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In the course of our investigations we did extensive ex-
periments on hyperparameter finetuneing, as well as com-
parisons regarding different components of our architecture.
The baseline configuration for the following analyses is the
parameter setup presented in the main section of the paper,
denoting:

 Number of selected points for cloud P< and P: n =
500, m = 2500

* lmaz = 9 with h = 4 heads per layer

* Pillar shaped descriptors including a maximum of z =
128 points within a radius of d = 0.5m based on
x, vy, z and intensity values

The following sections show comprehensive experi-
ments by respectively alternating one of each of the men-
tioned parameters and subsequent evaluation in terms of the
overall performance of the network. The presented results
were achieved by validating the respective network com-
position on the hard version of the NuScenes test dataset.
For each configuration a separate training was performed
for 200 epochs following the training strategy mentioned
in the main paper. Finally the respective best results for
each method within this epoch span are used for our com-
parisons.

1. Selection and comparison of Hyperparame-
ters

Number of selected points: One of the most influen-
tial parameters in the StickyLocalization architecture is the
number of selected points m and n for the current frame
and the submap respectively. Since the submap is con-
structed by accumulating multiple frames it is reasonable
that a larger amount of points get extracted compared to the
current measurement. In this context the ratio between the
number of cloud and map points is denominated by the map
factor f, where n = f - m. A map factor of 1 for instance
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implies the same amount of points for both frames. We per-
formed several trainings with different cloud and map sizes,
form = {250,500, 1000} and f = {1, 2,5} yielding a total
of 9 trainings for the point selection analysis. The respec-
tive results for average E; and E,. on the NuScenes test data
(hard) are visualized in figure 1.
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Figure 1: Point selection analysis validating the perfor-
mance of StickyLocalization under varying number of se-
lected points (purple: m = 250, cyan: m = 500, orange:
m = 1000) and map factors (circle: f = 1, triangle: f = 2,
square: f = 5)

According to the shown results, generally a higher
amount of selected points, as well as higher map factors
lead to better results concerning the validation metrics. For
m = 250 the amount of extracted points seems to be insuf-
ficient for constructing valid point correspondences due to
the sparsity of the clouds. Solely a map factor of 5 in this
context yields enough point cloud overlap for the network to
predict valid correspondences. In contrast m = 500 seems
to produce enough density of the resulting filtered clouds
to hold enough point matches for pose prediction, leading



to a way better overall performance. Best results among
all experiments could be achieved using a parameterization
of m = 500 and f = 5 which also displays a good trade
off in terms of runtime efficiency, since a larger amount of
points automatically results in a higher inference time of the
network. A selected point size of m = 1000 shows the av-
erage best performance, yielding mean F, and E, below a
value of 1.0m and 0.025rad respectively for all map fac-
tors. However the large amount of points not only leads to a
much higher computation time, but is also disadvantageous
with regard to the training process and the performance of
the network, since the selected points receive multiple pos-
sible match candidates, resulting in less distinctive connec-
tions inside the Graph Neural Network.

Number of layers inside the Graph Neural Network:
Another important parameter affecting the performance and
runtime of our approach is the number of self-and cross-
attention layers inside the Graph Neural Network. Here a
higher amount of layers implies a deeper network struc-
ture, providing more learnable parameters and thus lead-
ing to a better generalizability of the network. On the other
hand this also involves an increased GPU load impacting the
runtime of the network. The performance of StickyLocal-
ization with regard to pose estimation errors and inference
runtime under the viewpoint of varying number of layers is
displayed in table 1.

Table 1: Ablation experiments with different number of
self-and cross-attention layers inside the Graph Neural Net-
work

lmaz =3 lmaz =5 lmax =7 lmaxz =9
E; (m) 0.816 0.892 0.623 0.436
E,. (rad) 0.014 0.019 0.019 0.011
ting () 0.101 0.117 0.127 0.142

Generally more layers lead to a better performance of the
network with respect to the transformation error metrics but
simultaneously yielding a higher inference time. However
we experienced performance drops in our experiments for
layer size of l,,,, = 5 which presumably originate from
an unfortunate weight initialization. In the course of our
main experiments we therefore chose a number of /,,,,, = 9
layers to ensure the best performance of our architecture.
However for time critical applications the number of layers
could be adapted to meet certain runtime requirements.

2. Comparison of different descriptor front-
ends

Finally we performed experiments investigating the im-
pact of different feature front-ends on the relocalization ca-
pability of StickyLocalization. In this context we used two

alternative descriptors in comparison to our point pillar fea-
ture representation used in SL p;jjq;-:

* SLyozer: Contrary to the pillar construction with a ra-
dius of d = 0.5m and infinite height, in this context we
used voxelization for point aggregation with a voxel
size of 0.5m in X, y and z direction with z,y, z and
intensity entries for each point. Subsequent encoding
by the pillar- and positional-encoder according to the
main section is performed on the voxel representation.

¢ SLpyintnet Point cloud encoding according to [1] for
semantic point cloud segmentation, resulting in a 256
dimensional feature descriptor for each point by skip-
ping the final MLP layers. In this context, point ag-
gregation and pillar-/positional-encoder steps are dis-
regarded and point selection is performed on the Point-
Net features.

The experimental validation for the alternative feature
descriptors as front-end for StickyLocalization are listed in
table 2.

Table 2: Ablation experiments with alternative feature de-
scriptor front-ends for StickyLocalization

SLVoacel SLPointnet SLPillar
FE; (m) 0.806 0.584 0.436
FE,. (rad) 0.015 0.014 0.011
ting (s) 0.142 0.127 0.142

Comparing the results of SLy o.e; and SLpjjiqr, shows
that the type of point aggregation has a non-negligible effect
on the performance of the network. In this context, utilizing
pillar shapes offers the opportunity to decode important tex-
tures of the local 3D environment like corners and poles, re-
sulting in distinctive feature descriptors for the point cloud
registration task.

Applying the PointNet front-end for StickyLocalization
SLpointNet also yields decent performance on the relocal-
ization experiments which shows the versatility and robust-
ness of our Graph Neural Network middle-end. Although
deployment of our pillar descriptors outperforms all com-
pared feature front-ends in terms of transformation errors,
a slight improvement of inference runtime for SLpyininet
can be observed due to the efficiency of the PointNet archi-
tecture.
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