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Figure 6. The histogram of p(drel|∇p = 0) (blue) and
p(drel|∇p = 1) (red). Strong depth continuities are more proba-
ble to coincide with panoptic boundary locations (∇p = 1).

A. Empirical Motivation
To confirm the visual observations in Fig. 1 of the main

paper, we take 200 images from the Synscapes dataset [36]
and plot the histogram of relative edge strengths condi-
tioned on whether or not they coincide with the edges of the
panoptic maps. Fig. 6 shows the results. Here, we identify
panoptic discontinuities as

∇p = (1− δ(∇xp)) ∨ (1− δ(∇yp)), (11)

where∇x and∇y are the differences between adjacent pix-
els in x and y direction, respectively. δ is the Dirac delta
and ∨ denotes the pixel-wise logical OR operator.

We clearly observe that the conditional probability of
strong depth edges is higher for panoptic boundaries than
away from boundaries, which motivates our panoptic depth
boost loss in the main paper.

B. Detailed Experimental Results
Here, we additionally show the full evaluation of the

experiments for all our models and the baselines from the
main paper in Tables 5 to 8 below. For all models we re-
port values for the absolute relative difference (Abs. Rel.),
squared relative difference (Sq. Rel.), root mean squared
error linear (RMSE) and logarithm (RMSElog), δ < 1.25,

δ < 1.252, and δ < 1.253. The first four measures are er-
rors, hence the lower the better. For the last 3 evaluation
metrics, the higher value indicates a better accuracy.



Method Abs. Rel. Sq. Rel. RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Xu et al. [38] 0.246 4.060 7.117 0.428 0.786 0.905 0.945
Zhang et al. [41] 0.234 3.776 7.104 0.416 0.776 0.903 0.949
Wang et al. [33] 0.227 3.800 6.917 0.414 0.801 0.913 0.950
Ours 0.1783 2.9270 9.023 0.248 0.771 0.922 0.971

Table 5. Complete results for Table 1 of the main paper.

Method Abs. Rel. Sq. Rel. RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Godard (M) [11] 0.141 1.186 5.677 0.238 0.809 0.928 0.969
Chen [3] 0.118 0.905 5.096 0.211 0.839 0.945 0.977
M + panoptic 0.111 0.870 4.92 0.206 0.849 0.951 0.979

Godard (M2) [12] 0.107 0.849 4.764 0.201 0.874 0.953 0.977
M2 + panoptic 0.103 0.840 4.761 0.200 0.879 0.958 0.980

Table 6. Complete results for Table 2 of the main paper.

Method Abs. Rel. Sq. Rel. RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Monodepth [11] 0.148 2.104 6.439 0.224 0.839 0.936 0.972
Ramirez et al. [28] 0.144 1.973 6.199 0.217 0.849 0.940 0.975

Geometric baseline 0.147 1.998 6.312 0.221 0.835 0.936 0.973
+Lpgs 0.142 1.989 6.306 0.219 0.848 0.940 0.976
+Lplr 0.138 1.951 6.206 0.215 0.842 0.930 0.977
+Lpga (Final) 0.135 1.949 6.203 0.214 0.848 0.939 0.976

Table 7. Complete results for Table 3 of the main paper.

Segmentation Abs. Rel. Sq. Rel. RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Geometric 0.147 1.998 6.312 0.221 0.835 0.936 0.973
G+Semantic 0.141 1.963 6.284 0.216 0.840 0.939 0.975
G+Panoptic 0.135 1.949 6.203 0.214 0.848 0.939 0.976

Table 8. Complete results for Table 4 of the main paper.


