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S.1. Flux Changepoint Detection
S.1.1. Offline Algorithm: Cost Function Derivation

Consider a set of photon time stamp measurements {x;})Y ;. Here each z; is a valid measurement, and in the frame-
readout capture mode, described in the main text, this is different than the ¢;’s. If no photon is detected in a frame we add
the frame length to the next detected photon. We do this so each x; will be i.i.d. and distributed exponentially. We again
wish to find a set of change points, {z;,,...,x;, }. In general, the optimization problem for changepoint detection is given
by Eq. (P2) in [29]:
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The summation term represents the likelihood that each segment in between changepoints come from the same underlying
distribution, while the regularization term is needed because the number of changepoints are not known a priori. For our
case ¢(-) is the negative log likelihood for a set of exponentially distributed measurements. Let f(x) be the exponential
density function with rate parameter ®, and let @ be the maximum likelihood estimate for ® for the set of measurements

{x1, ... 21,,, }. Note that the maximum likelihood estimator maximizes the log likelihood. To derive ¢(-), we begin with Eq.
(C1) from [29]:
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where the last line comes from the fact that </I;7; = % Plugging Eq. (S6) into Eq. (S1), the last term sums to a constant
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N and can be dropped from the optimization. Then we convert to the direct measurments ¢; by expanding out where no
photons where found to get Eq. (2).

S.1.2. QIS: Offline Cost Function

A quanta image sensor (QIS) is another sensor type capable of measuring single photons. Unlike a SPAD, the QIS senor
only gives a binary output for each photon-frame corresponding to whether or not a photon was detected. Note that we can
convert our experimental SPAD data to QIS data by stripping the SPAD data of the timing information. Let n; = 0 if the
it" QIS photon-frame detects no photons and n; = 1 otherwise. Let 7;, be the temporal bin width for each photon-frame.
Suppose the jot is exposed to a flux of @, then the probability of detecting a photon during photon-frame ¢ is:
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Where ¢ is the quantum efficiency. We can model measuring multiple photon-frames with the QIS jot as a Bernoulli Trial,
with probability of success given by Eq. S7. For a set of N photon-frames the maximum likelihood estimator, ® (g, is given
by [17],
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This flux estimator should also be used in SPAD sensors under very high fluxes, where their is significant probability of
detecting more than one photon in a period equal to the SPAD’s time quantization. Similarly, the MLE in Eq. 1 can be used
in low light conditions for a QIS sensor.

We derive the changepoint cost function in the raw data domain. Following the steps of the earlier derivation, with f(n;)
being the Bernoulli distribution with parameter p:
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S.1.3. Online Flux Changepoint Detection Algorithm

Offline changepoint detection is suitable for offline applications that capture a batch of photon frames and generate a
deblurred image in post-processing. In some applications that require fast real-time feedback (e.g. live deblurred video) or
on-chip processing with limited frame buffer memory, online changepoint detection methods can be used. We use a Bayesian
online changepoint detection method [31]. This algorithm calculates the joint probability distribution of the time since
the last flux changepoint. For exponentially distributed data, it uses the posterior predictive distribution which is a Lomax
distribution (see Suppl. Note S.1.3). We assume that the flux changepoints appear uniformly randomly in the exposure
window 7. Because detecting a flux changepoint after only one photon is difficult we use a look-behind window that
evaluates the probability of the photon 20-40 photon frames into the past as being a flux changepoint. Using a look-behind
window greatly increases detection accuracy and introduces only minor latency (on the order of tens of microseconds). We
also found that it is helpful to use a small spatial window that spreads out flux changepoints in space to increase the density
of changepoints. In general, online detection will work better for slower motion as the algorithm learns from past data. We
compare online and offline detection in Suppl. Note S.3.

We use a Bayesian changepoint detection algorithm shown in Algorithm 1 of [31]. Here we derive the posterior predictive
distribution used in Step 3 of their algorithm. We use a Gamma(c, 3) prior for ®. Let x := {z;}}¥,. It can be shown that
®|x ~ Gamma(a + N, 8 + Zfil x;). The predictive posterior density is given by:
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which is a Lomax density with shape parameter « + N and scale parameter 5+, x;. For our data we used a Lomax(1, 100)
in Step 3 and H(-) = 40 in Steps 4 and 5 of Algorithm 1 in [31].

For online detection we use code modified from [33] (Commit: 7d21606859feb63eba6d9d19942938873915f8dc). Fig. 1
shows the results of using the online changepoint detection algorithm. Observe that some of the edge details are better
preserved with the offline changepoint algorithm.

We run the same experiment as in Fig. 4, where an orange is rotated at different brightness levels. We show the resulting
SNR for online vs offline detection in supplementary Fig. 2

Offline

Online

(a) “Fan” (b) “Checkerboard”

Supplementary Figure 1. Comparing online vs. offline changepoint detection. We processed the two experimental datasets using our
online and offline changepoint detection algorithms. There is a slight loss of edge details when the online algorithm is used.
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Supplementary Figure 2. Online vs. Offline Rotating Orange SNR We run the same experiment as in Fig. 4, with the rotating orange at
many light levels. Note that the resulting SNRs of the two methods are quite similar.



S.2. SNR Analysis

We test our deblurring algorithm for different motion speeds for the case of rotational motion using the “orange” dataset
in the main text. We measure the SNR by computing the discrepancy between the ground truth flux image and the deblurred
result. We do this by temporally downsampling the original photon frames, so the number of photons decrease as the
motion speeds up. Suppl. Fig. 3 shows how changing the regularization parameter ) in the offline flux changepoint detection
algorithm effects the SNR. We find that as long as A is high enough a good reconstruction SNR stays high. In Suppl. Fig. 4
we show that our algorithm converges to the performances of a long exposure capture (with motion blur) if the number of
photons per degree of rotation falls below 3.
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Supplementary Figure 3. Effect of offline changepoint algorithm regularization parameter \. If ) is large enough we get good per-
formance. When A is too small, many flux changepoints are found, which will cause the CPV to be too noisy to properly align frames.
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Supplementary Figure 4. Effect of number of photons captured per degree of rotation. Our algorithm is unable to find flux changepoints
at speeds of 3 photon frames per degree. When no flux changepoints are found we just get a long exposure image. We also see that the
SNR for a blurry image (long exposure) or a noisy image (short exposure) is worse than the proposed deblurring method until our method
converges to the long exposure image.

We run the same experiment as in Fig. 4, where an orange is rotated at different brightness levels. We test our offline
QIS changepoint detection method by removing the timing information and only considering a binary output. Our adaptive
changepoint method helps at low light levels, see Fig. 5.
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Supplementary Figure 5. QIS, SNR vs. Brightness. We run the same experiment as in Fig. 4, with the rotating orange at many light
levels. We remove timing information from the raw data to create QIS binary data frames and run the same deblurring experiment. Again
our adaptive changepoint method is helpful in low light scenarios. Note that the sharp drop on the right is due to saturation of a QIS sensor.



S.3. Additional Simulation Results

This section contains some additional simulated results. A second scene with two toy cars is displayed, we use the same
parameters as the toy car scene in the main text for frame generation, changepoint detection and deblurring. For this scene
the dark car moves 90 pixels and has a contrast 3.3. The bright car has a contrast of 1.2 and moves 30 pixels. Our results are
shown in supplementary Fig. 6 and the clustered changepoints are shown in supplementary Fig. 7. Again, our method is able
to deblur both moving cars.

Ground Truth Sample Frame Short Exposure 'Long Exposu Deblurred Image [Proposed]

Supplementary Figure 6. Simulated Multiple Objects. We simulate SPAD data from a 240 fps phone video of two rolling toy cars, a fast
moving dark car and slow moving bright car. From left to right, the ground truth image shows the result of generating the same number
of photon frames from the first frame of the video sequence. The short and long exposure images show the results of using only the first
75 and 250 photon frames, respectively. Notice that the short exposure preserves the dark car while the bright car is quite noisy, on the
other hand, the long average blurs the dark car but preserves details of the bright one better. Finally, our deblurring algorithm is able to
reconstruct both the dark and bright car.

Clustered Flux Changepoints

Supplementary Figure 7. Clustered Flux Changepoints Displayed are the 2 flux changepoint clusters found for the scene in Supplemen-
tary Fig. 6. We only display half of the flux changepoints in each cluster for visualization purposes.



We simulate a simple pixel art scene to demonstrate the advantage of deblurring on a changepoint video rather than burst
frames. Notice in supplementary Fig. 8 that the changepoint video frame is able to capture a wide range of motion speeds
and contrasts that a single fixed frame cannot capture.

Ground Truth (t=100) Fixed Window 50 Fixed window 200

Changepoint Video + Deblur

Supplementary Figure 8. Pixel Art Multiple Objects. We simulate a scene where a bright car moves quickly to the right and a dim car
moves slowly to the left. Notice that in the short averaging window, the dim car is lost in the noise while in the long averaging window the
bright car is blurred. The sum of all photon frames maintains the background quite well. The changepoint video frame adapts to motion
in each pixel and captures both the bright car, the dim car, and the background. Notice that the changepoint video frame loses some of the
structure of the dim car due to noisy changepoints. We combine the adaptive changepoint video with a deblurring algorithm to deblur both
cars.



S.3.1. Global Motion Results
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Supplementary Figure 9. Simulated motion deblurring results for different types of global motion. From left the right the columns
show, a ground truth image that shows the result if the same number of photons are sampled from the original image but with no motion.
A long exposure where all photon frames are summed, the result is a blurred image. A short exposure image shows the combination of the
first 20 photons of the timestamp data, notice the edges are sharp but noise dominates. The result of the global motion deblur algorithm is
shown in the last column. (Original images from FreeImages.com)

We start with a ground truth high resolution image, successively apply rigid transformations (using known rotations
and translations), and generate photon frames using exponentially distributed arrival times. We reassign these high spatial
resolution timestamps a lower resolution 2D array to simulate a low resolution SPAD pixel array.

We model a photon frame readout from a SPAD array with 8000 bins and bin width of 256 ps. Images are scaled so that
the true photon flux values ranges between 10* and 10® photons per second. We then iteratively transform the flux image
according to known motion parameters, and downsample spatially to a resolution of 425x425 before generating photon
timestamps.

For the horizontal translation blur, we moved the image 1 pixel to the right blur, we rotate the image 0.1 degree for every
10 generated photons for a total of 1000 photons. To emulate random camera shake, we create random motion trajectories
by drawing two i.i.d. discrete uniform random variables between —3 and 3 and use that as the number of pixels to translate
along the horizontal and vertical directions. We generate 20 photons per translation for a total of 2000 photons. We use the
BoTTOMUP algorithm [29] with A = 5 for the changepoint detection step. In practice we found that the results were not
very sensitive to the choice of A and values between 2 and 12 produced similar results.

We generate photon events from an exponential distribution. We transform the flux image, then down-sample to sim-
ulate objects with more detail than pixel resolution. We then generate 10-20 photons from the down-sampled flux image.
Continuing this we get a 3-d tensor of photons representing global motion of the original image.

Supplementary Fig. 9 shows simulated deblurring results for three different motion trajectories. The top row shows a
case of horizontal translation: conventional long/short exposures must trade off motion blur and shot noise. Our deblurring
method reproduces sharp details, such as vertical lines of the tree stems. The second row shows a case of rotation: note that
different pixels of the scene now undergo different amount of motion per unit time. Our method reconstructs fine details



of the texture of the orange peel. The bottom row shows random camera shake with unstructured motion. Our technique is
able to correct for this global motion by approximating the overall motion trajectory as a sequence of small translations and
rotations. Supplementary Fig. 10 shows the comparison between the true motion trajectory and the trajectory estimated as

part of our deblurring algorithm.
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Supplementary Figure 10. Comparison of estimated and true motion trajectories. This plot shows the true and estimated motion

trajectories for the random shake case in Fig. 9. The recovered motion tracks the ground truth motion quite well.



S.4. Comparison of BottomUp and PELT

In this section we run some of the same simulation experiments from the main text but with the BottomUp algorithm
instead of the PELT algorithm. In Suppl. Fig. 11 we compare the ability of both algorithms on the toy car scene, BottomUp
seems to produce slightly more noisy and blurry results. In Suppl. Fig. 12 we re-run the contrast vs. speed simulations and
find that BottomUp does comparably well with slightly more false positives.

Ground Truth Frame PELT BottomUp

Supplementary Figure 11. Toy Car Simulated Scene. Here are the results using the toy car simulated scene. The parameters used are the
same as in the main text. Note that the BottomUp algorithm is able to detect and deblur both cars; however, it seems to produce a slightly
noisier and blurrier result. For this scene 210 by 300 with 690 photon frames per pixel, on our unoptimized system with 30 parallel cores,
it takes the PELT algorithm two minutes to run while the BottomUp takes approximately one minute.

Contrast-Speed Trade-off
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Supplementary Figure 12. BottomUp vs. PELT - Contrast vs. Speed. We repeat the contrast vs. speed simulation as done in the main
text but with the BottomUp algorithm. Note that the BottomUp algorithm does comparably well for A = 6. For A = 4, the BottumUp
algorithm is able to detect more difficult objects at the expense of false positives during easier scenarios.
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S.5. Experiment Setup

For the experimental investigation we used a 32x32 InGaAs SPAD array from Princeton Lightwave (PL GM-APD 32
x 32 Geiger-Mode Flash 3-D LiDAR Camera) and an RGB camera (VIS/BW point gray Grashopper 3, GS3-U3-23S6M-
C) capturing the same field-of-view. The SPAD camera samples photon events with a depth of 10! bins and 250 ps/bin.
Further, during the experiments we used a frame readout rate of 50 kHz. The InGaAs sensor is sensitive in near infrared
(NIR) to shortwave infrared (SWIR) wavelengths ranging from 900 nm to 1.6 pm.

During the measurements we investigated two different type of scene setups: a “fan” and a “checkerboard” scene, as
depicted in Suppl. Fig. 13. In the first scene, the fan consists of three blades mounted on a central cone and is enclosed
by a circular frame with a diameter of 18 cm. One blade was marked with a black piece of paper. The fan scene was used
to investigate rotational motion. The second scene consists of an artificial head, a white plate and a colored checkerboard.
Colors appear at a different gray levels in the SWIR wavelength images. This second scene was used to investigate random
motion due to a horizontally shaking camera.

(a) Camera Setup (b) Ambient Illumination Source

Supplementary Figure 13. Hardware setup (a) Our hardware setup consists of a Princeton Lightwave SPAD array (PL GM-APD 32x32
Geiger-Mode Flash 3-D LiDAR Camera) and an RGB camera (VIS/BW point gray Grashopper 3, GS3-U3-23S6M-C) capturing the same
field-of-view. (b) Ambient illumination is provided by a diffuse light source (broadband arc lamp ThermoOriel Model 66881).

(a) “Fan” scene (b) “Checkerboard” scene

Supplementary Figure 14. Experimental Scenes (a) The “fan” scene consists of a small fan with a black square patch on one of the fan
blades. (b) The “checkerboard” scene consists of a large color checkerboard and a mannequin head.

S.6. Description of Video Results

Please refer to included . txt and .mp4 files for supplementary video results.
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