (©?)) is the unbiased
meta-gradient. We also have E[||£!]]?] = o2 for clean meta
dataset.

Under corrupted meta dataset, we have,
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since, we have shown in Theorem 1, meta-gradients of the
corrupted meta dataset is upto a constant of the unbiased ones
when the meta loss function satisfies symmetric condition.
We note that for noisy meta dataset, the meta-gradient is,
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We compute variance for a single meta sample and then use
the variance of sum of independent random variable rule
to compute the final variance Note, for a single sample,

E[||VLme(wh(01)) |<, (W(0)[?] = mo?. Now we
can compute the variance of corrupted meta-gradient when
mini batch size is 1.
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For a minibatch of size of m, the variance decreases as,
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With Lemma 3 and 4, we can now prove Theorem 2. We
will prove only for corrupted meta datasets. Proving conver-
gence of clean meta dataset is easy and can be obtained by
simply putting 7 = 0 in the noisy result.

Theorem 5. Suppose the meta loss function { and the classi-
fier network loss £25™" is Lipschitz smooth with constant
L, and have p-bounded gradients. The weighting func-
tion W(-) has bounded gradient and twice differential with
bounded Hessian. Let the classifier network learning rate
oy satisfies o = min{l, %}, for some k > 0,k < T.
The learning rate of the weighting network satisfies 3, =
—ﬁ}for some b > 0, such that # > L where

&2 is the variance of drawing a minibatch corrupted with
noise. Then Robust-Meta-Noisy-Weight- Net can achieve
]E[Hv;cm)isy-mem (wt(et))”%] S €in O(W) steps when
meta loss function ¢ satisfies symmetric condition in Eq. 6.
In particular,
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Proof. The update of © in each iteration is:
O =0 — g VLW (OY)|,, -
We can rewrite the update equation as:
O = 0" = Bi[(1 — ) VL™ (W' (0") + £,
where &0 = VLwmeR(gt(QF)) ‘Ct , (1 —
n) VL™ (wt(O)). We have, E[¢!] = 0, as we have shown
in Theorem 1. We have,
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Since meta loss function is Lipschitz smooth, we have

Lroisymets (G 1+ (@tHLy) _ poisymeta (gt (gt 1Y)y
(VLT (R O), Wi () — wi(e'))
oW (O W (e )3
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Since meta loss function is Lipschitz continuous from
Lemma 3, we get the following,
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Using the above inequality, we bound Eq.(12) as,
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We can simplifiy as,
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We can simplify as,
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Taking expectations with respect to ¢V on both sides of Eq.



14, we get,
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since Egn (VLYY MeR(QF) ¢F) = 0 and E[||¢H]3] < 62
(using Lemma 4,) where 62 is the variance with respect to
£*. Finally, we can obtain the the bound as,
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The third inequality holds for S, (28, — Lf?) >
Zle Bt. Therefore, Robust-Meta-Noisy-Weight-
Network can achieve ming<; <7 E[[|VLS ™ (0) 3] <
O(WT) in T steps. O
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Figure 3. Performance comparison for different classifier architec-
ture (WRN-28-10 and ResNet32) for CIFAR flip2 noise [54]

8. Additional Results

Indifference to network architecture on flip2 noise
model In Table 1, we experimented with ResNet-32 ar-
chitecture for flip2 noise model following [54]. For parity
with uniform noise, we also experiment with WRN-28-10
architecture for flip2 noise. Figure 3 shows performances
of MW-Net*, MNW-Net, and RMNW-Net on these two ar-
chitectures for flip2 noise model. We observe similar trends
on both architectures for the flip2 noise model. On CIFAR-
10/100, MNW-Net/RMNW-Net performs marginally better
than the other on both architectures.



