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A. Detailed discussion about adversariality

In Sec.3.1, the proposed method is analyzed from an adversarial viewpoint. We here present further detailed discussion
on it by showing the proof of Proposition 1 regarding the group softmax loss as well as explaining how the discriminative
feature grouping approximately maximizes the group softmax loss.

Notations
¢ C': Number of classes.

e D : Number of feature elements.

¢ G : Number of feature groups.

o y€{1,---,C} : The ground-truth class label.

« {GL}E, : G feature groups; G C {1,---, D}, U, G4, = {1,--- ,D},GL N Gh = O Vi # i

* zj. : Ingredient logit at the j-th feature element for the c-th class; j € {1,--- , D}, ce {1,--- ,C}.
* Z. = Zle Zjc : (Whole) logit for the c-th class.

ezl 2 ifc - Zjegg Zje  Group logit of the i-th group G, for the c-th class.

Note that the whole logit is decomposed into group and ingredient logits as follows.
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A.1. Proof of Proposition 1
We prove Proposition 1 as follows.

Proposition 1. Given the feature grouping { gé}il, the softmax loss {1 is upper bounded by the group sofimax losses (L, ¢L
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Proof. (A.2) is equivalent to the following relationship among the product form of softmax probabilities,
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Figure A.1. Features « are mapped into logits. The ingredient logits in the gray-colored rectangle are summed up to produce the whole

logit Z; and the group logit Z_.
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Based on the relationship (A.T), all the numerators in (A.3) are identical,
1 & G
exp(Z,) = exp (G ZGE;) = exp (Z Z;) . (A4)
i=1 i=1

Therefore, it is enough to prove the following inequalities, regarding the denominators,

c G ¢ ¢ ¢ c A
Z exp(z.) < {H Z exp(GZé)} < H Z exp(Zz.). (A.5)
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- The first inequality in (A3)
By using (A1), we can transform the sum of exponentials as

C C 1 G C G G
Z exp(z.) = Z exp (G Z GEé) = Z { exp(GZé)} . (A.6)
c=1 c=1 i=1 1

c=1 \i=

Here, for the positive variables & = {¢; iG=1 € R, we introduce the geometric mean function of

a &
f(&) = (H &) : (A7)

By using the geometric mean f and (A:6), the first inequality in (A23)) is rewritten into

C C
DS <f <Z £c> , (A8)

c=1 c=1

where €. = {exp(GZ)}5, € Rf. The concavity of the geometric mean function f with Jensen’s inequality provides

1 & e G, c e | & e
CZIf(Ec)Sf(CZ;ﬁc)(r[lCZ;fci) (Cl_[lz_;fcz‘) (A9)
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where the equality holds when &, = €./, Vc # /. This is obviously equivalent to the inequality (A:S).



- The second inequality in (A.3))
The inequality is equivalent to

G ' G (C e
1> exp(Gz) SH{ZeXp(ZZ,)} : (A.11)

i=1c=1 =

Considering exp(-) > 0, the following holds

c G
Zexp(Gz Z{exp } <{Zexp } , (A.12)

where the equality holds by G = 1. This straightforwardly leads to the inequality (A.TT). O

A.2. Discriminative feature grouping

We then explain how the discriminative feature grouping of

56 . by D .
ng = {j|7’i_1 < )\j < Ti} N ‘QG‘ = E, Vi e {1,' .- ,G}, (A.13)
1
where 7;,_1 < T;,Tp = —00,Tg = 00, Aj = Zjy — -1 szc, (A.14)
cty

approximately maximizes the group softmax loss w.r.t grouping {gg}?zl Such an optimization problem is written by

max Zl

{9632

expzy)gc)] < max Zsp zy log{Zexp(Zgg)} , (A.15)

[Zc 1 exp( {66y, i pry

where we use the function of sp(x) = log{1+exp(—=x)} like softplus function, and explicitly show the dependency of group
logits on group G.. ‘Though we Consider (AT5) using the type-II loss, the following discussion also holds for the type-I by

simply replacing zCG with Gz is a combinatorial optimization problem being computationally inefficient, mainly
because the ingredient logits are mlxed up across the indexes j € G via the non-linear function of log-sum-exp. Thus,
instead of directly solving (A.T13), we relax it especially in terms of log-sum-exp function and show that the discriminative
grouping {G4}5, in (A.I3) maximizes the relaxed problem, as follows.

The log-sum-exp term in (A:13) is lower-bounded by the simple mean as

log{Zexp(ZfiG)} > Cl_lzéfic, (A.16)

Ay

because
{Zexp(zfc)} > Hexp(zfé):exp<2zfc>, (A.17)
c#y c#y cFY

where 3, exp(Ze 6) > exp(Zi,lG ), V¢ # y. Thus, (A.T3) can be roughly relaxed into the feature component-wise (j) form
as

i 1 i
(A.13) > gIIlE}LX Zsp sz—C_1<Zz§G> (A.18)
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= max sp E ij_C—l<E zjc> = max sp E Ajl s (A.19)
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where we use the discriminativity score A; in (A.T4). Besides, for computational efficiency, we simply consider the equal
partitioning that produces groups containing equal numbers of components; U = {{G5}%, | Vi,|GL| = Z}. The
optimization problem (A.13) is finally relaxed into the tractable form of

G

max s 5\95} , where N6 = Aj. (A.20)
G

Lemma 1. The optimum partitioning for (A20) holds the following condition;
> Ay, {¥j € Gi, Vi € GI| 396 > 396 ). (A21)
Proof. 1f the other partitioning not satisfying (A:21)), that is, the partitioning which contains the groups G, gé such that
N < Ajr, 35 € G535 € G, (A.22)

is the optimizer of (A.20), it causes the following contradiction. We consider to swap the indexes of j and j' of (A.22) over
the two groups of G¢, and G, as

Gt = {66\ U ', G& = {GE\I"} U, (A.23)
where \ indicates the operator to remove the (right-hand-side) element from the (left-hand-side) set. So created groups Qé
and Qé can increase the score by

sp [?\98} +sp [Xgé} < sp [X‘fc} +sp [?\gc] (A.24)

where ) , ) , y 0 . ;
& + \96 = \Ya 4 5\91@7 296 < \9& <« N\9& < N\a. (A.25)

This is because, given the constant scalar s, the sum of two functions ¢(«, ) = sp(a) + sp(8) where o + 3 = s provides

qla, B) < q(& B), {¥(a, B),¥(&, B)| B < B < a < &}, (A.26)

due to Lg(a, s — ) = Trema) ~ Trexpga) > 0by a>s —a = B. (A24) contradicts to that the partitioning including

(A22)) maximizes (A.20). Thus, the optimum grouping for (A.20) satisfies (A.2T). O

Based on the lemma, the optimum grouping of (A20) is uniquely determined by sorting {\;}5., and equal partitioning
as shown in the discriminative feature grouping (A.13).
Based on these two discussions in Sec. [A.1|&A.2] the proposed method can be roughly viewed as adversarial training of

Irbinmgaxfg(Z(H),y;g), (A.27)
where the loss is adversarially increased with respect to grouping.

B. Experiments
B.1. Training procedures

As described in Sec.4, all the CNN s that we use in the experiments are trained by applying SGD with the batch size of 256,
the momentum of 0.9, the weight decay of 0.0001. The initial learning rate is set to 0.1, and is divided by 10 at the ¢-th epoch,
t € T, during the T training epochs. Those epoch points T and the total number of training epochs T are determined based on
the number of training samples and classes as shown in Table[B.1{i). In the fine-tuning on Food-101 in Sec.4.1 (Table 2), the
learning rate is initially set to 0.0045 and divided by 10 at the ¢-th epoch, t € T, as well; see Table @ii). On all the datasets,
we simply apply the standard preprocessing and data augmentation techniques applied to ImageNet classification [1]. The
methods are implemented by PyTorch and tested on NVIDIA Tesla V100.



Table B.1. The number of training epoch 7" and the epochs T at which the learning rate is divided by 10. The numbers of classes C' and
training samples /V are also shown.
(i) Training from scratch (initial learning rate: 0.1)

(i-1) Various datasets
Dataset C N T T

ImageNet 1000 1281K  {30,60,90} 120
Food-101 101 75K  {60,120,150} 180
Caltech-256 256 15K  {120,240,270} 300
SUN-397 397 19K {120,240,270} 300

(i-2) ImageNet subset (Sec.4.2)

Condition C N T T

100 classes 100 127K {60,120,150} 180
200 classes 200 258K {60,120,150} 180
500 classes 500 639K {30,60,90} 120

100 samples per class 1000 100K {90, 180,210} 240
200 samples per class 1000 200K {90,180,210} 240
500 samples per class 1000 500K {60, 120,150} 180

(ii) Fine-tuning (initial learning rate: 0.0045) (Sec.4.1)
Dataset C N T T

Food-101 101 75K {30,60,90} 120

B.2. Additional results on ImageNet subsets

We supplement the experimental results on Sec.4.2 by showing detailed analysis in the case of smaller number of classes
as well as additional experimental results regarding number of training samples.

Number of classes. The experimental result is shown in Table [B.2p which is the same as Table 3a in the main manuscript.
We analyze the results from the viewpoint of gradient-based updates.
The standard softmax loss updates the feature « by

x < x—nW[p(2) — e, (B.1)

where p(-) = [p1(-),-+ ,pc(-)]T € RY is the C-dimensional posterior vector, e, is a one-hot vector activating the y-th
element, and 7 is a learning rate. In (B.I)), the updating direction is restricted in the subspace of W € RP*¢ which is at
most min(C, D) rank. On the other hand, our loss updates the feature « as

x + x —ndiag[{W'}Z, ] vec[{p(z') — e,}Z,], (B.2)

where W = {W;. JQE Gi ooy € RIG&1*C indicates the classifier weights of the i-th group Gg; and diag stacks matrices
&= L .
along the diagonal, diag[{W}& ] € RP*CY and vec stacks vectors vertically, vec[{p(z’) — e, }¥ ;] € REY. Thus, the
updating direction in (B.2) lies in the direct sum of the subspaces by {W?} , which have the rank of min(C'G, D), higher
than min(C, D) of the updating (B.TI)) by the standard softmax loss.
Based on the above analysis, we can say that the proposed method is quite effective on the smaller number of classes (C')

to more flexibly update the feature «; it is empirically shown in Table[B.Zh.

Number of samples. To analyze the dependency on the number of training samples, we randomly pick up NNV training
samples, N € {100,200, 500, 1000*}, in each of the 1000 class categories; N = 1000* indicates the full ImageNet training
set. As shown in Table [B.Zp, the type-II loss outperforms the type-I on the smaller number of samples since type-II which is
further upper bound on type-I in (A.2)) alleviates over-fitting more effectively. On the other hand, as the number of samples
increases, the type-I loss exhibits superiority, being competitive to the softmax loss on the full ImageNet dataset (N = 1000%),
by leveraging plenty of training samples to effectively training discriminative feature representation.



Table B.2. Performance results (error rate %) on ImageNet subsets.

(a) Number of classes (ImageNet subset) (b) Number of samples (ImageNet subset)
# of classes 100 200 500 1000 # of samples per class 100 200 500 1000*
# of total samples 127K 258K 639K 1281K # of total samples 100K 200K 500K 1281K
Softmax 154 18.1 20.2 235 Softmax 493 403 30.2 235
Type-1 146 163 19.0 233 Type-1 476 380 288 233
Type-1II 13.0 15.6 19.1 24.1 Type-1II 46.8 38.0 293 24.1

Based on the above two experimental results in Table [B.2] we can roughly say that the type-II loss effectively works on
< 500K training samples while the type-I favorably copes with > 500K samples. The type-I loss, the tighter upper bound
on the softmax loss, is rather preferable for the larger-scale data. On the other hand, the type-II loss is quite effective on the

smaller number of training samples as well as the smaller number of classes.
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