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1. Data description
1.1. Nuscenes dataset

Real-world experiments are conducted on the nuScenes
dataset [1], which records the measurements of a complete
suite of sensors: 6 cameras, 32-channels LIDAR, long-
range radars. The whole dataset comprises 40 000 anno-
tated frames but for intellectual property reasons we are cur-
rently limited to the preview version, with 3 340 annotated
frames from five driving sequences in Boston and 81 se-
quences in Singapore. Each driving sequence lasts around
20s and images are acquired at a framerate of 2Hz. The two
most important features of nuScenes for this paper are the
availability (i) of 3D bounding boxes, (ii) of layers of the
drivable area are also provided as binary semantic masks,
where each pixel corresponds to 0.1× 0.1 square meters.

1.2. Carla simulator dataset

Simulated-world experiments are run on the CARLA
simulator [5] version 0.9.6, as implemented in [2]. We col-
lect 50K frames at 10 fps for training, which amounts to 1.4
hours of driving in Town 1 under 4 training weather con-
ditions with 100 vehicles and 250 pedestrians. Each frame
contains a 576 ∗ 240 rgb camera image, the world position,
the 3D bounding boxes coordinates of the vehicles in the
scene and a road layout raster image. Town 2 is used for the
on-line evaluation of our model.

2. Homography estimation
On nuScenes, we take advantage of the annotated 3D

bounding boxes to get corresponding points in the BEV
and the camera planes. The pixel positions of the 3D
bounding boxes “ground” face corners in the camera im-
age are matched with their 3D position in the BEV
plane, and the homography matrix is obtained using the

Figure 1: For training images with enough matching points,
the homography is computed with the matching method.
These samples become training data for a neural network
that learns to estimate the homography from RGB input
images. This trained network is then used to pre-compute
the homographies of all the samples in the dataset. Better
viewed in color.

getPerspectiveTransform() function of OpenCV
that applies the Direct Linear Transformation (DLT) algo-
rithm [6]. Not all training samples contain enough match-
ing points, so only a subset of the original training set is
available for fitting a network predicting homographies (see
Fig. 1). The homography network is composed of a ResNet-
18 encoder and 4 fully connected layers with the fourth
layer outputting 9 values corresponding to the elements of
the homography matrix. The homography matrix contains
4 rotational terms and 2 translation terms. The difference
in magnitude between these terms must be taken into ac-
count during training. The authors of [4] circumvent this
issue by predicting 4 matching points instead of the homog-
raphy matrix elements as there is a one-to-one correspon-
dence between the two representations; we simply rescale
the rotational and translation terms with a constant factor



such that all the elements of the homography have the same
magnitude. The L2 loss function is then used as the training
criterion.

For each frame in the dataset, the predicted homogra-
phy is used to warp the drivable area and vehicle OGMs in
the camera plane. These warped masks are used as ground
truths in the holistic end-to-end network. Each sample has
a sequence of 6 input camera images separated by 0.5s,
the camera view semantic masks for every image in the se-
quence, the homography matrices for every mask in the se-
quence, the past and future trajectories.

3. NoCrash benchmark

On the Carla simulator, our model is evaluated on the
NoCrash benchmark [3]. This benchmark consists of 3 driv-
ing scenarios with a varying number of vehicles and pedes-
trians in the simulated town: empty (no traffic), regular traf-
fic and dense traffic. The vehicle drives 25 predefined routes
with different starting points and an episode is counted as
successful if the vehicle reaches its goal within a certain
time limit without colliding with a static or a dynamic ob-
ject. The training weathers are “Clear noon”, “Clear noon
after rain”, “Heavy raining noon”, and “Clear sunset” and
the test-only weathers are “After rain sunset” and “Soft rain-
ing sunset”.

Our approach is adapted to the task and a one-hot en-
coded high-level command is provided instead of a goal po-
sition. We also modify the trajectory part of the network and
adopt the same architecture and loss function as in [2] with
a single image being used as input. The set of waypoints
is converted to driving commands using a low-level con-
troller as described in [2]. The mid-to-mid baseline input is
also changed to a 7 channels grid map similar to [2] con-
taining information about the road layout, the vehicles, the
pedestrians and the traffic lights. Pedestrians in Carla simu-
lator have a very erratic behavior as they cross frequently
the road. This required access to pedestrian information
in the mid-to-mid network. Information about traffic lights
is also necessary for navigation, because the model is fed
with a high-level command instead of a goal position. Even
though the intermediate representation of our network does
not inform about the pedestrians, it is interesting to observe
that our model successfully stops before the pedestrians and
avoids collision. When looking at the intermediate repre-
sentation, we observe that the pedestrians are detected as
vehicles when they are on the drivable area. The vehicles
class in the simulator contains cars and trucks but also cy-
clists which look very similar to pedestrians. This obser-
vation highlights the importance of having an intermediate
representation to delve the decisions of the neural network.
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