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In this supplementary material, we provide more details and results of our method as follows:

1. Additional loss details and implementation details;
2. More experimental results with the resolution of 256 x 256;

e Translation between image and label: comparison with the baseline, multimodal results and a 1680-frame style-
consistent sequence;

e Translation on other datasets: Rain and Snow, Sunset and Day, Viper and Cityscapes;
3. More experimental results with the resolution of 128 x 128;
4. Additional ablation experiments details.

Due to the size constraint, we did not include all the video material in the supplementary material.

1. Additional Loss Details and Implementation Details
1.1. Loss functions for the discriminator

In this section, we provide more details of our image-level (D™9), video-level (DVi?), and style latent (D z) discriminator
losses. For the purpose of simplicity, we only present the loss functions for domain A, and the loss functions for domain B
are defined following the same set of equations. Our adversarial loss is based on Relativistic GAN (RGAN) [[7], which tries
to predict the probability that a real sample is relatively more realistic than a fake one.

Image level discriminator loss The loss term DY is defined as follows:
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Video level discriminator loss D%’ for domain A is defined as follows:
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Style latent variable discriminator loss This loss term (D, ) for the style domain A is defined as follows:
LEIN = [Dz, (287) = Dy, (28°) = 112 3)

1.2. Network structure

Style Encoder, Content Encoder and Content Decoder Our style encoder is similar to the one used in Augment Cycle-
GAN [1]. Under the shared content space assumption [8]], we decompose the style-conditioned Resnet-Generator used in
Augment CycleGAN [1] into a Content Encoder and a Content Decoder. Moreover, when the sub-domain information is
available, we assign part of the style latent variable to record such prior information. Concretely, we use one-hot vector to
encode the sub-domain information.

RNN - Trajectory Gated Recurrent Units (TrajGRUs) Traditional RNN (Recurrent Neural Network) is based on the fully
connected layer, which has limited capacity of profiting from the underlying spatio-temporal information in video sequence.
In order to take full advantage of the spatial and temporal correlations, UVIT utilizes a convolutional RNN architecture in the
generator. TrajGRU [10] is one variant of Convolutional RNN (Recurrent Neural Network) [[12], which can actively learn the
location-variant structure in the video data. It uses the input and hidden state to generate the local neighborhood set for each
location at each time, thus warping the previous state to compensate for the motion information. We take two TrajGRUs to
propagate the inter-frame information in both directions in the shared content space.



Discriminators (D9, D¥ D,) For the image-level discriminators D" the architecture is based on the Patch-
GAN:Ss [6] approach. Likewise, Video-level discriminators DV are similar to PatchGANs, yet we employ 3D convolutional
filters. For the style latent variable discriminators Dz, we use the same architecture as in Augmented CycleGAN [1].

1.3. Datasets

We validate our method using two common yet challenging datasets: Viper [9]], and Cityscapes [S]] datasets.

Viper has semantic label videos and scene image videos. There are 5 subdomains for the scene videos: day, sunset, rain,
snow and night. The large diversity of scene scenarios makes this dataset a very challenging testing bed for the unsupervised
V2V task. We quantitatively evaluate translation performance by different methods on the image-to-label and the label-to-
image mapping tasks. We further conduct the translation between different subdomains of the scene videos for qualitative
analysis.

Cityscapes has real-world street scene videos. As there is not subdomain information for Cityscapes, we conduct ex-
periments without subdomain label for Cityscapes. We conduct qualitative analysis on the translation between scene videos
of Cityscapes and Viper dataset. Note that there is no ground truth semantic labels for the continuous Cityscapes video
sequences. The semantic labels are only available to a limited portion of none-continuous individual images. Therefore, we
could not use it for our evaluation of image-to-label (semantic segmentation) performance.

1.4. Implementation Details

We train our model using images of 128 x 128 and 10 frames per batch in a single NVIDIA P100 GPU for the main
experiments to capture temporal information with more frames. Setting the batch size to one, it takes about one week to train.
Note that it takes roughly 4 days to train using 6 frames per batch.

During inference, we use video sequences of 30 frames. These 30 frames are divided into 4 smaller sequences of 10
frames with overlap. They all share the same style code to be style consistent. To get a higher resolution and show more
details within the existing GPU resource constraint, we also train our model using images of 256 x 256 and 4 frames per
batch.

The A\ parameters. Video interpolation loss weight Ajyzerp is set to 10. Cycle consistency loss weight Acy e is set to 10.
Style reconstruction loss weight A, is set to 0.025.

1.5. Human Preference Score

We have conducted human subjective experiments to evaluate the visual quality of synthesized videos using the Amazon
Mechanical Turk (AMT) platform.

For the video-level evaluation, we show two videos (synthesized by two different models) to AMT participants, and ask
them to select which one looks more realistic regarding a video-consistency and video quality criteria.

e UVIT (ours) / 3DCycleGAN: Since 3DcycleGAN [3] generates consistent output with 8 frames in the original paper
setting, UVIT results are organized to 8 frames for a fair comparison.

e UVIT (ours) / Improved ReCycleGAN: When comparing with improved RecycleGAN [2], we take each video clip
with 30 frames.

e UVIT (ours) / vid2vid: When comparing with vid2vid [11], we take each video clip with 28 frames, following the
setting in vid2vid [11].

For the image-level evaluation, we show to AMT participants two generated frames synthesized by two different algo-
rithms, and ask them which one looks more real in visual quality.

These evaluations have been conducted for 100 videos and frame samples to assess the image-level and video-level quali-
ties, respectively. We gathered answers from 10 different workers for each sample.

2. Higher resolution results 256 * 256

To get a higher resolution and show more details within the existing GPU resource constraint, we also train our model
using images of 256 x 256 and 4 frames per batch. During the test time, we divide a longer sequence into sub-sequences of
4 frames with overlap. All the results of this section are trained using images of 256 x 256 and 4 frames per batch. Note that
all visual examples in this paper are reshaped to the aspect ratio of the raw Viper image for better visual presentation.



Figure 1. Video screenshot of the video corresponding to Fig. 1 in the main paper. From Top to Bottom: input, RecycleGAN output,
UVIT output. The video is attached as 1_H Rcomapare.mp4

2.1. Additional examples of the label-to-image qualitative comparison

In Figure [T] (corresponding video 1_H Rcompare.mp4) and Figure 2] (corresponding video 2_H Rcomapare2.mp4), we
provide the visual examples of how our UVIT method compares with respect to RecycleGAN [2]]. The RecycleGAN outputs
are generated by the original code provided by the author of RecycleGAN in 256 x 256. Besides the video-level quality
comparison from videos, we encourage the reader to also check the frame-level quality from images since .mp4 format may
fail to preserve some image-level quality.

2.2. Quantitative comparison of the label-to-image and image-to-label

In Table[T]and 2} we show quantitative results for our proposed method trained with a resolution of 256 x 256 and 4 frames
per batch.

2.3. Label-to-image multi-subdomain and multimodality results

Video results of UVIT on label sequences to image sequences with multi-subdomain and multimodality are shown in
Figure 3]and the enclosed video 3_Multimodality.mp4. The videos are all with a length of 220 frames.

2.4. Long video example (1680 frames)

In Figure [ and attached video 4_long_consistency.mp4, we provide a video sequence example with more than 1680
frames to give a qualitative example of how our UVIT model performs in terms of style consistency. Note that the semantic
labels in Viper [9] are automatic generated, however, we observe that there may still exist a little small flips in the input
semantic label sequence occasionally.



Input Semantic Label

Figure 2. Video screenshot of the comparison with RecycleGAN [2]]: We aim to compare the content consistency and image-level quality.
Here the RecycleGAN results are produced by the original RecycleGAN code in a resolution of 256 x 256. Since there is no guarantee
of style consistency for RecycleGAN, we select some RecycleGAN visual results in a small sequence length of 30 frames where style is

almost consistent to compare with UVIT (ours). The corresponding video is attached as 2_H Rcomapare2.mp4

Table 1. Quantitative comparison between UVIT and baseline approaches on the image-to-label (Semantic segmentation)
task.(256 x 256 with 4 frames per batch during training) .Our translator effectively leverage the temporal information directly, thus

producing more semantic persevering translation outcomes

Criterion Model Day Sunset Rain Snow Night All
mloU? ReCycleGAN (Reproduced) 1032 11.19 1125 983 7.73 10.12
UVIT (Ours) (frame 4) 12.05 1223 1337 11.54 1049 11.93
ACt ReCycleGAN (Reproduced) 15.80 15.79 1593 15.57 1147 14.85
UVIT (Ours) (frame 4) 17.21 1741 18.16 1737 1430 16.50
PAT ReCycleGAN (Reproduced) 54.70 5592 57.71 50.85 49.11 53.66
UVIT (Ours) (frame 4) 63.44 6198 64.72 60.83 62.05 62.35

Table 2. Quantitative comparison between UVIT and baseline approaches on the label-to-image task (256 x 256 with 4 frames per
batch during training). Better FID indicates that our translation has better visual quality and temporal consistency. We use the pre-trained
network (I3D [4]) to extract features from 30-frame sequences just as the experiments in the main paper.

Criterion Model Day Sunset Rain Snow Night
FID| ReCycleGAN 23.60 2445 2854 3158 35.74
UVIT (ours) (frame 4) 18.68 16.70 20.20 18.27 19.29




Input Semantic Labels

Figure 3. Video screenshot of the label-to-image multi-subdomain and multimodality results. Better depicted in 3_Multimodality.mp4.

Figure 4. Screenshot of a long style consistent translation video visual example (1680 frames). Left: input semantic labels; Right:
UVIT translated video in sunset scenario. All frames within the video share the same style code to keep style consistency. The video is
attached as 4_long_consistency.mp4



Real Rain

Fake Snow

Figure 5. Screenshot of Viper Rain-and-Snow translation. First row: real rain inputs; Second row: UVIT translated snow videos; Third
row: real snow inputs; Fourth row: UVIT translated rain videos. Video is attached as 5_Rainandsnow.mp4

2.5. Translation on other datasets

In Figure[3]and in the attached video 5_Rainandsnow.mp4, we provide visual examples of UVIT video translation between
Rain and Snow scenes in the Viper dataset. In Figure [] and in the attached video 6_Sunsetanday.mp4, we provide visual
examples of UVIT video translation between Sunset and Day scenes in the Viper dataset. In Figure [7]and in the attached
video 7_Cityscapesandviper.mp4, we provide visual examples of UVIT video translation between Cityscapes dataset and
Viper dataset. Besides the video-level quality evaluation from videos, we encourage the reader to also check the frame-level
quality from images since .mp4 format may fail to preserve some image-level quality.



Real Sunset

F.

Figure 6. Screenshot of Viper Sunset-and-Day translation. First row: real sunset inputs; Second row: UVIT translated day videos; Third
row: real day inputs; Fourth row: UVIT translated sunset videos. Video is attached as 6_Sunsetandday.mp4



Real Ci Translated Viper

Figure 7. Screenshot of Cityscapes-and-Viper translation. Top left: real Cityscapes input; Top right: UVIT translated Viper videos
with different style codes; Second row: More UVIT translated Viper videos; Bottom left: real Viper input; Bottom right: UVIT translated
Cityscapes videos with different style codes. Since the general distribution between Cityscapes and Viper may be different (e.g. there
are more buildings in Cityscapes), the translated Viper video may differ from input Cityscapes video in class distribution to fool the
discriminator, so as to be close to the class distribution in the target domain. Video is attached as 7_Cityscapesandviper.mp4



3. Additional examples of the label-to-image qualitative comparison 128 * 128

Note that all visual examples in this paper are reshaped to the aspect ratio of the raw Viper [40] image for better visual
presentation. More results on the label-to-image mapping comparison of UVIT (ours) and Improved ReCycleGAN are
depicted in Figure [8]and the attached video Compare.mp4. For the 8_LRCompare.mp4, we give a short description to guide
the comparison. From left to right, there are outputs for four different input samples to compare:

e 1: Please see the trajectory of the car and the surrounding road.
e 2: Please see the boundary between two cars.
e 3: Please see the translation of the road to check the complete translation and consistency across frames.

e 4: Please see the consistency of the wall.

a)Input Label Sequences

b)ReCyclegan with style constraint
- " .

Figure 8. Video screen cut of the label-to-image qualitative comparison. First row: semantic label inputs; Second row: improved
ReCycleGAN outputs; Third row: UVIT outputs. Fourth row: ground truth. A full video file can be found in 8_LRCompare.mp4.



Figure 9. Ablation study: when no sub-domain label is used during training and testing. First video is the input semantic label
sequence, the rest videos are the translated scene videos with style codes randomly sampled from prior distribution. There are 220 frames
for each video. The corresponding video is attached as 9_No_subdomain.mp4

4. Additional Results for Ablation Study

Here we provide the supplementary results for the ablation part. First, we provide complete quantitative experimental
results that demonstrate the proposed video interpolation loss for a better V2V translation on both the image-to-label and the
label-to-image tasks. Second, we study how the number of frames influence the semantic preserving performance. Third, we
give the qualitative results of multimodal consistent videos when UVIT is trained and tested without the sub-domain label.

To feed more frames within a single GPU and compare with the main experiment in the main paper, we conduct the first
and second ablation experiments with a resolution of 128 x 128.

To show more details within the existing GPU resource constraint, we conduct the third ablation experiment with a
resolution of 256 x 256. The model is trained with 4 frames per batch. During the test time, we divide a longer sequence into
sub-sequences of 4 frames with overlap.

4.1. UVIT without the subdomain label

To check how our UVIT performs in terms of style consistency without the subdomain label information, we run this
ablation experiment. The results are attached in Figure0)and 9_No_subdomain.mp4. By randomly sampling the style code
from prior distribution, we can get multimodal consistent video results in a stochastic way.
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