
Dense-Resolution Network for Point Cloud Classification and Segmentation
Supplementary Material

1. Overview
In this supplementary material, we present more contents of our paper Dense-Resolution Network for Point Cloud Classi-

fication and Segmentation. To be specific, we provide the implementation of the Adaptive Dilated Point Grouping (ADPG)
method and loss function for the experiments. Besides, we show the details of our Multi-resolution (MR) branch. By com-
paring the relevant model parameters with others on ModelNet40 dataset, we discuss the complexity of our network.

2. Implementation
In the main paper, we introduce the pipeline for the ADPG method and the design of loss function for training. In this

section, we provide more practical details in our experiments.

2.1. ADPG Learning Process

In practice, dmax is an empirical parameter which may vary between the data scales or networks. In our experiments, we
set dmax = 5 for ShapeNet Part, ModelNet40 and ScanObjectNN datasets, since they share the similar scales of point clouds.

Assume that we already have the indices IN×(k·dmax) and metrics EN×(k·dmax) for k · dmax candidates, the crucial step
of ADPG is to learn a certain dilation factor for each point based on the known information. In Section 3.1 of the paper, we
present the general description for this process:

DN = S
(
J
(
σ
(
M(EN×(k·dmax))

)))

Specifically, we apply a two-layer M: Conv
{
(k·dmax/2),1

}
[1,1] first, then activate corresponding negative values using a

logistic function: y = 1/(1 + e−x). Since the values are in between 0 and 1, J can further enlarge the variance by
projecting them to another interval. Here we expect the values to be in [0.5, 5.5], thus a simple linear projection function
y = 5 · x + 0.5 serves as J . Finally, we adopt round function as S to scale the continuous values in [0.5, 5.5], by which an
integer in {1, 2, 3, 4, 5} can be assigned as the dilation factor for each point. To summarize, the dilation factors learning in
our implementation follows:

DN =

5 ·
1

1 + e

Conv

{
(k·dmax/2),1

}
[1,1]

(EN×(k·dmax))

 + 0.5


2.2. Loss Function

As discussed in the Section 3.3, the total loss for training is the sum of cross-entropy loss Lce and weighted error-
minimizing module losses:

∑
wi · Leri . In practice, we apply 4 error-minimizing modules in the Full-resolution (FR) branch

of our network, adopting the similar layers and feature dimensions as in [4]. In terms of our experiments on the ShapeNet
Part, ModelNet40 and ScanObjectNN datasets, we empirically set a larger weight for the first error-minimizing module
(w1 = 0.1) since its output affects the both branches and constrains the network learning at the beginning. In contrast, the



Figure 1. The input of the MR branch is the output of the first error-minimizing module in the FR branch, while the output of the MR
branch merges with the output of the FR branch following the behavior as Equation 4 in the main paper.

method model size (MB) time (ms) overall acc. (%)
PointNet [2] 40 16.6 89.2
PointNet++ [3] 12 163.2 90.7
PCNN [1] 94 117.0 92.3
DGCNN [4] 21 27.2 92.9
Ours 70 19.2? 93.1

Table 1. Complexity of classification network on ModelNet40. (∗running on GeForce GTX 2080Ti)

weights for other modules’ losses can be smaller (w2 = w3 = w4 = 0.01). Although the additional losses are incorporated,
the cross-entropy loss still contributes the most to the training. The overall loss L in our practice is formulated as:

L = Lce + 0.1 · Ler1 + 0.01 · Ler2 + 0.01 · Ler3 + 0.01 · Ler4 .

3. Multi-resolution Branch
In general, the MR branch is implemented with light-weight operations such as single-layer MLPs, and only investigates

2 more resolutions of the point cloud using basic Local Graph Encoding as Equation 2 in the main paper. For upsampling
and downsampling operations, they are implemented based on CUDA without learnable weights. Besides, we use the dense
connections and concatenations to enhance the relations between the feature maps of different resolutions.

4. Model Complexity
In addition, we adopt the network complexity data provided in [4] for a fair comparison. As Table 1 shows, our model

size is relatively large due to the parameters and operations needed. However, the inference time of our method running on a
single GeForce GTX 2080Ti GPU is only 19.2 ms, which indicates the ability of our model in forward procedure thanks to
the algorithm optimization and relevant CUDA implementation.

References
[1] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural networks by extension operators. arXiv preprint

arXiv:1803.10091, 2018.
[2] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmenta-

tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 652–660, 2017.
[3] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric

space. In Advances in neural information processing systems, pages 5099–5108, 2017.
[4] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic graph cnn for learning

on point clouds. ACM Transactions on Graphics (TOG), 38(5):146, 2019.


