A. Implementation Details
A.l. Training Details

The table below provides the configurations we used for
training. s is the threshold for binarizing the probability
map in Section 3.3 and dis is the threshold for point clus-
tering for Algorithm A.2.

Table 1: Training Details.

Net Training Steps s Pooling dis
Chart Type 50,000 0.5 Corner -
Bar 50,000 0.5 Corner -
Pie 50,000 0.4 Center -
Line 50,000 0.4 Center 0.1
Query 20,000 - -

A.2. Keypoints of Different Types of Charts

Ppppppppppppp Ppppp PpppppPPPPPPP PPPPP
e w 3 2 3 | s m E r r B
" !’l !l ll !l !l RS o ows o ms
(a) Key Points (b) Bar Objects

Figure A.1: From key points to bar objects. (a) Red dots
show the top-left corners and green dots show the bottom-
right corners of the bar objects. (b) By matching corre-
sponding top-left and bottom-right points, we can infer the
bounding boxes of the bar objects outlined in green.

(a) Key Points

(b) Pie Sectors

Figure A.2: From key points to pie sectors. (a) Red dots
show the center points and green dots show the arc points on
the pie chart. (b) By estimating the pie radius and assigning
arc points to the corresponding center points, we can get the
outlines of the pie sectors.

120

100 {8

80 7 = ——wclx)0
60 - - T

MR(x]

13 8 7 9 11181517 13 21

13 8 7 9 11181517 19 21

(a) Key Points (b) Lines

Figure A.3: From key points to line representations. (a)
Red dots show the pivot points on the line chart. (b) By
connecting points from each separate line, we can get the
representations of the lines (in green) on the line chart. The
tiny green box means the key point is an intersection point
of two or more lines.

A.3. Pie Radius Estimation

The main idea of Algorithm A.1 is to find the optimal
radius that can link all center and arc points while having
the smallest error. We assume that each arc point associates
with only one center point, while one center point can link
to multiple arc points. Binary search is utilized to find the
optimal radius r* and error threshold ¢ that satisfy this hy-
pothesis. The error threshold ¢ will then be used to filter out
wrong arc point to center point assignments.

Algorithm A.1 Pie Radius Estimation

Require: center points {p, }, arc points {parc}
Ensure: the estimate radius r* and threshold ¢
1: compute the all possible radius distance list R =
[7“17 ceey ’I“n]
2: [t =0.05,lr =0.2
3: while [r — It > 0.001 do
4. forr, € Rdo

5: count = length({r}}) where r} € R and
6 if count > mazxcount then

7: mazxcount = max(count, maxcount)

8 r* =yt =1t

9 end if

10: end for
11: if mazcount < length({pgrc}) then

. _lrlt
12: It ===
13: else

) _lr+it
14: lr.— e
15: end if

16: end while

A.4. Line Formation from Key Points

Algorithm A.2 describes the hierarchical clustering al-
gorithm that divides all the key points into multiple groups

based on the lines they belong to. The clustering is per-
formed in the embedding space of key points.

Let P denote the point set that contains all the key points
in the line chart image. In the beginning, we initialize ev-
ery point as an individual set p,. If two sets contain a pair of
points whose embedding distance is smaller than the thresh-
old, then we will merge the two sets into one. At the end,
we will get multiple groups of key points where each group
contains the points that belong to the same line.

Algorithm A.2 Point Clustering

Require: key points P = {p1,...,pn }+
embeddings of key points {ej,...,ex},
threshold dis min

Ensure: grouped key points { Py, ..., Pk }

1 P ={pi}
2: for p; € {p1,...,pn} do
3. forp; € {p1,...,pn} do

4 if |e; — e;| < dis min then

5: Union(P,, P,), where p;, € P, and p; € P,
6: end if

7 end for

8: end for

Algorithm A.3 describes the procedure that assigns the
intersection points to corresponding lines. We use the pre-
trained QUERY network to predict whether one intersection
point c; should be inserted to the grouped key point set py,.

Algorithm A.3 Adding Intersection Points

Require: intersection points {ci, ..., car },
previous grouped sets { P, ..., Pk }
Ensure: grouped key points
1: for P, € {Pl, ey PK} do

2. sort Py ascendingly according to x axis coordinates
3: forp; € P, do

4: forc; € {c1,...,cm } do

5: if QUERY(p;, ¢;) then

6: Union(Py, {c;})

7: end if

8: end for

9: end for

10: Repeat previous loop in descending order.
11: end for

