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1. Network architecture and training details

1.1. HDM dataset [7]

Autoencoder training: The encoder consists of 4 tempo-
ral convolution layers with filter size of 4, and the number of
feature maps in each layer is set to 75 (equal to the number
of channels at the input layer). We use a latent space dimen-
sion of 200. The decoder consists of 4 temporal transposed
convolutional layers. The network parameters are trained
using Adam optimizer [4] for 2×105 iterations with a batch
size of 64 and an initial learning rate of 10−3. The learning
rate is reduced by one-tenth after 1.5 × 105 and 1.8 × 105

iterations.

Classifier training: We use a TCN classifier similar [3].
It consists of 3 TCN blocks with one convolutional layer
each. The network is trained to minimize cross-entropy loss
for 2 × 105 iterations with a batch size of 64, and is opti-
mized using Adam [4] with an initial learning rate of 10−3

and reduced to one-tenth after 105 and 1.8× 105 iterations.

1.2. NTU dataset [9]

Autoencoder training: The encoder consists of 3 tempo-
ral convolution layers with filter size of 8, and the number
of feature maps in each layer is set to 75 (equal to the num-
ber of channels at the input layer). We experiment with
latent space dimension = 100, 200. The decoder consists
of 3 temporal transposed convolutional layers. We use a
latent space dimension of 200. The decoder consists of 4
temporal transposed convolutional layers. The network pa-
rameters are trained using Adam optimizer [4] for 2 × 105

iterations with a batch size of 64 and an initial learning rate
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of 10−3. The learning rate is reduced by one-tenth after
1.5× 105 and 1.8× 105 iterations.

Classifier training: As the action classifier, we use a
TCN classifier identical to that proposed by Kim and Reiter
[3]. It consists of 3 TCN blocks with 3 convolutional layers
each. The network is trained to minimize cross-entropy loss
for 2 × 105 iterations with a batch size of 64, and is opti-
mized using Adam [4] with an initial learning rate of 10−3

and reduced to one-tenth after 105 and 1.8× 105 iterations.

2. Details about baselines and experiments
2.1. Sparse coding

We use ”MiniBatchDictionaryLearning” provided in the
scikit-learn toolbox [8] which implements the algorithm by
Mairal et al. [6] to first learn a dictionary based on the train-
ing set. We first create a matrix D such that each row of the
D is a training action sequence where all the frames and
joints are vectorized into a single vector. The dictionary is
learned by performing essentially matrix factorization with
additional constraints using an online learning approach:

(U∗, V ∗) = arg min
U,V

1

2
‖D − UV ‖22 + α ‖U‖1 (1)

s.t. ‖V ‖k = 1, ∀0 <= k <= n, (2)

where n is the number of components in the dictio-
nary. We use n = 500 for both HDM and NTU datasets.
Once the dictionary V is learned, given a vectorized test
action with unobserved joints, X , we find a sparse vector
Θ = [θ1, θ2, . . . θn] such that X ≈ X̂ =

∑n
i=1 θiVi. X̂ is

used as the output of the action completion algorithm. Θ is
computed using orthogonal matching pursuit.



2.2. Frame-wise recovery

The proposed method in this paper uses a temporal con-
volutional autoencoder that can exploit temporal correla-
tions between frames in order to learn a more accurate rep-
resentation of the action manifold. In order to test its impor-
tance, we consider a baseline where the deep prior only con-
tains information about the manifold of human poses i.e.,
single frames, rather than action sequences. For this, we
train an autoencoder for frames with 8 fully-connected lay-
ers with ReLUs and the latent dimension is set to be equal to
8. This model is very similar to that proposed by Holden et
al. [1]. When all the frames of the action are considered to-
gether, the overall latent dimension, with the latent vectors
concatenated, is of the same order as the latent dimension in
the case of the temporal convolutional autoencoder for ac-
tions. These results are shown in Table 2 of the main paper
as well as Tables 1 and 2 here.

2.3. Different joints missing in different frames

In the main paper, the focus was on recovering tra-
jectories of joints/markers which are misssing completely
throughout the action sequence. We focused on this set-
ting because it is usually not studied in literature and it
is more challenging as many of the temporal interpolation
techniques become no longer applicable. However, the pro-
posed method is readily applicable to the setting where dif-
ferent joints are missing in different frames. The entire al-
gorithm is exactly the same, except the training phase where
we randomly drop different joints from different frames in
every action sequence. Table 4 shows the results thus ob-
tained for the HDM dataset at different train/test OTP ra-
tios. As in the case of fully missing joints, the performance
reduces gracefully when more joints are dropped, using the
proposed latent space optimization approach. We also see
that the reconstruction and classification results are nearly
the same as when the joints are missing completely through-
out the sequence (Table 1 in the main paper).

2.4. Additional baseline: denoising autoencoder

In the main paper, in order to train autoencoders on train-
ing data that contain missing joints, we use the following
Ambient AE loss function (Equation 2 in the main paper)
Instead, as an additional baseline, we train a denoising au-
toencoder. Here, we assume that we have access to a perfect
training set with all joint trajectories intact. We train the
autoencoder to map from sequences with missing joints to
the ground-truth action sequences with information for all
joints. Please note that this assumes that we have access to
a clean training set. In the main paper, we work with a more
challenging setting where even at training time, the ground-
truth action sequences have some joints/markers missing.
We provide comparisons between our proposed method (us-
ing the Ambient AE loss) and the denoising autoencoder for

the HDM05 dataset in Table 3. All the other architecture
and training details are held constant. The results clearly
show that the ambient AE framwork, which does not as-
sume access to a clean training set, actually outperforms
the denoising AE framwork. This is because, even though
at training time the autoencoder is given complete ground-
truth information, at test time, a completely different set of
joints may be missing which was not seen at training time.
This discrepancy between training and test time leads to
poorer performance for the denoising AE. Also note that,
for both denoising and ambient AE, latent space optimiza-
tion at test time significantly improves the reconstruction
both in terms of RMSE and classifier accuracy.

2.5. Self-similarity matrix

In order to try and visualize the differences in the dy-
namics of the reconstructed actions for the baseline and
proposed methods compared to the ground-truth, we use
self-similarity matrices (SSMs) [2]. SSMs capture dy-
namics better than using just classification accuracy, and
at the same time, can be easily visualized. The SSM of
a sequence X, SSM(X) ∈ RN×N is constructed using

SSM(X)n,m = e−
‖Xn−Xm‖

σ2 , where Xn is the nth frame
of X and σ2 is the variance of the distances between all
pairs of frames. Some visualizations of the SSMs for both
HDM05 and NTU datasets can be seen in Figure 3.

3. Videos of recovered joint trajectories, addi-
tional results, t-SNE visualizations

In this section, we show results and experiments per-
formed that could not be added in the main paper due to
space constraints. We have generated videos showing the
reconstructions obtained using the proposed latent space
optimization approach as compared to a single feedforward
pass through the autoencoder. We show results for both
HDM and NTU datasets at two different Train/Test OTPs
which show that the proposed method outperforms the base-
line and produces recovers accurate motion sequences for
the unobserved joints:

1. Train/Test OTP = 75/50:
HDM results Train OTP 75 Test OTP 50.avi,
NTU results Train OTP 75 Test OTP 50.avi

2. Train/Test OTP = 50/50:
HDM results Train OTP 50 Test OTP 50.avi,
NTU results Train OTP 50 Test OTP 50.avi

Table 2 in the main paper shows the comparison of
the proposed method with multiple baselines for Train/Test
OTP = 75/50. Here, in Tables 1 and 2, we show similar
comparison for 100/50 as well as 50/50 respectively.



t-SNE [5] visualizations for the penultimate layer fea-
tures of the action classifier network show that the proposed
method of latent space optmiziation outperforms the base-
lines in terms of producing more class-discriminative clus-
ters. The visualizations for Fold 1 of the HDM test set at
different Train/Test OTPs are shown in Figure 1. The visu-
alizations for the NTU test set at different Train/Test OTPs
are shown in Figure 2.
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Method HDM NTU
RMSE (cm) Acc (%) RMSE (cm) Acc (%)

Sparse Coding 17.79 11.89 18.23 8.19
Frame-wise DF (EF (YF )) 21.41 11.10 20.22 8.80

Frame-wise DF (zF
∗) 21.81 13.07 20.25 9.76

Action D(E(Y )) 9.87 28.99 9.39 31.89
Action D(z∗)

(Proposed)
2.99 73.47 5.19 65.15

Table 1: Experimental results for HDM05 (averaged over 5 folds) and NTU datasets compared to different baselines for
train/test OTP = 100/50. We observe easily that the proposed optimization-based reconstruction is superior to all the baselines
considered. DF and EF refer to the fact that the encoder and decoder operate on a single frame at a time, rather than an
action sequence.

Method HDM NTU
RMSE (cm) Acc (%) RMSE (cm) Acc (%)

Sparse Coding 20.35 10.42 19.37 7.01
Frame-wise DF (EF (YF )) 21.77 11.30 20.57 8.41

Frame-wise DF (zF
∗) 21.28 13.14 20.21 9.64

Action D(E(Y )) 8.77 43.56 9.37 34.94
Action D(z∗)

(Proposed)
3.05 74.37 5.29 64.59

Table 2: Experimental results for HDM05 (averaged over 5 folds) and NTU datasets compared to different baselines for
train/test OTP = 50/50. We observe easily that the proposed optimization-based reconstruction is superior to all the baselines
considered. DF and EF refer to the fact that the encoder and decoder operate on a single frame at a time, rather than an
action sequence.

Train OTP / Test OTP Method Denoising AE loss Ambient AE Loss (proposed)
RMSE (cm) Acc (%) RMSE (cm) Acc (%)

75/75
D(E(Y )) 9.13 47.69 6.07 68.72
D(z∗) 5.21 71.67 2.27 78.61

75/50
D(E(Y )) 11.76 22.98 8.52 44.81
D(z∗) 7.66 55.98 2.98 74.71

50/50
D(E(Y )) 12.70 19.29 8.77 43.55
D(z∗) 9.98 46.42 3.05 74.37

Table 3: Comparison between denoising AE loss v/s ambient AE loss, for HDM05 at different train/test OTPs in terms of RMSE and
action recognition accuracy (Acc). We observe easily that the proposed method is far superior to the denoising AE loss function. Latent
space optimization proposed in the paper is useful in both cases. Note that when Train OTP = 100, both loss functions are identical and
thus yield the same results Train OTP / Test OTP Method RMSE (cm) Acc (%)

100/100 D(E(Y )) 3.48 79.23

100/75
D(E(Y )) 6.27 60.60
D(z∗) 2.16 78.06

100/50
D(E(Y )) 10.03 27.99
D(z∗) 2.99 73.65

75/75
D(E(Y )) 5.46 69.27
D(z∗) 2.21 78.46

75/50
D(E(Y )) 8.11 43.31
D(z∗) 3.02 73.63

50/50
D(E(Y )) 7.37 56.55
D(z∗) 3.10 73.40

Table 4: Experimental results for HDM05 (averaged over 5 folds) when different joints are missing for different frames, for varying
train/test OTPs in terms of RMSE and action recognition accuracy (Acc). We observe easily that the proposed optimization-based recon-
struction is far superior to a feedforward pass through the autoencoder. As the train OTP is reduced, performance degrades more gracefully
in the case of the optimization-based approach. In all cases, we can get to within 5% points of the oracle action recognition performance
(train /test OTP = 100/100).
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(a) Train/Test OTP = 100/50
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(b) Train/Test OTP = 75/50
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(c) Train/Test OTP = 50/50

Figure 1: t-SNE embeddings of the penultimate layer features of the action classifier for Fold 1 HDM test set for different Train/Test OTPs.
We see that a lot of semantic information is lost when the joints are dropped, but can be recovered most effectively with an optimized latent
space. Note that different runs of the t-SNE algorithm can produce slightly different results, however the overall trend remains the same.



(a) Train/Test OTP = 100/50

(b) Train/Test OTP = 75/50

(c) Train/Test OTP = 50/50

Figure 2: t-SNE embeddings of the penultimate layer features of the action classifier for 500 randomly sampled actions from the NTU
test set for different Train/Test OTPs.We see that a lot of semantic information is lost when the joints are dropped, but can be recovered
most effectively with an optimized latent space.



GT Obs Ours GT Obs Ours

NTU Actions HDM Actions

Figure 3: We visualize the dynamics for some actions using the self-similarity matrices (SSMs) on the two datasets for Train/Test OTP =
75/50. We see that even though a lot of dynamics are lost in the observed action with missing joints (Obs), compared to the ground-truth
(GT) the proposed method (Ours) recovers them effectively. The images are normalized by the intensities in the ground-truth.


