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tion via Krylov-Schur and Cholesky Factorization.

1 High SNR hypothesis

The log-likelihood function we put forward,
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2σ2
t

∑
(i,j)∈E

||t̃ij − ti + RiR
>
j tj ||2 +

1

σ2
R

∑
(i,j)∈E

tr
(
R̃ijRjR

>
i

)
, (1)

is in general not separable in the translation and rotation terms. Notwithstanding, provided there is a high
Signal-to-Noise Ratio (SNR), an approximate optimum can be obtained by maximizing first the second term
on the right side of (1), which is a function of the rotations only, and then using these rotation estimates to
compute the approximate optimal translations. In order to show that this is a reasonable approximation we
start by rewriting the log-likelihood as a sum of two functions ψ and ζ. The goal is to group together in ζ
all the rotations as follows.
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Let t∗ and R∗ denote the set of translations and rotations, respectively, that maximize fML. If we have
relative pose measurements with a high SNR, we can expect

∀ (i, j) ∈ E : t̃ij ≈ t∗i − R̃ijt
∗
j (3)

to be a valid approximation. From (3), we can replace t̃ij − t∗i in (2) and rearrange the rotations in the trace
of the rightmost term to obtain
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The matrix t∗j t
∗>
j is symmetric and rank-one. Consequently, under the high SNR hypothesis in (3), the

optimization problem
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will yield a good approximation of the set of rotations that maximize fML.
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2 Comparison between MAKS and Gauss-Newton
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Figure 1: Trajectory estimates. Comparison between MAKS (blue) and 10 Gauss-Newton iterations using
g2o (red) initialized from MAKS for 6 SLAM datasets by Carlone et al.
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