

Supplemental Material

In the supplemental material we also present a plot that combines on-time and total-detection rates. We also present plots obtained when we optimize to total-accuracy rather than on-time performance. Finally, we present pseudo-code for all algorithms considered in the paper.

Bivariate KL fusion

If

$$p(x) \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}\right), \quad (21)$$

$$q(x) \sim \mathcal{N}\left(\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}, \begin{bmatrix} s_1^2 & rs_1s_2 \\ rs_1s_2 & s_2^2 \end{bmatrix}\right) \quad (22)$$

Then, (9) can be written as

$$\begin{aligned} \text{KL}(P\|Q) &= \log\left(\frac{s_1s_2\sqrt{1-r^2}}{\sigma_1\sigma_2\sqrt{1-\rho^2}}\right) + \frac{1}{2(1-r^2)}\left(\frac{(\mu_1-m_1)^2 + (\sigma_1-s_1)^2}{s_1^2} + \frac{(\mu_2-m_2)^2 + (\sigma_2-s_2)^2}{s_2^2}\right. \\ &\quad \left.- 2r\frac{(\mu_1-m_1)(\mu_2-m_2) + \rho\sigma_1\sigma_2 - rs_1s_2}{s_1s_2}\right) \quad (23) \end{aligned}$$

Plots

To facilitate overall comparison We can consider a combined reliability score defined as `on_time_rate * total_detection_rate`. Fig. 5 demonstrate the score of proposed algorithms when each point has a different threshold to compare the best performance of each algorithm in different percentage of unknown. The score is computed as the maximum multiplication of on-times and total detected ratio over all possible thresholds. We can see that the algorithm performs well for distributions of either EVM data or SoftMax value for decisions.

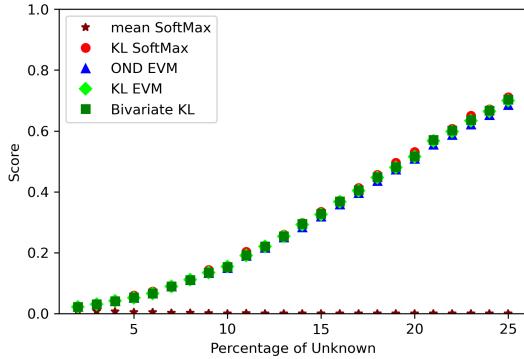
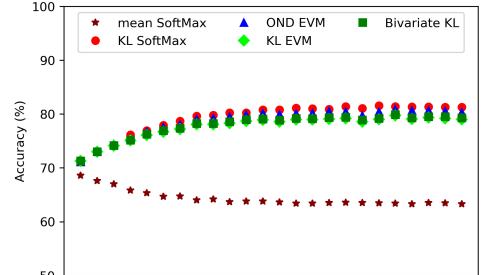
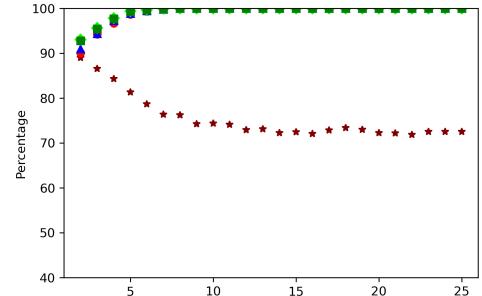


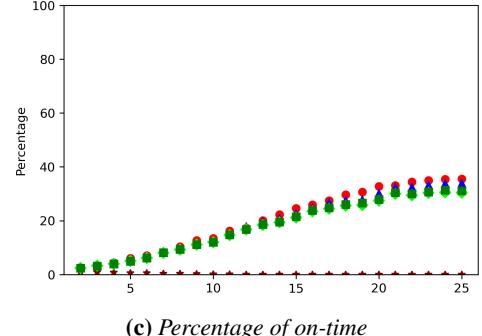
Fig 5: Reliability Score of proposed algorithms when the best threshold for each point is selected.



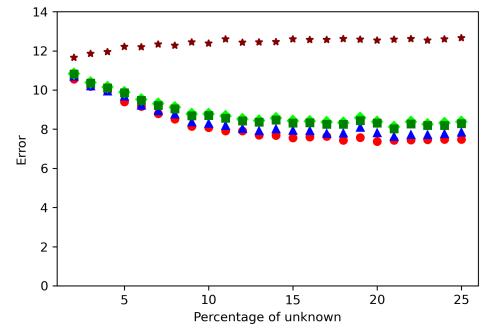
(a) Total Accuracy



(b) Total Detection Percentage

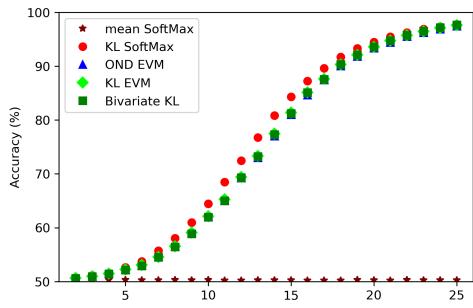


(c) Percentage of on-time

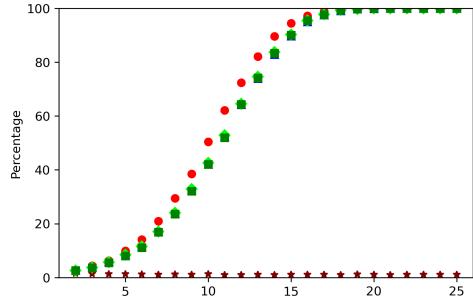


(d) Mean Absolute Error

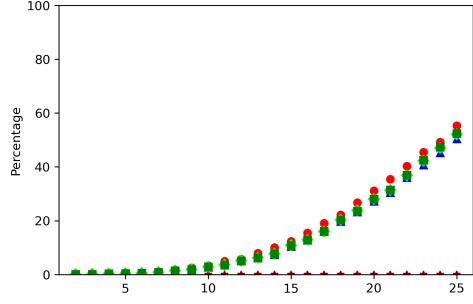
Fig 6: Performance of proposed policies when the threshold is selected to maximize the total accuracy validation test with 2% unknown. Compare with Fig 2 in main paper.



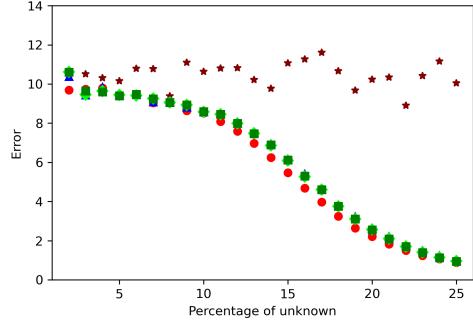
(a) Total Accuracy



(b) Total Detection Percentage



(c) Percentage of on-time

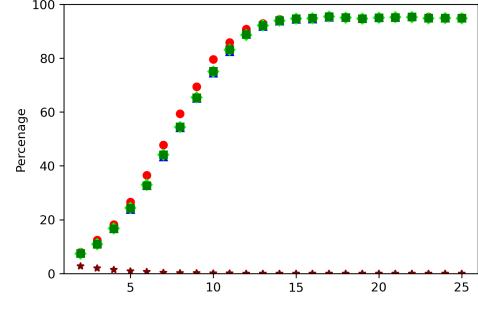


(d) Mean Absolute Error

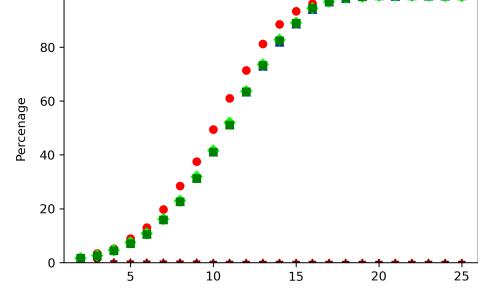
Fig 7: Performance of proposed policies when the threshold is selected to have less than 1% early detection on validation test with 2% unknown. Compare with Fig 2 in main paper.



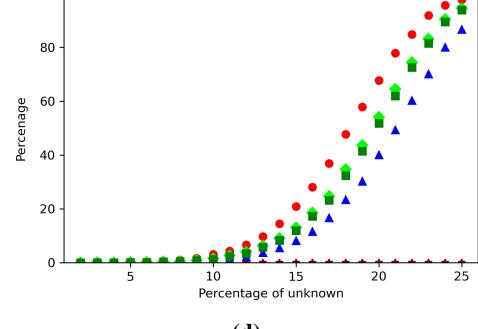
(a)



(b)



(c)



(d)

Fig 8: True detection percentage of proposed policies when the threshold is selected to (a) maximize true detection, (b) have 5% early detection, (c) have 1% early detection, (d) have not early detection on validation test with 2% unknown.

Algorithm 1: Simplest (baseline) automatic reliability assessment of open-set image classifiers using mean of SoftMax

Input: A batch of images, μ_{old} state from past epoch (init 1.0)

Config: M tolerance to say image classifier is unreliable

Output: Reliability, μ state

```

// N: number of images in the batch
x ← normalize each images to range [-1, +1]
s ← CNN(x)           // SoftMax, N x M
p ← max (s)          // Max over row, N x 1
μ ← mean (p)
μ ← min{μold, μ}
if μ > M then
    return (Reliable, μ)
else
    return (Unreliable, μ)

```

Algorithm 2: Information theory method for automatic reliability assessment of open-set image classifiers using Kullback–Leibler divergence of SoftMax

Input: A batch of images, D_{old} state from past epoch (init 0.0)

Config: (m, s) mean and standard deviation of SoftMax of training data set, κ tolerance to say image classifier is unreliable

Output: Reliability, D state

```

// N: number of images in the batch
x ← normalize each images to range [-1, +1]
s ← CNN(x)           // SoftMax, N x M
p ← max (s)          // Max over row, N x 1
μ ← mean (p)
σ ← std (p)
D ← KL(μ, σ, m, s) // Equation 10
D ← max{Dold, D}
if D < κ then
    return (Reliable, D)
else
    return (Unreliable, D)

```

Algorithm 3: Proposed OND automatic reliability assessment using EVM open-set image classifier

Input: A batch of images, ε_{old} state from past epoch (init 0)

Config: Δ lower bound limit of probability of EVM for image to be considered as known classes, $\hat{\rho}$ estimation of OOD class ratio, Ξ tolerance to say image classifier is unreliable

Output: Reliability, ε state

```

// N: number of images in the batch
// M: feature size of CNN
// L: number of known classes
x ← normalize each images to range [-1, +1]
f ← CNN(x)           // Deep features, N x M
P ← EVM(f)           // Equation 4, N x L
p ← max (P)          // Max over row, N x 1
v ← 1 - Δ - p        // N x 1
ν ← max{0, v} // element wise maximum
μ ← mean (ν)
ζ ← μ - ρ(1 - Δ)
η ← max{0, ζ}
ε ← max{εold, η}
if ε < Ξ then
    return (Reliable, ε)
else
    return (Unreliable, ε)

```

Algorithm 4: Proposed automatic reliability assessment of open-set image classifiers using Kullback–Leibler divergence of EVM

Input: A batch of images, D_{old} state from past epoch (init 0.0)

Config: (m, s) mean and standard deviation of maximum class probability of EVM on training data set, κ tolerance to say image classifier is unreliable

Output: Reliability, D state

```

// N: number of images in the batch
// M: feature size of CNN
// L: number of known classes
x ← normalize each images to range [-1, +1]
f ← CNN(x)          // Deep features, N x M
P ← EVM(f)          // Equation 4, N x L
p ← max(P)          // Max over row, N x 1
μ ← mean(p)
σ ← std(p)
D ← KL(μ, σ, m, s) // Equation 10
D ← max{Dold, D}
if D < κ then
    return (Reliable, D)
else
    return (Unreliable, D)

```

Algorithm 5: Proposed automatic reliability assessment of open-set image classifiers using bivariate Kullback–Leibler divergence of SoftMax and EVM

Input: A batch of images, D_{old} state from past epoch (init 0.0)

Config: (m_1, m_2, s_1, s_2) mean and standard deviation of maximum SoftMax and maximum class probability of EVM on training data set, κ tolerance to say image classifier is unreliable

Output: Reliability, D state

```

// N: number of images in the batch
// M: feature size of CNN
// L: number of known classes
x ← normalize each images to range [-1, +1]
f, s ← CNN(x)          // Deep features and
                        SoftMax
P ← EVM(f)          // Equation 4, N x L
p1 ← max(s)          // Max over row, N x 1
p2 ← max(P)          // Max over row, N x 1
μ1 ← mean(p1)
μ2 ← mean(p2)
σ1 ← std(p1)
σ2 ← std(p2)
ρ ← correlation(p1, p2)
// KL from equation 23
D ← KL(μ1, μ2, σ1, σ2, ρ, m1, m2, s1, s2, r)
D ← max{Dold, D}
if D < κ then
    return (Reliable, D)
else
    return (Unreliable, D)

```
