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Abstract

Concerns regarding the wide-spread use of forged im-
ages and videos in social media necessitate precise detec-
tion of such fraud. Facial manipulations can be created by
Identity swap (DeepFake) or Expression swap. Contrary to
the identity swap, which can easily be detected with novel
deepfake detection methods, expression swap detection has
not yet been addressed extensively. The importance of fa-
cial expressions in inter-person communication is known.
Consequently, it is important to develop methods that can
detect and localize manipulations in facial expressions.

To this end, we present a novel framework to exploit
the underlying feature representations of facial expressions
learned from expression recognition models to identify the
manipulated features. Using discriminative feature maps
extracted from a facial expression recognition framework,
our manipulation detector is able to localize the manipu-
lated regions of input images and videos. On the Face2Face
dataset, (abundant expression manipulation), and Neural-
Textures dataset (facial expressions manipulation corre-
sponding to the mouth regions), our method achieves higher
accuracy for both classification and localization of manipu-
lations compared to state-of-the-art methods. Furthermore,
we demonstrate that our method performs at-par with the
state-of-the-art methods in cases where the expression is not
manipulated, but rather the identity is changed, leading to
a generalized approach for facial manipulation detection.

1. Introduction

Facial expressions are critical in communicating our
thoughts, ideas, emotions, and in responding to each other
emotionally and physically. With effectual facial expres-
sions, a person may convince others to believe in ideas with-
out verbal communication. Due to the power of facial ex-
pressions in person-to-person communication, it is critical
to determine if the facial expressions in an image or video
are the individual’s original expressions or manipulated by
an external agent. Facial manipulations can be created by
Identity swap (DeepFake) or Expression swap. In this work,
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Figure 1: Our overall framework for detection of facial ex-
pression manipulation and localization. Manipulated mage
is from Face2Face dataset [1]. Class activation map (CAM)
is the visualization of feature map from facial expression
recognition system.

we focus on the problem of detecting facial expression ma-
nipulations while ensuring that performance does not de-
grade for the identity manipulation case, thus providing a
generalized version of facial manipulation detection.

Facial expression changes in the Face2Face dataset is a
result of a facial reenactment system that transfers the ex-
pressions of a source video to a target video while main-
taining the identity of the target person. Similarly, Neural-
Textures [2] reenacts face motions of an input video to a
target video mainly affecting the regions around the mouth.
We hypothesize that to detect such facial expression ma-
nipulations, recognition of the expression would be helpful.
Based on this key idea, we design a framework called the
Expression Manipulation Detection (EMD) system. Fig. 1
presents this key idea of using facial expression recogni-
tion to guide the manipulation detection procedure. As can
be seen in the figure, the main manipulations appear in the
parts of the face which constitute expression change, such
as, regions around eyebrows and mouth which are critical
regions for facial expressions.

In order to exploit prominent features corresponding to
facial expression, we use Facial Expression Recognition
(FER) systems in our face manipulation detection frame-
work (see Sec. 3.3 for details). In particular, we adopt En-
semble with Shared Representations (ESR) [3] as the back-
bone network of FER system. Feature maps from the penul-
timate layer of FER systems contain important information
regarding facial expressions in faces [4], which we aim to
exploit in order to improve over state-of-art manipulation
detection methods.
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Figure 2: This figure represents our proposed approach for facial expression manipulation detection and localization. Ex-
tracted features from FER System (FFm

i ), along with the ones from manipulation detection stream (FMm
i ), are fed into the

decoder for pixel-wise localization of the manipulated region. Notation is described in the text. The details are explained is
Sec. 3.3 and 3.4

1.1. Framework Overview

A pictorial illustration of our facial expression manipu-
lation detection (EMD) framework is presented in Fig. 2.
EMD utilizes a two-stream network for manipulation de-
tection. One stream (FER) is responsible for extracting
important information for facial expressions. The feature
maps from the last layer of FER stream provide information
about the facial regions that encode the expression infor-
mation. The other stream is an encoder-decoder architec-
ture which is responsible for manipulation detection. The
encoder projects the image to a lower dimensional space,
where the features from the FER system are combined and
then a decoder is used to predict the manipulated regions (if
any) of the facial image.

Our FER system uses ESR [3] to extract expression rele-
vant features. The penultimate layer feature map of the FER
system contains features which are discriminative to detect
relevant portions of the image specific for expression.

The second stream, i.e., the manipulation detection and
segmentation system is an encoder-decoder architecture.
The decoder takes the latent space features from the en-
coder and FER system combined and projects it using
DeepLabv3+ [5] for manipulation localization. (see Fig. 2).

Main contributions. We propose a novel approach for fa-
cial expression manipulation detection leveraging upon a fa-
cial expression recognition system. This leads to higher per-
formance in forgery detection where the facial expression
is manipulated, as well as localizing the regions that have
been manipulated. Our system achieves at par performance
in the case where the identity is manipulated, ensuring gen-

eralizability of our method. Our method leads to more than
3% improvement in manipulation classification and local-
ization over the state of the art on the Face2Face dataset
[1] where the expressions are manipulated. We also show
the effectiveness of our method by presenting the results
on NeuralTextures dataset [2] where the facial expressions
corresponding to the mouth regions have been modified.
On NeuralTextures dataset, we achieve 2% higher accuracy
for classification and localization. Finally, our framework
achieves competitive results compared to the state-of-the-
art methods on DeepFake dataset [6] and DFDC dataset [7]
where identity, rather than expression, is manipulated.

2. Related Works

Multimedia forensics aims to ensure authenticity, origin,
and provenance of an image or video. In recent years, there
has been a variety of works in forgery classification and
forgery localization. We will briefly survey existing work
in both the mentioned categories, as well as facial expres-
sion recognition. There is no work that specifically focuses
on the problem of detection and localization of facial ex-
pression manipulations.

2.1. Forgery Classification

In forgery classification area, there has been a variety of
works in image manipulation detection [8, 9, 10, 11, 12, 13,
14] or fake faces classification in videos [15, 16, 17, 18].

Manipulation of faces in images/videos has been in the
news lately. Manipulation detection in faces is challeng-
ing since exiting manipulation techniques leave almost no
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visual traces. In a recent work [17], authors utilize an atten-
tion mechanism to improve the feature maps for the clas-
sification task, which motivates our proposed approach for
using the facial expression recognition system.

To detect face manipulation in videos, some approaches
utilize video temporal features to tamper individual frames
in videos causes inconsistency. The work in [19] uses CNN
as feature extractor and LSTM to capture video temporal
features. Some other works use physiological signals, like
eye blinking in [20] and head movements in [21], that are
not well presented in the synthesized fake videos. Instead
of using temporal features, authors in [15, 16, 22, 23] pro-
posed methods that utilize images from different frames of
a video. Work in [24] proposed an approach based on visu-
ally exposed features in a manipulated face.

2.2. Forgery Localization

Localizing the exact position of manipulated regions
in an image or video provides critical additional informa-
tion. There has been a variety of works that attempted
to segment out tampered regions [25, 26, 27]. Early
works [28, 29, 30] reveal the tampered regions using tra-
ditional image processing-based approaches. Researchers
in [26, 31, 32, 33, 34] exploit machine learning techniques
in order to classify if a patch is manipulated or not.

Fake face segmentation is one of the recent challenges
which has not yet been addressed extensively. Some of the
proposed methods may have high performance in face ma-
nipulation detection [15] but do not address the task of seg-
menting the manipulated region. Multi-tasking approaches
are promising in the combined classification and segmenta-
tion task. Work in [23] uses Y-shape architecture to classify
manipulated videos and segment tampered faces simultane-
ously. In our proposed method, in addition to manipula-
tion classification and segmentation stream, we add another
stream as face expression recognition which operates jointly
with the manipulation stream in order to exploit necessary
information in faces. This improves the performances in
both classification and segmentation.

2.3. Facial Expression Recognition (FER)

The development of machine learning and the advent of
deep learning have significantly improved the research of
FER. There have been variety of works in literature which
obtain high performance for facial expression recognition
[35, 36, 37, 3, 38, 39, 40]. The careful design of local
to global feature learning with a convolution, pooling, and
layered architecture produces a rich visual representation,
making CNN a powerful tool for facial expression recogni-
tion. Research challenges such as Kaggle’s Facial Expres-
sion Recognition Challenge suggest the growing interest in
the use of deep learning for the solution of this problem.

To have more accurate FER, the networks become

deeper and deeper in order to deal with more complex clas-
sification tasks. Also, attention mechanisms are introduced
in many networks to improve facial expression recognition.
Authors in [41] proposed a facial expression recognition
network with the visual attention mechanism. Work in [3]
is one of the most recent in this area showing promising
results on facial expression datasets.

3. Methodology
In this section, we present our framework for facial ex-

pression manipulation detection and localization. We start
with a formal description of the problem statement followed
by the two streams of our framework - Facial Expression
Recognition (FER) stream and the encoder-decoder based
manipulation detection stream which receives information
from FER for better detection.

3.1. Problem Statement

Consider we have a dataset of tuples XM =
{(Xm

i ,Mm
i , ymi )}Ni=1, where Xm

i ∈ RH×W×3 is a 2D im-
age of faces, Mi ∈ RH×W is 2D binary mask of manipu-
lated regions, and yi ∈ {0, 1} is an indicator whether ymi
is manipulated or not. Given such a dataset, our main goal
is to learn a model that would be able to classify a test im-
age to be either manipulated or not, and more importantly,
localize portions of the image which are manipulated.

To identify manipulations in facial expressions, we need
to focus on regions specific for expressions; thus, we utilize
an auxiliary task of Facial Expression Recognition (FER).
We use a dataset of tuples XF = {(Xf

i , y
f
i )}N

′

i=1, where
Xf

i ∈ RH×W×3 and yfi ∈ {1, . . . , C}, and C is the num-
ber of facial expression categories. Note that we use the
superscripts m and f to denote data points from the manip-
ulation set XM and facial expression set XF respectively.

3.2. Algorithm Overview

Our EMD system consists of two main parts including
FER and encoder-decoder. We train the FER module using
the dataset XF . To train the encoder-decoder architecture
for manipulation detection, our framework takes informa-
tion from the FER module. However, we pass the images in
XM through both the streams - an encoder to obtain features
necessary to detect manipulations, and an FER module to
obtain features specific to facial expressions. We combine
these features in the latent space and then pass them through
a decoder to spatially localize the manipulated regions.

3.3. Facial Expression Recognition

We utilize one of the state-of-the-art methods for fa-
cial expression recognition proposed in [3] as a pre-trained
model for recognizing the facial expressions.

FER system presented in [3] consists of two building
blocks. The base of the network (shared layers in Fig. 2) is
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an array of convolutional layers for low- and middle-level
feature learning. These informative features are then shared
with independent convolutional branches that constitute the
ensemble (ensemble layers in Fig. 2). From this point,
each branch can learn distinctive features while competing
for a common resource - the shared layers. This competi-
tive training emerges from the minimization of a combined
loss function defined as the summation of the loss functions
(cross-entropy loss) of each branch as follows:

LFER =
1

N ′

∑
b

∑
i

∑
c

−yfi,c log(p
f
b,i,c) (1)

where given an image Xf
i , pfb,i,c is a probability mass func-

tion over the C facial expression categories for branch b. N ′

is total number of images in the dataset.
After training the FER system, we use the pre-trained

models to predict the expression category of manipulated
images and extract the feature maps needed to be combined
with the manipulation detection stream. The reason is that,
for manipulation detection task, feature maps which high-
light the discriminative image regions important for expres-
sion recognition are useful for manipulation detection of
images where facial expressions are tampered such as ma-
nipulation in Face2Face dataset. Therefore, our FER archi-
tecture provides useful expression and location-aware fea-
tures needed for the manipulation detection task.

In the Facial Expression Recognition system, we pass an
image Xm

i through the shared convolutional network Conv
and an ensemble of B convolutional networks {Eb}Bb=1 to
generate B different feature maps of the facial expression.
For the bth ensemble convolutional branch, the feature map
corresponding to Xm

i is,

FFm
b,i = Eb(Conv(Xm

i )). (2)

We use a classifier M to infer class probabilities for the
C expression classes. For bth branch network and ith

image Xm
i , we infer the class probability vector, ρb,i =

[ρb,i,1, . . . , ρb,i,C ]. Here, ρb,i,j = M(FFm
b,i, cj) indicates

the detection probability of class cj for branch b with input
image Xm

i . Therefore, the detected expression class of an
image from bth convolutional branch is

cbdet = argmax
cj∈{c1,...,cC}

M(FFm
b,i, cj). (3)

Considering the detection of all the branches, most frequent
detected class for an image is,

cfreq = mode({c1det, . . . , cBdet}) (4)

The feature map from the branch in FER network that re-
sults in highest detection probability for the frequently de-
tected class cfreq is pooled for manipulation detection task.

So, the pooled feature map is

FFm
i = argmax

FFm
b,i∈{FFm

1,i,...,FFm
B,i}
M(FFm

b,i, cfreq) (5)

As will be discussed subsequently, we use the feature
map FFm

i after convolutional layers as auxilliary input to
the encoder-decoder for manipulation detection. As illus-
trated later in Fig. 5, we also obtain the class activation
maps (CAMs) for visualization purpose following [4].

3.4. Encoder-Decoder

Encoder-decoder networks using CNN architecture have
been extensively used in deep learning literature, specifi-
cally for semantic object segmentation. Following the lit-
erature, we adopt Encoder-Decoder architecture [5] known
as deeplabv3+ for manipulation detection and segmentation
as the task of localizing manipulation regions is similar to
semantic segmentation task.

Given an image Xm
i , we pass it through the encoder to

obtain FMm
i from one layer before the last convolutional

layer. As we are interested in detecting manipulations in
expression, we inject features from the facial expression
recognition stream into the encoder-decoder manipulation
detection stream. To do that, we also pass Xm

i through FER
and obtain features FFm

i . We then concatenate both the
feature maps as Fi = FMm

i ⊕FFm
i and pass the concate-

nated feature maps through remaining layers of encoder to
obtain latent space features. As shown in Fig. 2, we have
two loss functions for classification (Lcls) and segmenta-
tion (Lseg). We use cross-antropy loss function for classifi-
cation task defined as follows:

Lcls =
1

N

∑
i

∥ymi log(ai) + (1− ymi ) log(1− ai)∥1,

(6)
where ai is the output of binary classification which deter-
mines whether or not an image is manipulated.

Next, the decoder takes the latent space features as the
input. Consider that Si ∈ RH×W is the spatial manipu-
lation segmentation output. We compute the segmentation
loss function to measure the agreement between the seg-
mentation mask and the ground-truth mask as follows:

Lseg =
1

N

∑
i

∥Mm
i log(Si) + (1−Mm

i ) log(1− Si)∥1,

(7)
Note that each pixel in Si lies in between 0 and 1 depicting
the probability of it being manipulated or not.

The total loss function we optimize to learn the encoder
decoder architecture is as follows:

LMANI = Lcls + Lseg (8)
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3.5. Overall Algorithm

Here we discuss the overall training strategy for EMD
algorithm. This is presented in Algorithm 1. Consider that
the FER network is parameterized by ϕ and the the encoder-
decoder for manipulation detection is parameterized by θ.
We learn them separately. First we sample images from the
facial expression dataset XF , compute the loss LFER and
update ϕ using it. We then sample images from the ma-
nipulated images dataset XM , pass them through both pre-
trained FER stream and encoder-decoder stream, compute
the loss LMANI and then update θ.

Algorithm 1 Overall EMD Algorithm

1: Inputs: 1. Expression Recognition Dataset: XF

2: 2. Expression Manipulation Dataset: XM

3: Output: Manipulation Detection Network: θ
4: Random Init.:
5: 1. Facial Expression Recognition Net: ϕ
6: 2. Manipulation Detection Net: θ
7: while notconverged do
8: Mini-batch Bf = {Xf

i , y
f
i }Bi=1 ∼ XF

9: Compute: LFER(B
f ;ϕ)

10: Update: ϕ← ϕ− η▽ϕLFER

11: while notconverged do
12: Mini-batch Bm = {Xm

i ,Mm
i , ymi }Bi=1 ∼ XM

13: Compute: LMANI(B
m; θ, ϕ)

14: Update: θ ← θ − η′▽θLMANI

4. Experiments

In this section, we perform extensive experiments on
three benchmark datasets from FaceForensics++ [42] to in-
vestigate the efficacy of the proposed method. We show
results on two datasets (Face2Face and NeuralTextures)
where the images correspond to facial expression manip-
ulation and also two datasets (DeepFake and DFDC) where
the images undergo an identity change.

4.1. Datasets
FaceForensics++ Dataset. For our experiments, we

used the videos offered by FaceForensics++ [15] 1. Face-
Forensics++ (FF++) contain 1,000 real videos and 1,000
Fake videos for each type of manipulation including
Face2Face (F2F), DeepFake (DF) and NeuralTextures
(NT). For each category of real/fake videos, the dataset was
split into 720 videos for training, 140 for validation, and
140 for testing. We used videos with light compression
(quantization = 23) and high compression (quantization =
40). Images were extracted from videos using the settings
in [43]: 200 frames of each training video were used for

1https://github.com/ondyari/FaceForensics
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Figure 3: Two examples of pristine videos and their manip-
ulated versions from F2F and DF datasets. As we can see,
facial expression is manipulated in F2F videos while in DF
datasets identities are swapped.

Table 1: Benchmark Datasets for face manipulation. Our
focus in this paper is on second row, i.e., detecting expres-
sion manipulations, while not degrading performance on the
first row (identity manipulations).

Manipulation Method Dataset

Identity Swap FaceSwap, UADFV, DF-TIMIT,

DeepFakes DFD, CelebDF, DFDC,

Deeper Forensics 1.0,

FF++ (FS and DF)

Expression Swap Face2Face, FF++ (F2F and NT)

NeuralTextures

training, and 10 frames of each validation and testing video
were used for validation and testing respectively.

DeepFake Detection Challenge Dataset (DFDC).
Deepfakes are a recent off-the-shelf manipulation technique
that allows anyone to swap two identities in a single video.
In addition to deepfakes, a variety of GAN-based face swap-
ping methods have also been published. The problem of
deepfake detection has received considerable attention, and
this research has been stimulated with many datasets. The
DFDC dataset [7], different from the DF dataset as part
of FF++ described above, is by far the largest publicly-
available face swap video dataset with over 100,000 total
clips sourced from 3,426 paid actors, produced with several
deepfake, GAN-based, and non-learned methods.

We summarize the benchmark datasets for face manip-
ulation in Table 1. As Table 1 shows, all the deepfake
datasets are based on face identity swapping. The only
dataset that contains both identity and expression manip-
ulation is FF++ [42]. In FF++, F2F and NT are the only
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manipulation techniques that change the facial expression,
while two other techniques (FaceSwap and DeepFake) are
based on identity change.

To demonstrate the difference between identity swap and
expression swap, we show some examples from both cate-
gories. Fig. 3 shows 5 frames from 2 different face ma-
nipulation datasets (F2F and DF). As we can see, tampered
videos from F2F are undergo expression manipulation. The
shape of lips and eyebrows which contribute substantially
to facial expressions is changed in most of the frames from
F2F vidoes. To the contrary, the tampered videos from DF
do not demonstrate any major expression change in com-
parison to original ones. Therefore, only two datasets (F2F
and NT from FF++) satisfy the criteria and we evaluate
the performance on those datasets. We also present the
results on DF and DFDC datasets to demonstrate that our
method performs at-par with the state-of-the-art methods in
cases where the expression is not manipulated, but rather
the identity is changed, thus ensuring generalizability of the
approach. (Further details in Sec. 4.3.1)

Facial Expression Datasets. We use AffectNet [44], a
new database of facial expressions. We trained our FER
system on AffectNet training set and used F2F, NT, DFDC
and DF datasets as manipulation detection datasets. Affect-
Net contains more than 1M facial images collected from the
Internet. The dataset is divided into 11 facial expression cat-
egories - neutral, happiness, sadness, surprise, fear, disgust,
anger, contempt, none, uncertain, and no-Face.

4.2. Implementation

In face forensics, faces play an important role and con-
tain key features for manipulation detection. Therefore, in-
stead of using the whole image, we extract the faces as a
pre-processing step and only use the face regions to train
the models. The FER system has shared and ensemble lay-
ers consisting of CNNs using 5x5 and 3x3 convolutional
windows with the stride of 1. Following each convolutional
layer is a batch normalization layer [45].

The encoder-decoder architecture consists of Xception-
Net with separable convolution as encoder, spatial pyramid
pooling and CNNs with 3x3 convolutional windows as de-
coder. We transfer XceptionNet to our task by replacing
the final fully connected layer with two outputs. The other
layers except last convolutional layer (the layer after fea-
ture concatenation) and fully connected layer are initialized
with the ImageNet weights. To set up the inserted fully con-
nected layer, we fix all weights up to the last convolutional
layer and pre-train the network for 3 epochs. After this step,
we train the network for 20 more epochs and choose the best
performing model based on validation accuracy.

The framework is implemented on PyTorch. We trained
the network using the ADAM optimizer [46] with a learn-
ing rate of 0.001, a batch size of 16, β of 0.9 and 0.999,

and ϵ equal to 10−8. The implementation consumes 11GB
memory GPU and it takes 126hrs ( 5 days) for 20 epochs.
For Encoder-Decoder (deeplabv3+ with pretrained Xcep-
tion, fixed parameters) memory consumption and training
time is the same with doubling of the batch size.

4.3. Quantitative Comparisons

Evaluation Metrics. In terms of evaluation metrics, we
use classification accuracy for the manipulation detection,
which represents how many test images are correctly classi-
fied. For segmentation tasks, we use 1) pixel-wise classifi-
cation accuracy which indicates whether a pixel in an image
is manipulated or not, and 2) IoU (Intersection over Union).
The IoU is calculated for both foreground and background,
and the two IoUs are averaged to get mean IoU (mIoU).

4.3.1 Results
Expression Swap. Table 2 shows the classification ac-

curacy for the Face2Face (F2F) and NeuralTextures (NT)
datasets (with expression swap) using two types of video
quality (low quality (LQ) and high quality (HQ)). As may
be observed, in terms of classification accuracy, EMD (our
method) reaches the best performance on both datasets. In
comparison to XceptionNet, our proposed method achieves
∼ 3% and ∼ 2% improvements in classification accuracy
on F2F and NT datasets respectively.

We also add FER to MultiTask [23] architecture which
leads to improvements of accuracy by ∼ 3% and ∼ 1% on
F2F and NT datasets with high quality videos. Furthermore,
we compare our method with more of the state-of-art meth-
ods on Face2Face dataset in terms of classification accuracy.
Table 3 shows this comparison. As it is clear from Table
3, our method achieves higher classification accuracy. For
localization task, Table 4 shows∼ 3% improvement of seg-
mentation accuracy on low quality videos from F2F dataset
and ∼ 2% imporvement on NT dataset with the same video
quality. We also achieved ∼ 5% and ∼ 4% improvement in
mIoU on F2F and NT with low quality videos.

Identetity Swap. Table 2 also shows the classifica-
tion accuracy for deepfake datasets where the identity is
changed. We run experiments on two deepfake datasets in-
cluding DFDC dataset [7] and DF [6]. Based on the results,
our method achieves 89.16 % on DFDC while Xception-
Net, as one the state-of-the-art methods, achieves 88.98 %
in terms of classification accuracy. On DF dataset [6], we
observe that with the addition of FER system, there is no
fall in the performance. Thus, our method performs at-par
with the state-of-the-art methods in cases where the expres-
sion is not manipulated, but rather the identity is changed.
This demonstrates the generalizability of our approach.

4.3.2 Ablation study
To demonstrate the effectiveness of utilizing FER in manip-
ulation detection and segmentation, we run different exper-
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Table 2: Classification performance in terms of accuracy for state-of-art architectures using two types of face manipulation
including Expression Swap (F2F and NT datasets) and Identity Swap (DF and DFDC datasets).

Method Expression Swap Identity Swap
F2F(HQ) NT(HQ) F2F(LQ) NT(LQ) DF(HQ) DF(LQ) DFDC

W/O FER

Steg.Features+SVM [47] 74.68 76.94 60.58 60.69 77.12 65.58 -
Cozzolino et al [43] 85.32 80.60 62.08 62.42 81.78 68.26 -

Bayar and Stamm [8] 94.93 86.04 76.83 72.38 90.18 80.95 -
Rahmouni et al [10] 93.48 75.18 67.08 62.59 82.16 73.25 -

MesoNet [16] 95.84 85.95 83.56 75.74 95.26 89.52 -
MultiTask [23] 92.77 88.05 82.31 80.67 93.92 85.77 69.76

XceptionNet [15] 98.23 94.50 91.56 82.11 98.85 94.88 88.98

W/ FER MultiTask+EnsFER 95.22 89.15 85.89 81.46 94.10 86.31 70.02
EMD (ours) 99.03 96.31 94.45 83.67 99.13 95.28 89.16
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(a) ROC curves for classification and seg-
mentation with and without facial expression
recognition on F2F. The solid and dotted blue
lines are the proposed EMD algorithm.
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(b) ROC curves for classification and seg-
mentation with and without facial expression
recognition on NT. The solid and dotted blue
lines are the proposed EMD algorithm.
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(c) The detection and segmentation perfor-
mance of our approach by varying the training
corpus size on F2F and DF datasets.

Figure 4: Analysis of performance under different conditions.

Table 3: Classification performance in terms of accuracy
for state-of-art architectures on Face2Face datasets with two
level of video quality.

Method HQ LQ

W/O FER LAE [48] 90.93 -
DCNN [23] 93.50 82.13
FT-res [49] 94.47 -

Two-stream [50] 96.00 86.83
Capsule-Forensics [51] 97.13 81.20

Face X-ray [52] 97.73 -

W/ FER MultiTask+EnsFER 95.22 85.89
EMD (ours) 99.03 94.45

iments with variation of FER architecture. As we can see
from Table 5, using FER system with multiple branches and
selecting the most informative feature maps by using ESR
(the one we use in our architecture) [3] achieves higher ac-
curacy in both detection and segmentation tasks. Using sim-
ple FER (SimFER) [53] consisting of shallow convolutional
layers (without Ensemble layers) leads to performance drop
by ∼ 1% and ∼ 2% in classification and segmentation for
both F2F and NT datasets with high quality videos.

4.4. Analysis of Results

Effect of FER on manipulation detection. We use ROC
curves to show the benefit of FER in manipulation detec-
tion. Figs. 4a and 4b demonstrate ROCs for both de-
tection and segmentation tasks with and without FER sys-
tem. AUC score for our network with FER stream (EMD)
achieves 99% and 97% for detection and segmentation tasks
on F2F respectively. Thus, our method leads to ∼ 1% and
∼ 2% improvement in detection and segmentation AUC
score in comparison to its counterpart without the FER
stream. Based on Fig. 4b, our method achieves ∼ 3% and
∼ 1% improvement in detection and segmentation AUC
score when it is trained/tested on NT dataset.

Size of training data. As shown in Fig. 4c, we evaluate
our proposed network on training sets with variable sizes.
For both datasets (F2F and NT), we compute classification
and segmentation accuracy varying the training size from 10
to ∼ 700 videos. By adding more videos to the datasets our
performance increases initially. Adding more than 300, our
model’s performance does not change much indicating our
method can perform good enough when there is not much
data to train with, i.e., ∼ 300 videos.
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Table 4: Segmentation performance in terms of accuracy and mIoU for all evaluated architectures on Face2Face and Neural-
Textures datasets with two level of video quality.

Method Acc(HQ) Acc(LQ) mIoU(HQ) mIoU(LQ)
F2F NT F2F NT F2F NT F2F NT

W/O FER MultiTask [23] 90.27 88.67 87.76 84.55 81.02 73.33 74.21 70.68
XceptionNet [15] 96.13 91.34 92.45 89.39 89.71 79.25 81.47 75.55

W/ FER MultiTask+EnsFER 93.22 90.56 89.31 86.56 83.25 77.46 78.33 74.23
EMD (ours) 98.43 93.78 95.22 91.54 92.13 83.21 86.71 79.44

Table 5: Classification (cls) and segmentation (seg) accu-
racy for different FER architectures on Face2Face and Neu-
ralTextures datasets with high quality videos.

Method Face2Face NeutalTexture)
Cls Seg Cls Seg

MultiTask+ SimFER 94.93 91.84 88.62 89.21
XceptionNet+ SimFER 98.63 96.89 95.83 92.44

MultiTask+EnsFER 95.22 93.22 89.15 90.56
EMD (ours) 99.03 98.43 96.31 93.78

Original        Manipulated               GT                    Output             CAM        

F2F

F2F

F2F

NT

NT

NT

2

3

1

5

6

4

Figure 5: First and second columns show the original im-
ages and manipulated ones respectively. The black and
white images in the third column are corresponding bi-
nary GT masks. Predicted masks (column 4) and generated
CAMs (column 5) for manipulated images from Face2Face
(row 1,2,3) and Neural-Textures (row 4,5,6) dataset

4.4.1 Why does FER help?
To show the effect of the features extracted from FER sys-
tem, we visualize the last layer of CNN in our FER. For
this purpose, we compute CAMs. A CAM for a particular
category indicates the discriminative image regions used by
the CNN to identify that category. Work by [54] has shown
that the convolutional units of various layers of CNNs ac-
tually behave as object detectors despite no supervision on
the location of the object provided.

In fact, the network can retain its remarkable localization
ability until the final layer. This feature allows identification
of the discriminative image regions which are important for
manipulation detection. Specifically, for expression change
detection, addition of a network which can localize regions
in the face with information about the expressions helps ma-
nipulation detection methods to perform better.

As Fig. 5 shows, expression changes happen mostly
around eyes, mouth and eyebrows. In the last column of
figure, we generate the CAMs for manipulated and pristine
images in F2F and NT datasets. As it is clear, our network
can classify expressions quite well although the main FER
stream has been trained on a different dataset (AffectNet).

5. Conclusions
In this paper, we propose a new approach (EMD) to ex-

ploit facial expression systems in image/video facial expres-
sion manipulation detection. Application of deep network
layers rich in information about facial expressions improves
the manipulation detector by making it learn the useful fea-
tures for facial expression transformation. Experiments on
two challenging datasets demonstrate our method has bet-
ter classification and segmentation performance in facial ex-
pression manipulation detection in comparison to state-of-
art results. Also, our method is close to the state-of-the-art
methods for other kinds of manipulation (identity swap) de-
tection, thus ensuring generalizability.
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[2] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
ferred neural rendering: Image synthesis using neural tex-
tures. ACM Trans. Graph., 38(4), July 2019.

[3] Henrique Siqueira, Sven Magg, and Stefan Wermter. Effi-
cient facial feature learning with wide ensemble-based con-
volutional neural networks. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 34(04):5800–5809, Apr.
2020.

[4] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-
ralba. Learning deep features for discriminative localization.
In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2921–2929, June 2016.

[5] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), September 2018.

[6] Deepfakes github. https://github.com/
deepfakes/faceswap, 2019.

[7] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ
Howes, Menglin Wang, and Cristian Canton Ferrer. The
deepfake detection challenge dataset, 2020.

[8] Belhassen Bayar and Matthew C. Stamm. A deep learn-
ing approach to universal image manipulation detection us-
ing a new convolutional layer. In Proceedings of the 4th
ACM Workshop on Information Hiding and Multimedia Se-
curity, page 5–10, New York, NY, USA, 2016. Association
for Computing Machinery.

[9] Giovanni Chierchia, Sara Parrilli, Giovanni Poggi, Carlo
Sansone, and Luisa Verdoliva. On the influence of denoising
in prnu based forgery detection. In Proceedings of the 2nd
ACM Workshop on Multimedia in Forensics, Security and In-
telligence, MiFor ’10, page 117–122, New York, NY, USA,
2010. Association for Computing Machinery.

[10] Nicolas Rahmouni, Vincent Nozick, Junichi Yamagishi, and
Isao Echizen. Distinguishing computer graphics from natural
images using convolution neural networks. 2017 IEEE Work-
shop on Information Forensics and Security (WIFS), pages
1–6, 2017.

[11] Jawadul H. Bappy, Cody Simons, Lakshmanan Nataraj,
BS Manjunath, and Amit K. Roy-Chowdhury. Hybrid
lstm and encoder–decoder architecture for detection of im-
age forgeries. IEEE Transactions on Image Processing,
28(7):3286–3300, 2019.

[12] Yue Wu, Wael AbdAlmageed, and Premkumar Natarajan.
Mantra-net: Manipulation tracing network for detection and
localization of image forgeries with anomalous features. In
CVPR, June 2019.

[13] Peng Zhou, Xintong Han, Vlad I. Morariu, and Larry S.
Davis. Learning rich features for image manipulation de-
tection. In CVPR, June 2018.

[14] Ghazal Mazaheri, Kevin Urrutia Avila, and Amit K. Roy-
Chowdhury. Learning to identify image manipulations in
scientific publications, 2021.

[15] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Niessner. Faceforen-
sics++: Learning to detect manipulated facial images. In The
IEEE International Conference on Computer Vision (ICCV),
October 2019.

[16] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen. Mesonet:
a compact facial video forgery detection network. In 2018
IEEE International Workshop on Information Forensics and
Security (WIFS), pages 1–7, Dec 2018.

[17] Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, and
Anil K. Jain. On the detection of digital face manipulation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[18] Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong
Chen, Fang Wen, and Baining Guo. Face x-ray for more gen-
eral face forgery detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[19] Ekraam Sabir, Jiaxin Cheng, Ayush Jaiswal, Wael AbdAl-
mageed, Iacopo Masi, and Prem Natarajan. Recurrent convo-
lutional strategies for face manipulation detection in videos.
CoRR, abs/1905.00582, 2019.

[20] Yuezun Li, Ming-Ching Chang, and Siwei Lyu. In ictu oculi:
Exposing AI generated fake face videos by detecting eye
blinking. CoRR, abs/1806.02877, 2018.

[21] X. Yang, Yuezun Li, and Siwei Lyu. Exposing deep fakes
using inconsistent head poses. ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 8261–8265, 2019.

[22] Yuezun Li and Siwei Lyu. Exposing deepfake videos by
detecting face warping artifacts. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, June 2019.

[23] H. H. Nguyen, F. Fang, J. Yamagishi, and I. Echizen. Multi-
task learning for detecting and segmenting manipulated fa-
cial images and videos. In 2019 IEEE 10th International
Conference on Biometrics Theory, Applications and Systems
(BTAS), pages 1–8, 2019.

[24] Falko Matern, C. Riess, and M. Stamminger. Exploiting vi-
sual artifacts to expose deepfakes and face manipulations.
2019 IEEE Winter Applications of Computer Vision Work-
shops (WACVW), pages 83–92, 2019.

[25] Yue Wu, Wael Abd-Almageed, and Prem Natarajan. Deep
matching and validation network: An end-to-end solution
to constrained image splicing localization and detection. In
Proceedings of the 25th ACM International Conference on
Multimedia, MM ’17, page 1480–1502, New York, NY,
USA, 2017. Association for Computing Machinery.

1043



[26] Jawadul H. Bappy, Amit K. Roy-Chowdhury, Jason Bunk,
Lakshmanan Nataraj, and B. S. Manjunath. Exploiting
spatial structure for localizing manipulated image regions.
In The IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

[27] Peng Zhou, Xintong Han, Vlad I. Morariu, and Larry S.
Davis. Learning rich features for image manipulation detec-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[28] Seung-Jin Ryu, Matthias Kirchner, Min-Jeong Lee, and
Heung-Kyu Lee. Rotation invariant localization of dupli-
cated image regions based on zernike moments. IEEE Trans-
actions on Information Forensics and Security, 8:1355–
1370, 2013.

[29] Pasquale Ferrara, Tiziano Bianchi, Alessia De Rosa, and
Alessandro Piva. Image forgery localization via fine-grained
analysis of cfa artifacts. IEEE Transactions on Information
Forensics and Security, 7:1566–1577, 2012.

[30] Tiziano Bianchi and Alessandro Piva. Image forgery
localization via block-grained analysis of jpeg artifacts.
IEEE Transactions on Information Forensics and Security,
7:1003–1017, 2012.

[31] Bo Liu and Chi-Man Pun. Deep fusion network for splicing
forgery localization. In The European Conference on Com-
puter Vision (ECCV) Workshops, September 2018.

[32] J. Bunk, J. H. Bappy, T. M. Mohammed, L. Nataraj, A. Flen-
ner, B. S. Manjunath, S. Chandrasekaran, A. K. Roy-
Chowdhury, and L. Peterson. Detection and localization of
image forgeries using resampling features and deep learning.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 1881–1889, July
2017.

[33] Zhongping Zhang, Yixuan Zhang, Zheng Zhou, and Jiebo
Luo. Boundary-based image forgery detection by fast shal-
low cnn. 2018 24th International Conference on Pattern
Recognition (ICPR), pages 2658–2663, 2018.

[34] Ghazal Mazaheri, Niluthpol Chowdhury Mithun, Jawadul H.
Bappy, and Amit K. Roy-Chowdhury. A skip connection ar-
chitecture for localization of image manipulations. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops, June 2019.

[35] Behzad Hassani and Mohammad H. Mahoor. Spatio-
temporal facial expression recognition using convolutional
neural networks and conditional random fields. 2017 12th
IEEE International Conference on Automatic Face and Ges-
ture Recognition (FG 2017), pages 790–795, 2017.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[37] Shan Li, Weihong Deng, and JunPing Du. Reliable crowd-
sourcing and deep locality-preserving learning for expres-
sion recognition in the wild. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July
2017.

[38] Huiyuan Yang, Umur Ciftci, and Lijun Yin. Facial expres-
sion recognition by de-expression residue learning. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018.

[39] Jiabei Zeng, Shiguang Shan, and Xilin Chen. Facial ex-
pression recognition with inconsistently annotated datasets.
In The European Conference on Computer Vision (ECCV),
September 2018.

[40] Amir Hossein Farzaneh and Xiaojun Qi. Facial expression
recognition in the wild via deep attentive center loss. In 2021
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 2401–2410, 2021.

[41] Wenyun Sun, Haitao Zhao, and Zhong Jin. A visual attention
based roi detection method for facial expression recognition.
Neurocomputing, 296:12–22, 2018.
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