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7. Convergence of Robust-Meta-Noisy-Weight-
Network

We will detail the proof of convergence in Theorem 2
for our proposed method. Recall when we have clean meta
samples, the meta loss is computed as

Lmeta(w∗(Θ)) =
1

M

M∑
j=1

`·,meta(w∗(Θ)), (7)

whereas for corrupted meta samples, the meta loss is com-
puted as,

Lnoisy-meta(w∗(Θ)) =
1

M

M∑
j=1

`·,noisy-meta(w∗(Θ)), (8)

where w∗ is the optimal classifier network, and Θ is the
parameter of the weighting network. The classifier network
is trained on the following objective,

Ltrain(w; Θ) =
1

N

N∑
i=1

W(`·,train
CE (w); Θ)`·,trainCE (w). (9)

We use the following lemma from [54] for proving con-
vergence results.

Lemma 3. Suppose the meta loss function is Lipschitz
smooth with constant L, and W(·) is differential with a
δ-bounded gradient and twice differential with its Hessian
bounded by B, and the loss function `·,train

CE have ρ-bounded
gradients with respect to training/meta data. Then the gradi-
ent of Θ with respect to meta loss is Lipschitz continuous.

Proof. Detailed proof can be found in [54].

In Theorem 1, we showed that the expectation of the
meta-gradient remains same for corrupted meta samples
under uniform noise model. Next, we bound the variance of
meta-gradient under uniformly corrupted meta samples.

Lemma 4. Suppose the meta loss function `·,meta

(`·,noisy-meta), satisfying symmetric condition in Eq. 6, have
ρ-bounded gradients with respect to meta data. Let the
variance of drawing a minibatch (of m samples) randomly
is σ2. Then the variance of the meta-gradients under uni-
formly corrupted meta samples (with rate η) is bounded by
σ̂2 = σ2 + 2ηρ2

m .

Proof. Under clean meta samples, we have,

ξt = ∇Lmeta(ŵt(Θt))
∣∣
ζt
−∇Lmeta(ŵt(Θt))

= ∇Lmeta(ŵt(Θt))
∣∣
ζt
−K(ŵ(Θt))

where the mini-batch of size m, ζt is drawn uniformly from
the entire clean meta data set and K(ŵ(Θt)) is the unbiased
meta-gradient. We also have E[||ξt||2] = σ2 for clean meta
dataset.

Under corrupted meta dataset, we have,

ξt = ∇Lnoisy-meta(ŵt(Θt))
∣∣
ζt,ηt
− (1− η)∇Lmeta(ŵt(Θt))

= ∇Lnoisy-meta(ŵt(Θt))
∣∣
ζt,ηt
− (1− η)K(ŵ(Θt))

since, we have shown in Theorem 1, meta-gradients of the
corrupted meta dataset is upto a constant of the unbiased ones
when the meta loss function satisfies symmetric condition.
We note that for noisy meta dataset, the meta-gradient is,

1

m

m∑
j=1

∂`j,noisy-meta(ŵ(Θt))

∂ŵ(Θt)

∣∣∣
ŵt

We compute variance for a single meta sample and then use
the variance of sum of independent random variable rule
to compute the final variance. Note, for a single sample,
E[||∇Lmeta(ŵt(Θt))

∣∣
ζt
− K(ŵ(Θt))||2] = mσ2. Now we

can compute the variance of corrupted meta-gradient when
mini batch size is 1.

Eζt,ηt [||ξt||2] = Eζt,ηt [||∇Lnoisy-meta(ŵt(Θt))
∣∣
ζt,ηt

− (1− η)K(ŵ(Θt))||2]

= Eζt,ηt
[
Lnoisy-meta(ŵt(Θt))

∣∣ᵀ
ζt,ηt
Lnoisy-meta(ŵt(Θt))

∣∣
ζt,ηt

+ (1− η)2K(ŵ(Θt))ᵀK(ŵ(Θt))

− 2(1− η)K(ŵ(Θt))ᵀLnoisy-meta(ŵt(Θt))
∣∣
ζt,ηt

]
= Eζt

[
(1− η)||∂`

·,meta(ŵ)

∂ŵ
||2 + (1− η)2||K(ŵ(Θt))||2

− 2(1− η)2K(ŵ(Θt))ᵀ
∂`·,meta(ŵ)

∂ŵ
+

+
2η

K

∑
c

||∂`
meta(c, f(x, ŵ))

∂ŵ
||2

− 2
η(1− η)

K
K(ŵ(Θt))ᵀ

∑
c

∂`meta(c, f(x, ŵ))

∂ŵ

]
≤ Eζt

[
||∇Lmeta(ŵt(Θt))

∣∣
ζt
−K(ŵ(Θt))||2

]
+

2η

K

∑
c

||∂`
meta(c, f(x, ŵ))

∂ŵ
||2

= mσ2 + 2ηρ2

For a minibatch of size of m, the variance decreases as,

Eζt,ηt [||ξt||2] ≤ m

m2
(mσ2 + ηρ2) = σ2 +

2ηρ2

m
(10)



With Lemma 3 and 4, we can now prove Theorem 2. We
will prove only for corrupted meta datasets. Proving conver-
gence of clean meta dataset is easy and can be obtained by
simply putting η = 0 in the noisy result.

Theorem 5. Suppose the meta loss function ` and the classi-
fier network loss `·,train

CE is Lipschitz smooth with constant
L, and have ρ-bounded gradients. The weighting func-
tionW(·) has bounded gradient and twice differential with
bounded Hessian. Let the classifier network learning rate
αt satisfies αt = min{1, kT }, for some k > 0, k < T .
The learning rate of the weighting network satisfies βt =

min{ 1
L ,

b
σ̂
√
T
} for some b > 0, such that σ̂

√
T
b ≥ L where

σ̂2 is the variance of drawing a minibatch corrupted with
noise. Then Robust-Meta-Noisy-Weight-Net can achieve
E[‖∇Lnoisy-meta(ŵt(Θt))‖22] ≤ ε inO( σ̂2

(1−η)2ε2 ) steps when
meta loss function ` satisfies symmetric condition in Eq. 6.
In particular,

min
0≤t≤T

E[‖∇Lnoisy-meta(ŵt(Θt))‖22] ≤ O(
σ̂

(1− η)
√
T

).

(11)

Proof. The update of Θ in each iteration is:

Θt+1 = Θt − βt∇Lnoisy-meta(ŵt(Θt))
∣∣
ζt,ηt

.

We can rewrite the update equation as:

Θt+1 = Θt − βt[(1− η)∇Lmeta(ŵt(Θt)) + ξt],

where ξt = ∇Lnoisy-meta(ŵt(Θt))
∣∣
ζt,ηt

− (1 −
η)∇Lmeta(ŵt(Θt)). We have, E[ξt] = 0, as we have shown
in Theorem 1. We have,

Lnoisy-meta(ŵt+1(Θt+1))− Lnoisy-meta(ŵt(Θt))

=
{
Lnoisy-meta(ŵt+1(Θt+1))− Lnoisy-meta(ŵt(Θt+1))

}
+
{
Lnoisy-meta(ŵt(Θt+1))− Lnoisy-meta(ŵt(Θt))

}
.

(12)

Since meta loss function is Lipschitz smooth, we have

Lnoisy-meta(ŵt+1(Θt+1))− Lnoisy-meta(ŵt(Θt+1))

≤ 〈∇Lnoisy-meta(ŵt(Θt+1)), ŵt+1(Θt+1)− ŵt(Θt+1)〉

+
L

2
‖ŵt+1(Θt+1)− ŵt(Θt+1)‖22

Further, using the SGD update equation,
we can write, ŵt+1(Θt+1) − ŵt(Θt+1) =

−αt 1
n

∑n
i=1W(`i,train

CE (wt+1); Θt+1)∇w`
i,train
CE (w)

∣∣∣
wt+1

.

Thus, using the fact
∥∥∥∂`i,train

CE (w)

∂w

∣∣∣
wt

∥∥∥ ≤ ρ,∥∥∥∥∂`j,noisy-meta(ŵ)
∂ŵ

∣∣∣T
ŵt

∥∥∥∥≤ρ, we can bound,

‖Lnoisy-meta(ŵt+1(Θt+1))− Lnoisy-meta(ŵt(Θt+1))‖

≤ αtρ2 +
Lα2

t

2
ρ2 = αtρ

2(1 +
αtL

2
)

Since meta loss function is Lipschitz continuous from
Lemma 3, we get the following,

Lnoisy-meta(ŵt(Θt+1))− Lnoisy-meta(ŵt(Θt))

≤ 〈∇Lnoisy-meta(ŵt(Θt)),Θt+1 −Θt〉+
L

2
‖Θt+1 −Θt‖22

= 〈∇Lmeta(ŵt(Θt)),−βt[(1− η)∇Lnoisy-meta(ŵt(Θt))

+ ξt]〉+
Lβ2

t

2
‖(1− η)∇Lnoisy-meta(ŵt(Θt)) + ξt‖22

= −((1− η)βt − (1− η)2
Lβ2

t

2
)‖∇Lnoisy-meta(ŵt(Θt))‖22+

Lβ2
t

2
‖ξt‖22 − (βt − L(1− η)β2

t )〈∇Lnoisy-meta(ŵt(Θt)), ξt〉.

Using the above inequality, we bound Eq.(12) as,

Lnoisy-meta(ŵt+1(Θt+1))− Lnoisy-meta(ŵt(Θt))

≤ αtρ2(1 +
αtL

2
)− ((1− η)βt − (1− η)2

Lβ2
t

2
)

× ‖∇Lnoisy-meta(ŵt(Θt))‖22 +
Lβ2

t

2
‖ξt‖22

− (βt − L(1− η)β2
t )〈∇Lnoisy-meta(ŵt(Θt)), ξt〉.

(13)

We can simplifiy as,

((1− η)βt − (1− η)2
Lβ2

t

2
)‖∇Lnoisy-meta(ŵt(Θt))‖22

≤ αtρ2(1 +
αtL

2
) + Lnoisy-meta(ŵt(Θt))

− Lnoisy-meta(ŵt+1(Θt+1)) +
Lβ2

t

2
‖ξt‖22

− (βt − L(1− η)β2
t )〈∇Lnoisy-meta(ŵt(Θt)), ξt〉.

We can simplify as,

∑T

t=1
((1− η)βt − (1− η)2

Lβ2
t

2
)‖∇Lnoisy-meta(ŵt(Θt))‖22

≤ Lnoisy-meta(ŵ1)(Θ1)− Lnoisy-meta(ŵt+1(Θt+1))

+

T∑
t=1

αtρ
2(1 +

αtL

2
)−

T∑
t=1

(βt−L(1− η)β2
t )

〈∇Lnoisy-meta(ŵt(Θt)),ξt〉+L

2

T∑
t=1

β2
t ‖ξt‖22

≤ Lnoisy-meta(ŵ1(Θ1))+

T∑
t=1

αtρ
2(1 +

αtL

2
)

−
T∑
t=1

(βt−L(1− η)β2
t )〈∇Lnoisy-meta(ŵt(Θt)),ξt〉

+
L

2

T∑
t=1

β2
t ‖ξt‖22,

(14)

Taking expectations with respect to ξN on both sides of Eq.



14, we get,

T∑
t=1

((1− η)βt − (1− η)2
Lβ2

t

2
)EξN ‖∇L

noisy-meta(ŵt(Θt))‖22

≤ Lnoisy-meta(ŵ1(Θ1))+

T∑
t=1

αtρ
2(1 +

αtL

2
) +

Lσ̂2

2

T∑
t=1

β2
t ,

since EξN 〈∇Lnoisy-meta(Θt), ξt〉 = 0 and E[‖ξt‖22] ≤ σ̂2

(using Lemma 4,) where σ̂2 is the variance with respect to
ξt. Finally, we can obtain the the bound as,

min
t

E[‖∇Lnoisy-meta(ŵt(Θt))‖22]

≤
∑T
t=1((1− η)βt − (1− η)2

Lβ2
t

2
)EξN ‖∇Lη(ŵt(Θt))‖22∑T

t=1((1− η)βt − (1− η)2
Lβ2

t
2

)

≤ 1∑T
t=1(2(1− η)βt − (1− η)2Lβ2

t )

[
2Lnoisy-meta(ŵ1(Θ1))

+

T∑
t=1

αtρ
2(2 + αtL) + Lσ̂2

T∑
t=1

β2
t

]
≤ 1∑T

t=1 2(1− η)βt

[
2Lnoisy-meta(ŵ1(Θ1))+

T∑
t=1

αtρ
2(2 + αtL)

+ Lσ̂2
T∑
t=1

β2
t

]
≤ 1

2T (1− η)βt

[
2Lnoisy-meta(ŵ1(Θ1))+ α1ρ

2T (2 + L)

+ Lσ̂2
T∑
t=1

β2
t

]
=
Lnoisy-meta(ŵ1(Θ1))

(1− η)T

1

βt
+

2α1ρ
2(2 + L)

2(1− η)βt
+

Lσ̂2

2(1− η)T

T∑
t=1

βt

≤ L
noisy-meta(ŵ1(Θ1))

(1− η)T

1

βt
+

2α1ρ
2(2 + L)

2(1− η)βt
+ Lσ̂2βt

1

2(1− η)

=
Lnoisy-meta(ŵ1(Θ1))

(1− η)T
max{L, σ̂

√
T

b
}

+ min{1, k
T
}max{L, σ̂

√
T

b
}ρ

2(2 + L)

2(1− η)

+ Lσ̂2 min{ 1

L
,

b

σ̂
√
T
} 1

2(1− η)

≤ σ̂Lnoisy-meta(ŵ1(Θ1)

(1− η)b
√
T

+
kσ̂ρ2(2 + L)

b(1− η)
√
T

+
Lσ̂b

(1− η)
√
T

= O(
σ̂

(1− η)
√
T

).

(15)

The third inequality holds for
∑T
t=1(2βt − Lβ2

t ) ≥∑T
t=1 βt. Therefore, Robust-Meta-Noisy-Weight-

Network can achieve min0≤t≤T E[‖∇Lnoisy-meta(Θt)‖22] ≤
O( σ̂

(1−η)
√
T

) in T steps.
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Figure 3. Performance comparison for different classifier architec-
ture (WRN-28-10 and ResNet32) for CIFAR flip2 noise [54]

8. Additional Results
Indifference to network architecture on flip2 noise

model In Table 1, we experimented with ResNet-32 ar-
chitecture for flip2 noise model following [54]. For parity
with uniform noise, we also experiment with WRN-28-10
architecture for flip2 noise. Figure 3 shows performances
of MW-Net∗, MNW-Net, and RMNW-Net on these two ar-
chitectures for flip2 noise model. We observe similar trends
on both architectures for the flip2 noise model. On CIFAR-
10/100, MNW-Net/RMNW-Net performs marginally better
than the other on both architectures.


