A. TPOT

A detailed description of the [POT algorithm used in our
framework is summarized in Algorithm[2] where “®” is the
Hadamard product and “-” represents element-wise divi-
sion. It is notable that this method works well with batch-
based optimization, i.e., N in Algorithm [2] can represent
either the size of the whole dataset or the size of a batch.

Specifically, compared with the Sinkhorn iteration algo-
rithm, IPOT changes the objective function by adding an
entropy regularizer on 7'. Although such a modification
converts the optimal transport problem to be strictly convex,
its success is highly dependent on the choice of regularizer
weight. On one hand, if the weight is too large, Sinkhorn it-
eration only obtains an over-smoothed T" with a large num-
ber of iterations. On the other hand, if the weight is too
small, Sinkhorn iteration suffers from numerical-stability
issues. IPOT, in contrast, solves the original optimal trans-
port problem. In particular, the regularizer in (7) just con-
trols the learning process and its weight A mainly affects
the convergence rate. If we reduce its weight A with re-
spect to the number of iterations, the final result T* will be
equal to that obtained by solving (3)) directly. Additionally,
because the weight A\ mainly affects convergence rate, we
can choose it in a wide range to achieve better numerical
stability than Sinkhorn iteration.

Algorithm 2: IPOT Algorithm

1: Input: Real features {z,,},_;, generated features
(@M A =05, =[L], 0= [L].

2: Output: Optimal transport T"*

3 Caleulate C = [Crp], with Gy = 1 — 200
4 G =exp(—%).

5: Initialize a = p, T = ;wT

6: fort=1,..., T do

77 K=GoTW

8: Sinkhorn-Knopp Algorithm:
9. forj=1,....,Jdo

10: b= g%, anda = 3.

11:  end for

122 TUHY = diag(a) K diag(b)

13: end for

14. T* = TT+D)

12



